Escribí un algoritmo en C # que intenta todas las combinaciones posibles de esos Nor 3->1
Xor 2->1
Nand 2->1
y Decoder 3->8
.
Después de ejecutarlo durante 7½ millones de años 2 horas, devolvió 42 Falso. Creo que esto prueba que la pregunta no tiene respuesta ya que este algoritmo verifica todas las combinaciones posibles. :)
Me pidieron que lo describiera, así que la siguiente parte es una explicación de las partes del código, parte por parte. TL; DR : puede saltar al código hacia abajo al final :)
Hablemos de las líneas de entrada, tienen 0 o 1 estados y para cada una de las posibles entradas (0 a 15) tienen diferentes valores:
para la primera línea se ve así: 0 1 0 1 0 1 ... La segunda es: 0 0 1 1 0 0 1 1 ... la tercera: 0 0 0 0 1 1 1 1 .... como binaria contando ... tienes la idea: P
Entonces creé un objeto que representa cada línea en cada uno de sus estados:
class BitLine{
bool[] IsActiveWhenInputIs = new bool[16];
}
Como dice bitLine.IsActiveWhenInputIs [5] devuelve si la línea estaba activa cuando la entrada era 5.
Este es un código que crea las líneas de entrada por completo:
var bitLineList = new BitLine[6]; // initialize new array of bitLines
for (int i = 0; i < 6; i++) bitLineList [i] = new BitLine(); // initialize each bitLine
for (int i = 0; i < 16; i++)
{
for (int j = 0; j < 4; j++)
{
int checker = 1 << j; // check whether the j-th bit is activated in the binary representation of the number.
bitLineList[j].IsActiveWhenInputIs[i] = ((checker & i) != 0); // if it's active, the AND result will be none zero, and so the return value will be true - which is what we need :D
}
}
También crearemos líneas de bits "siempre verdaderas" y "siempre falsas" para proporcionar una entrada constante "0" o una entrada "1".
for (int i = 0; i < 16; i++){
bitLineList[4].IsActiveWhenInputIs[i] = false;
bitLineList[5].IsActiveWhenInputIs[i] = true;
}
Ahora, si se da cuenta, lo que estamos buscando es en realidad una línea de bits específica, una que sea verdadera cuando la entrada es 0, 7, 14. Represéntelo en nuestra clase:
var neededBitLine = new BitLine();
for (int i = 0; i < 16; i++){
neededBitLine.IsActiveWhenInputIs[i] = ((i % 7) == 0); // be true for any number that is devideble by 7 (0,7,14)
}
Esto hizo las cosas realmente simples: lo que realmente estamos buscando es una forma de "falsificar" esta necesaria BitLine desde la línea de bits de entrada (así es como represento a mi programa lo que quiero que sea mi salida).
Ahora, así es como vamos en: cada vez que utilizamos algún elemento lógico en nuestras líneas de bits como Xor
, Nor
, Nand
o incluso el Decoder
, en realidad estamos creando una nueva línea de bits \ T. ¡Conocemos el valor de cada una de las líneas en cada entrada posible de 0 a 15, por lo que también podemos calcular el nuevo valor de bitLine \ s en cada entrada posible!
Nand Nor y Xor son sencillos:
void Xor(BitLine b1, BitLine b2, BitLine outputBitLine)
{
for (var i = 0; i < 16; i++)
{
outputBitLine.IsActiveWhenInputIs[i] = b1.IsActiveWhenInputIs[i] != b2.IsActiveWhenInputIs[i];
}
}
void Nand(BitLine b1, BitLine b2, BitLine outputBitLine)
{
for (var i = 0; i < 16; i++)
{
outputBitLine.IsActiveWhenInputIs[i] = !(b1.IsActiveWhenInputIs[i] && b2.IsActiveWhenInputIs[i]);
}
}
void Nor(BitLine b1, BitLine b2, BitLine b3, BitLine outputBitLine)
{
for (var i = 0; i < 16; i++)
{
outputBitLine.IsActiveWhenInputIs[i] = !(b1.IsActiveWhenInputIs[i] || b2.IsActiveWhenInputIs[i] || b3.IsActiveWhenInputIs[i]);
}
}
Para cada entrada posible, representa cómo actuará la nueva BitLine.
