Lo hice hace algún tiempo, aunque mi solución está usando GDAL (por lo tanto, esto no es solo para ArcGIS). Creo que puede obtener una matriz NumPy de un ráster en ArcGIS 10, pero no estoy seguro. NumPy proporciona indexación de matriz simple y potente, como argsort
y otros. Este ejemplo no maneja NODATA ni transforma coordenadas de proyectado a lat / long (pero esto no es difícil de hacer con osgeo.osr, provisto con GDAL)
import numpy as np
from osgeo import gdal
# Open raster file, and get GeoTransform
rast_src = gdal.Open(rast_fname)
rast_gt = rast_src.GetGeoTransform()
def get_xy(r, c):
'''Get (x, y) raster centre coordinate at row, column'''
x0, dx, rx, y0, ry, dy = rast_gt
return(x0 + r*dx + dx/2.0, y0 + c*dy + dy/2.0)
# Get first raster band
rast_band = rast_src.GetRasterBand(1)
# Retrieve as NumPy array to do the serious work
rast = rast_band.ReadAsArray()
# Sort raster pixels from highest to lowest
sorted_ind = rast.argsort(axis=None)[::-1]
# Show highest top 10 values
for ind in sorted_ind[:10]:
# Get row, column for index
r, c = np.unravel_index(ind, rast.shape)
# Get [projected] X and Y coordinates
x, y = get_xy(r, c)
print('[%3i, %3i] (%.3f, %.3f) = %.3f'%
(r, c, x, y, rast[r, c]))
Muestra lo siguiente para mi archivo ráster de prueba:
[467, 169] (2813700.000, 6353100.000) = 844.538
[467, 168] (2813700.000, 6353200.000) = 841.067
[469, 168] (2813900.000, 6353200.000) = 840.705
[468, 168] (2813800.000, 6353200.000) = 840.192
[470, 167] (2814000.000, 6353300.000) = 837.063
[468, 169] (2813800.000, 6353100.000) = 837.063
[482, 166] (2815200.000, 6353400.000) = 833.038
[469, 167] (2813900.000, 6353300.000) = 832.825
[451, 181] (2812100.000, 6351900.000) = 828.064
[469, 169] (2813900.000, 6353100.000) = 827.514