Alterar el algoritmo de cuadro de límite mínimo


12

Estoy tratando de crear un algoritmo similar al cuadro delimitador mínimo (aunque puede que no se parezca en nada). En este caso, el ángulo se pasará como parámetro y, dado el ángulo, necesito el rectángulo más pequeño que cubra todos mis puntos / polígonos. Hasta ahora, mi línea de pensamiento es encontrar el centro de mis puntos (algoritmo centroide), y desde allí crear dos líneas paralelas con el mismo ángulo que el ángulo del parámetro, y dos líneas más perpendiculares a ellas. Luego, utilizando la iteración, mueva estas líneas hacia afuera (en direcciones opuestas) hasta que contengan todos los puntos. Tampoco tiene que ser un cuadro de límite mínimo exacto, trabajos aproximados (supongo que dependerá del tamaño de cada paso de iteración).

Aquí está mi código hasta ahora. Ya he disuelto todos mis polígonos en uno. Luego tomo un casco convexo para reducir los vértices. Luego pongo todos los vértices en una lista, no estoy seguro si esto ayuda todavía ...

a = layer.getFeatures()
for feat in a:
    geom = feat.geometry()
a = geom.convexHull()
vertexId = QgsVertexId()
vertices = []
b = a.constGet().nextVertex(vertexId)
while b[0]:
    vertices.append(b[1])
    b = a.constGet().nextVertex(vertexId)

Notas: En algún momento necesito pasar el ángulo de la caja. Estoy usando QGIS 3 y necesito crear esto en Python. La 'capa' de capa tiene una geometría, el polígono disuelto de todos los demás polígonos, tal vez no sea necesaria la iteración para acceder a ella.

Avíseme si debo transmitir más detalles / información.


3
Esta es una tarea sencilla. Gire los vértices del casco convexo usando ecuaciones estándar, stackoverflow.com/questions/20104611/... Calcule minX, minY, etc. Desrote y cree un rectángulo de 4 pares xy.
FelixIP

Respuestas:


2

Aquí está el código completo. Contiene demasiadas líneas (mucho más de lo necesario) pero funciona. Ahora puedes limpiarlo si quieres.

En resumen, el algoritmo calcula la distancia máxima entre líneas paralelas que tienen la pendiente definida por el parámetro de rotación y pasan por los puntos. Para cada punto se creará una línea 'horizontal' y 'vertical'. Estos nombres son orientativos, ya que se definen en la posición 0 (rotación = 0). Entonces, para cada punto externo se crearán estas 2 líneas posibles y luego, iterativamente, se creará el polígono basado en los 4 externos, o dicho de otra manera, donde la distancia de las líneas paralelas es máxima.

Una última cosa: está hecho para usarse en QGIS 3.8 con hierba.

ingrese la descripción de la imagen aquí

from PyQt5.QtCore import *
from qgis.core import *
from qgis.gui import *
from processing.tools import *
from qgis.utils import iface
import qgis.utils, os, glob, processing, string, time, shutil, ogr

#PARAMETERS AND LAYERS
rotation = 45 #use any value between 0 and <90 #90 would make a mess

layer1 = iface.activeLayer() # Load the layer (from active)
crs = layer1.crs().authid() #get crs

#----------------------------------------------------------------------------------------
#LINE EQUATIONS
''' 
BASIC LINE EQUATIONS
y = ax + b
a = (y2 - y1) / (x2 - x1)
b = y1 - a * x1
Distance = (| a*x1 + b*y1 + c |) / (sqrt( a*a + b*b))# Function to find straight distance betweeen line and point 
'''
# slope from angle
def sfa (a):
    return round(math.tan(math.radians(a)),12) #round to avoid problems with horizontal and vertical

# angle from slope (not used)
def afs (s):
    return (math.atan(s) / math.pi) * 180

# Function to find distance 
def shortest_distance(x1, y1, a, b, c):    
    d = round(abs((a * x1 + b * y1 + c)) / (math.sqrt(a * a + b * b)) , 12)
    return d

# Function to find interception between lines
def cross(a1,b1,a2,b2):
    x = (b2-b1) / (a1-a2)
    y = a1 * x + b1
    return (x,y)