Manejar el decodificador es un poco complicado, pero la idea es "si los bits en la entrada representan el número x en binario, entonces la línea de bits de salida x-ésima será verdadera, mientras que todas las demás serán falsas. A diferencia del otro función, esta obtiene una matriz de línea de bits y agrega 8 nuevas líneas de bits a la matriz.
void Decoder(BitLine b1, BitLine b2, BitLine b3, List<BitLine> lines, int listOriginalLength)
{
for (int optionNumber = 0; optionNumber < 8; optionNumber++)
{
for (var i = 0; i < 16; i++)
{
int sum = 0;
if (b1.IsActiveWhenInputIs[i]) sum += 4;
if (b2.IsActiveWhenInputIs[i]) sum += 2;
if (b3.IsActiveWhenInputIs[i]) sum += 1;
lines[listOriginalLength+optionNumber].IsActiveWhenInputIs[i] = (sum == optionNumber);
}
}
}
Ahora tenemos todos nuestros elementos básicos, así que hablemos sobre el algoritmo:
Vamos a hacer un algoritmo recursivo, en cada profundidad intentará usar otros elementos (ni \ nand \ xor \ decoder) en las líneas de bits disponibles actualmente, y luego establecerá el elemento como inutilizable para la siguiente profundidad recursiva. Cada vez que lleguemos al fondo y no tengamos más elementos para usar, verificaremos si tenemos una línea de bits que es lo que estábamos buscando.
Este código verifica en cualquier momento si el grupo actual de líneas contiene la línea que estamos buscando:
bool CheckIfSolutionExist(List<BitLine> lines, int linesLength BitLine neededLine)
{
for(int i = 0; i<linesLength; i++){
if (lines[i].CheckEquals(neededLine))
{
return true;
}
}
return false;
}
Esta es la función que utiliza para verificar si dos líneas son iguales:
bool CheckEquals(BitLine other)
{
for (var i = 0; i < 16; i++)
{
if (this.IsActiveWhenInputIs[i] != other.IsActiveWhenInputIs[i])
{
return false;
}
}
return true;
}
Ok, ahora para la parte principal, este es el algoritmo principal:
bool Solve(List<BitLine> lines, int listLength, bool nand, bool nor, bool xor, bool decoder, BitLine neededLine)
{
if ((!nand) && (!nor) && (!xor) && (!decoder))
{
return CheckIfSolutionExist(lines, listLength, neededLine);
}
else
{
if (HandleNand(lines, nand, nor, xor, decoder, neededLine,listLength))
{
return true;
}
if (HandleNor(lines, nand, nor, xor, decoder, neededLine,listLength))
{
return true;
}
if (HandleXor(lines, nand, nor, xor, decoder, neededLine,listLength))
{
return true;
}
if (HandleDecoder(lines, nand, nor, xor, decoder, neededLine,listLength))
{
return true;
}
return false;
}
}
Esta función recibe una lista de las líneas de bits disponibles, la longitud de la lista, un valor booleano que representa si cada elemento está disponible actualmente (xor / nor / nand / decoder) y una línea de bits que representa la línea de bits que estamos buscando.
En cada etapa, verifica si tenemos más elementos para usar, si no, verifica si archivamos nuestra línea de bits necesaria.
Si todavía tenemos más elementos, entonces para cada elemento llama a una función que se supone que maneja la creación de nuevas BitLines usando esos elementos y luego llama a la siguiente profundidad recursiva.
