Después de mirar un poco en Wikipedia y la misma pregunta / respuesta en StackOverflow , pensé que podría darle una puñalada e intentar llenar los vacíos.
En primer lugar, no estoy seguro de dónde obtuviste la salida, pero parece estar mal. Tracé los puntos en ArcMap, los amortigué a las distancias especificadas, corrí intersectando en los búferes y luego capturé el vértice de la intersección para obtener las soluciones. Su salida propuesta es el punto en verde. Calculé el valor en el cuadro de llamada, que es aproximadamente 3 metros de lo que ArcMap dio para la solución derivada de la intersección.
La matemática en la página de Wikipedia no es tan mala, solo necesita convertir sus coordenadas geodésicas a la ECEF cartesiana, que se puede encontrar aquí . los términos a / x + h pueden reemplazarse por el radio de la esfera autálica, si no está utilizando un elipsoide.
Probablemente lo más fácil es darle un código bien documentado (?), Así que aquí está en Python
import math
import numpy
#assuming elevation = 0
earthR = 6371
LatA = 37.418436
LonA = -121.963477
DistA = 0.265710701754
LatB = 37.417243
LonB = -121.961889
DistB = 0.234592423446
LatC = 37.418692
LonC = -121.960194
DistC = 0.0548954278262
#using authalic sphere
#if using an ellipsoid this step is slightly different
#Convert geodetic Lat/Long to ECEF xyz
# 1. Convert Lat/Long to radians
# 2. Convert Lat/Long(radians) to ECEF
xA = earthR *(math.cos(math.radians(LatA)) * math.cos(math.radians(LonA)))
yA = earthR *(math.cos(math.radians(LatA)) * math.sin(math.radians(LonA)))
zA = earthR *(math.sin(math.radians(LatA)))
xB = earthR *(math.cos(math.radians(LatB)) * math.cos(math.radians(LonB)))
yB = earthR *(math.cos(math.radians(LatB)) * math.sin(math.radians(LonB)))
zB = earthR *(math.sin(math.radians(LatB)))
xC = earthR *(math.cos(math.radians(LatC)) * math.cos(math.radians(LonC)))
yC = earthR *(math.cos(math.radians(LatC)) * math.sin(math.radians(LonC)))
zC = earthR *(math.sin(math.radians(LatC)))
P1 = numpy.array([xA, yA, zA])
P2 = numpy.array([xB, yB, zB])
P3 = numpy.array([xC, yC, zC])
#from wikipedia
#transform to get circle 1 at origin
#transform to get circle 2 on x axis
ex = (P2 - P1)/(numpy.linalg.norm(P2 - P1))
i = numpy.dot(ex, P3 - P1)
ey = (P3 - P1 - i*ex)/(numpy.linalg.norm(P3 - P1 - i*ex))
ez = numpy.cross(ex,ey)
d = numpy.linalg.norm(P2 - P1)
j = numpy.dot(ey, P3 - P1)
#from wikipedia
#plug and chug using above values
x = (pow(DistA,2) - pow(DistB,2) + pow(d,2))/(2*d)
y = ((pow(DistA,2) - pow(DistC,2) + pow(i,2) + pow(j,2))/(2*j)) - ((i/j)*x)
# only one case shown here
z = numpy.sqrt(pow(DistA,2) - pow(x,2) - pow(y,2))
#triPt is an array with ECEF x,y,z of trilateration point
triPt = P1 + x*ex + y*ey + z*ez
#convert back to lat/long from ECEF
#convert to degrees
lat = math.degrees(math.asin(triPt[2] / earthR))
lon = math.degrees(math.atan2(triPt[1],triPt[0]))
print lat, lon