Aquí está la hoja de datos que debe vincularse desde su pregunta. No debería tener que buscarlo.
Cada mosfet debe manejar 32 amperios
VGS=10
VGS5V×R2R1+R2=4.54VR1R2
VGS=10VRDS(on)
P=I2×R=(32A)2×0.035Ω=35.84W , esto significa que ~ 36W es la disipación de potencia esperada cuandoVGS=10V
Con , el tiene un máximo de 45 mΩ según la hoja de datos.VGS=5VRDS(on)
35.84W=I2×0.045Ω , y si movemos el I alrededor obtenemos: , por lo que puede esperar que 28A pase con seguridad por el MOSFET IF arreglas los valores de resistencia. Definitivamente deberías conseguir un disipador de calor para los MOSFETS. Quizás incluso enfriamiento activo con un ventilador.I=35.840.045−−−−√=28.2A
Modificamos el temporizador en el Arduino para que nuestra frecuencia PWM fuera de alrededor de 8000 Hertz
No necesita esa alta, 800Hz sería aceptable, eso es lo que cambian los controladores BLDC comunes (ESC). (Si no me equivoco).
Lo que intenta hacer es cargar una compuerta con una resistencia en serie, se parece a la imagen de abajo y podemos usar ese modelo para otras ecuaciones.
La capacitancia de la puerta ( ) tiene un valor máximo deCiss1040pF
Las resistencias y el MOSFET están formando este circuito:
C=Ciss×3=3120pF porque tienes 3 en paralelo.
R=R1||R2=909Ω
Vs=4.54V
El voltaje sobre el condensador sigue esta ecuación:
donde es el voltaje a través del condensador y es con lo que lo está alimentando, en nuestro caso es .
Vc=Ve×(1−e−tRC)
VcVeVs=4.54V
Estás enviando PWM y haré un peor escenario para ti. Es cuando estás tratando de hacer analogWrite (1) , ese es un ciclo de trabajo de . Entonces, el tiempo en que su señal comienza a subir hasta que termina con ese ciclo de trabajo y 8kHz es 488.3 nanosegundos.12561256×18000=
Enchufemos los números en la ecuación anterior para ver cuál será el voltaje en la puerta.
Vc=4.54V×(1−e−488.3×10−9(909)×(3120×10−12))=0.71V
El MOSFET comienza a abrirse con un mínimo de 1V y un máximo de 2.5V. Entonces, en el peor de los casos, ni siquiera puedes abrir la puerta. Así que ha estado cerrado todo el tiempo.
Otra cosa que realmente necesito señalar es que la razón más probable por la cual sus MOSFETS se están rompiendo es porque cuando lo hace, lo hace muy lentamente debido a las resistencias gigantescas y con tantas capacidades de compuerta. Eso significa que cuando los MOSFET están a punto de cambiar, pasan una gran cantidad de corriente mientras tienen una gran tensión sobre ellos. Y => realmente muy muy mucho calor.P=I×V
Ver esta imagen:
Como puedes entender, no quieres estar donde se cruzan la línea azul y la línea roja. Y el ancho de esa transición es el mismo independientemente de la frecuencia de conmutación, por lo que cuanto más a menudo cambie, más tiempo se dedica a esa transición dolorosa. Se llama pérdidas de cambio. Y se escala linealmente con frecuencia de conmutación. Y sus altas resistencias, alta capacitancia, conmutación de alta frecuencia, lo más probable es que lo haga permanecer en esa fase de transición todo el tiempo. Y eso equivale a explosiones o romper MOSFETS.
Realmente no tengo tiempo para hacer más cálculos, pero creo que entiendes lo esencial. Aquí hay un enlace a un esquema si quieres jugar. ¡Cuál deberías! .
Mi último consejo para usted es obtener un controlador MOSFET para que pueda bombear varios AMPS en la puerta, en este momento está bombeando miliamperios.