Las siguientes funciones del controlador son bastante sencillas, se pueden traducir a "elegir 2 \ 3 de las líneas de bits disponibles y combinarlas con el elemento relevante. Luego llame a la siguiente profundidad de la recursión, solo que esta vez no contendrá este elemento ".
esas son las funciones:
bool HandleNand(List<BitLine> lines, int listLength, bool nand, bool nor, bool xor, bool decoder, BitLine neededLine)
{
if (nand)
{
for (int i = 0; i < listLength; i++)
{
for (int j = i; j < listLength; j++)
{
BitLine.Nand(lines[i], lines[j],lines[listLength]);
if (Solve(lines,listLength+1, false, nor, xor, decoder, neededLine))
{
return true;
}
}
}
}
return false;
}
bool HandleXor(List<BitLine> lines, int listLength, bool nand, bool nor, bool xor, bool decoder, BitLine neededLine)
{
if (xor)
{
for (int i = 0; i < listLength; i++)
{
for (int j = i; j < listLength; j++)
{
BitLine.Xor(lines[i], lines[j],lines[listLength]);
if (Solve(lines,listLength+1, nand, nor, false, decoder, neededLine))
{
return true;
}
}
}
}
return false;
}
bool HandleNor(List<BitLine> lines, int listLength, bool nand, bool nor, bool xor, bool decoder, BitLine neededLine)
{
if (nor)
{
for (int i = 0; i < listLength; i++)
{
for (int j = i; j < listLength; j++)
{
for (int k = j; k < listLength; k++)
{
BitLine.Nor(lines[i], lines[j], lines[k],lines[listLength]);
if (Solve(lines,listLength+1, nand, false, xor, decoder, neededLine))
{
return true;
}
}
}
}
}
return false;
}
bool HandleDecoder(List<BitLine> lines, int listLength, bool nand, bool nor, bool xor, bool decoder, BitLine neededLine)
{
if (decoder)
{
for (int i = 0; i < listLength; i++)
{
for (int j = i; j < listLength; j++)
{
for (int k = j; k < listLength; k++)
{
BitLine.Decoder(lines[i], lines[j], lines[k],lines,listLength);
if (Solve(lines,listLength+8, nand, nor, xor, false, neededLine))
{
return true;
}
}
}
}
}
return false;
}
Y esto es todo, solo llamamos a esta función con la línea necesaria que estamos buscando, y verifica todas las combinaciones posibles de las partes eléctricas para verificar si es posible combinarlas de tal manera que al final una sola línea sea salida con los valores necesarios.
* observe que uso la misma lista todo el tiempo, por lo que no necesitaré crear nuevas instancias de bitlines todo el tiempo. Le doy un búfer de 200 por ese motivo.
Este es el programa completo:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace ConsoleApp2
{
public class BitLine
{
public bool[] IsActiveWhenInputIs = new bool[16];
public static void Xor(BitLine b1, BitLine b2, BitLine outputBitLine)
{
for (var i = 0; i < 16; i++)
{
outputBitLine.IsActiveWhenInputIs[i] = b1.IsActiveWhenInputIs[i] != b2.IsActiveWhenInputIs[i];
}
}
public static void Nand(BitLine b1, BitLine b2, BitLine outputBitLine)
{
for (var i = 0; i < 16; i++)
{
outputBitLine.IsActiveWhenInputIs[i] = !(b1.IsActiveWhenInputIs[i] && b2.IsActiveWhenInputIs[i]);
}
}
public static void Nor(BitLine b1, BitLine b2, BitLine b3, BitLine outputBitLine)
{
for (var i = 0; i < 16; i++)
{
outputBitLine.IsActiveWhenInputIs[i] = !(b1.IsActiveWhenInputIs[i] || b2.IsActiveWhenInputIs[i] || b3.IsActiveWhenInputIs[i]);
}
}
public static void Decoder(BitLine b1, BitLine b2, BitLine b3, List<BitLine> lines, int listOriginalLength)
{
for (int optionNumber = 0; optionNumber < 8; optionNumber++)
{
for (var i = 0; i < 16; i++)
{
int sum = 0;
if (b1.IsActiveWhenInputIs[i]) sum += 4;
if (b2.IsActiveWhenInputIs[i]) sum += 2;
if (b3.IsActiveWhenInputIs[i]) sum += 1;
lines[listOriginalLength + optionNumber].IsActiveWhenInputIs[i] = (sum == optionNumber);