#----------------------------------------------------------------------------------------
# GET LIST OF POINTS TO ITERATE
# Calculate convexhull to reduce the iterations between point
# This avoid calculations on 'internal' points
# process of minimum bounding geometry convexHull
MBG = processing.run("qgis:minimumboundinggeometry", {'INPUT': layer1,'FIELD':None,'TYPE':3,'OUTPUT':'TEMPORARY_OUTPUT'})

# Get vertex of MBG
MBGp = processing.run("native:extractvertices", {'INPUT':MBG['OUTPUT'],'OUTPUT':'TEMPORARY_OUTPUT'})

plist = list(MBGp['OUTPUT'].getFeatures())

lp = list()
for p in plist:
    geom = p.geometry()
    a = geom.asPoint()
    point = (a[0],a[1])
    lp.append(point)

#----------------------------------------------------------------------------------------
# PROCESS
# compare hdist and v dist betweeen each pair of point and get the most distant lines
hdist_max = 0
vdist_max = 0
index = list(range(0,len(lp))) #iteration index
bl = ['ah1','bh1','av1','bv1','ah2','bh2','av2','bv2'] #polygon lines defined by 8 parameters see below

for i in index[:-1]:
    print('i'+str(i))
    for t in index[i+1:]:
        print('t'+str(t))

        x1 = lp[i][0] #; print('x1: {}', x1)
        y1 = lp[i][1] #; print('y1: {}', y1)
        x2 = lp[t][0] #; print('x2: {}', x2)
        y2 = lp[t][1] #; print('y2: {}', y2)

        #h1 equation
        ah1 = sfa(rotation)
        bh1 = y1 - ah1 * x1

        #v1 equation
        av1 = sfa(rotation + 90) #remember that just the horizontal is the reference at 0 rotation
        bv1 = y1 - av1 * x1 

        #h2 equation
        ah2 = sfa(rotation)
        bh2 = y2 - ah2 * x2

        #v2 equation
        av2 = sfa(rotation + 90) #remember that just the horizontal is the reference
        bv2 = y2 - av2 * x2 

        # H dist
        hdist = shortest_distance(x1, y1, ah2, -1, bh2)
        vdist = shortest_distance(x1, y1, av2, -1, bv2)

        if hdist > hdist_max:
            bl[0] = ah1
            bl[1] = bh1
            bl[4] = ah2
            bl[5] = bh2
            hdist_max = hdist #update max hdist
        if vdist > vdist_max:
            bl[2] = av1
            bl[3] = bv1
            bl[6] = av2
            bl[7] = bv2
            vdist_max = vdist #update max vdist

print("Max perpendicular distance betweeen 'horizontal lines' is",hdist_max, ' m')
print("Max perpendicular distance betweeen 'verticallines' is",vdist_max, ' m')

#------------------------------------------------------------------------------------------
# GET 4 COORDS FROM BOUNDINGLINES bl
# using the slope and intercept from boundinglines can we now calculate the 4 corners of the rotated polygon
H1V1 = cross(bl[0],bl[1],bl[2],bl[3]) # H1V1
H1V2 = cross(bl[0],bl[1],bl[6],bl[7]) # H1V2
H2V1 = cross(bl[4],bl[5],bl[2],bl[3]) # H2V1
H2V2 = cross(bl[4],bl[5],bl[6],bl[7]) # H2V2

# SORT POINTS CLOCKWISE AND CREATE QgsPointXY for polygon
clist = [H1V1,H1V2,H2V1,H2V2]
points=[]
points.append(sorted(clist, key=lambda e: (e[1], e[0]))[0]); clist.remove(points[0]) #minX and minY
points.append(sorted(clist, key=lambda e: (e[0], e[1]))[0]); clist.remove(points[1]) #minY and minX
points.append(sorted(clist, key=lambda e: (e[1]), reverse=True)[0]); clist.remove(points[2]) #maxY
points.append(clist[0]) #remaining
p=[]
for i in points:
    p.append(QgsPointXY(i[0],i[1]))
print('Coords of the polygon: ',p)

#------------------------------------------------------------------------------------------
#CREATE ROTATED BOUNDING BOX FROM THESE POINTS
layer = QgsVectorLayer(str('Polygon?crs='+crs), 'polygon' , 'memory')
prov = layer.dataProvider()
feat = QgsFeature()
feat.setGeometry(QgsGeometry.fromPolygonXY([p]))
prov.addFeatures([feat])
layer.updateExtents()
QgsProject.instance().addMapLayers([layer])
Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.