Btw Doctor Circuit, con respecto a su último párrafo, eso es solo un problema con los transistores BJT, entregan más corriente cuanto más caliente son, MOSFET sin embargo entregan menos corriente cuanto más caliente son, por lo que no necesitan ningún tipo especial de equilibrio, lo harán equilibrar automáticamente
CONTINUACIÓN, tiempo de subida y tiempo de caída.
Era bastante malo en el ejemplo anterior, conmutación de 8 kHz y ciclo de trabajo de 1/256. Seré más amable y veré un ciclo de trabajo del 50% = 128/256. Quiero saber y decirte cuánto tiempo pasas en tu dolorosa transición.
Entonces obtuvimos los siguientes parámetros relevantes para la transición dolorosa :
td(on) = Tiempo de retardo de encendido = Tiempo de subida de encendido = Tiempo de retraso de apagado = Tiempo de caída de apagado
tr
td(off)
tf
Haré algunas aproximaciones desagradables, asumiré que la meseta de Miller no existe, asumiré que el voltaje a través del MOSFET disminuye linealmente cuando se enciende y aumenta linealmente cuando se apaga. Asumiré que la corriente que fluye a través del MOSFET aumenta linealmente cuando se enciende y disminuye linealmente cuando se apaga. Asumiré que su motor consume 200 A durante el estado estable de un ciclo de trabajo del 50% con algo de carga, digamos su cuerpo. Entonces 200A mientras estás en ello y acelerando. (Mientras más torque produzca su motor, proporcionalmente, se generará más corriente).
Ahora a los números. De la hoja de datos sabemos los siguientes valores máximos:
td(on) = 40ns = 430ns = 130ns = 230ns
tr
td(off)
tf
Bien, primero quiero saber cuánto dura un período de 8kHz la transición anterior. La transición ocurre una vez cada período. Los retrasos no afectan realmente la transición (a menos que cambiemos a frecuencias realmente muy altas, como 1MHz).
tiempo en transición con un ciclo de trabajo del 50% y fs a 8 kHz =
Pensé que vería un valor mucho mayor, esto está ignorando el meseta molinero y cosas parásitas, e ignorando la carga lenta de la puerta. Además, esto ignora el hecho de que el tiempo de subida y el tiempo de caída son en realidad del 10% al 90% de la señal, no del 0% al 100%, lo que supongo en mis cálculos. Entonces multiplicaría el 0.528 por 2 para hacer que mi aproximación sea más cercana a la realidad. Entonces 1%.tr+tf18000=0.00528=0.528%
Ahora sabemos con qué frecuencia pasamos tiempo en esa dolorosa transición. Veamos cuán doloroso es realmente.
P=1T∫T0P(t)dt
Vr(t)=48V(1−t430ns)
Ir(t)=200A430nst
Vf(t)=48V230nst
If(t)=200A(1−t230ns)
P=Pr+Pf
Pr=1tr∫tr0Vr(t)×Ir(t)dt
Pf=1tf∫tf0Vf(t)×If(t)dt
Pr=1600W LOL! misma respuesta, extraña
Pf=1600W
P=Pr+Pf=3200W
Ahora volvamos a la frecuencia con la que pasó en esta transición de 3200W. Fue alrededor del 1% cuando la realidad entra en acción. (Y pensé que sería mucho más a menudo).
Pavg=3200W×1%=32W Hmm, nuevamente pensé que vería algo mucho ... más grande.
Y ... ¡calculemos el otro 99% del tiempo! De lo cual me olvidé por completo. ¡Aquí está la gran explosión! Sabía que había algo que olvidé.
P 50 % @ 8 k H z = 32 W + 1800 W × 49.5 % = 923 WP=I2×R=(200A)2×(0.045Ω)=1800W Y usted pasa el 49.5% del tiempo en este modo de conducción. Entonces, suP50%@8kHz=32W+1800W×49.5%=923W
Con 3 MOSFET en paralelo es por MOSFET. Eso sigue siendo ... ¡EX-PU-LOSIVE!32W+1800W×49.5%3=329W
Aquí vamos. Ahí está la bomba que estás buscando. EX-PU-LOSION
Esta es mi última edición.