}
}
}
public bool CheckEquals(BitLine other)
{
for (var i = 0; i < 16; i++)
{
if (this.IsActiveWhenInputIs[i] != other.IsActiveWhenInputIs[i])
{
return false;
}
}
return true;
}
}
public class Solver
{
bool CheckIfSolutionExist(List<BitLine> lines, int linesLength, BitLine neededLine)
{
for (int i = 0; i < linesLength; i++)
{
if (lines[i].CheckEquals(neededLine))
{
return true;
}
}
return false;
}
bool HandleNand(List<BitLine> lines, int listLength, bool nand, bool nor, bool xor, bool decoder, BitLine neededLine)
{
if (nand)
{
for (int i = 0; i < listLength; i++)
{
for (int j = i; j < listLength; j++)
{
BitLine.Nand(lines[i], lines[j], lines[listLength]);
if (Solve(lines, listLength + 1, false, nor, xor, decoder, neededLine))
{
return true;
}
}
}
}
return false;
}
bool HandleXor(List<BitLine> lines, int listLength, bool nand, bool nor, bool xor, bool decoder, BitLine neededLine)
{
if (xor)
{
for (int i = 0; i < listLength; i++)
{
for (int j = i; j < listLength; j++)
{
BitLine.Xor(lines[i], lines[j], lines[listLength]);
if (Solve(lines, listLength + 1, nand, nor, false, decoder, neededLine))
{
return true;
}
}
}
}
return false;
}
bool HandleNor(List<BitLine> lines, int listLength, bool nand, bool nor, bool xor, bool decoder, BitLine neededLine)
{
if (nor)
{
for (int i = 0; i < listLength; i++)
{
for (int j = i; j < listLength; j++)
{
for (int k = j; k < listLength; k++)
{
BitLine.Nor(lines[i], lines[j], lines[k], lines[listLength]);
if (Solve(lines, listLength + 1, nand, false, xor, decoder, neededLine))
{
return true;
}
}
}
}
}
return false;
}
bool HandleDecoder(List<BitLine> lines, int listLength, bool nand, bool nor, bool xor, bool decoder, BitLine neededLine)
{
if (decoder)
{
for (int i = 0; i < listLength; i++)
{
for (int j = i; j < listLength; j++)
{
for (int k = j; k < listLength; k++)
{
BitLine.Decoder(lines[i], lines[j], lines[k], lines, listLength);
if (Solve(lines, listLength + 8, nand, nor, xor, false, neededLine))
{
return true;
}
}
}
}
}
return false;
}
public bool Solve(List<BitLine> lines, int listLength, bool nand, bool nor, bool xor, bool decoder, BitLine neededLine)
{
if ((!nand) && (!nor) && (!xor) && (!decoder))
{
return CheckIfSolutionExist(lines, listLength, neededLine);
}
else
{
if (HandleNand(lines, listLength, nand, nor, xor, decoder, neededLine))
{
return true;
}
if (HandleNor(lines, listLength, nand, nor, xor, decoder, neededLine))
{
return true;
}
if (HandleXor(lines, listLength, nand, nor, xor, decoder, neededLine))
{
return true;
}
if (HandleDecoder(lines, listLength, nand, nor, xor, decoder, neededLine))
{
return true;
}
return false;
}
}
}
class Program
{
public static void Main(string[] args)
{
List<BitLine> list = new List<BitLine>();
var bitLineList = new BitLine[200];
for (int i = 0; i < 200; i++) bitLineList[i] = new BitLine();
// set input bit:
for (int i = 0; i < 16; i++)
{
for (int j = 0; j < 4; j++)
{
int checker = 1 << j;
bitLineList[j].IsActiveWhenInputIs[i] = ((checker & i) != 0);
}
}
// set zero and one constant bits:
for (int i = 0; i < 16; i++)
{
bitLineList[4].IsActiveWhenInputIs[i] = false;
bitLineList[5].IsActiveWhenInputIs[i] = true;
}
list.AddRange(bitLineList);
var neededBitLine = new BitLine();
for (int i = 0; i < 16; i++)
{
neededBitLine.IsActiveWhenInputIs[i] = (i%7==0); // be true for any number that is devideble by 7 (0,7,14)
}
var solver = new Solver();
Console.WriteLine(solver.Solve(list, 6, true, true, true, true, neededBitLine));
Console.ReadKey();
}
}
}
Espero que esta vez sea una explicación válida: P