Índices PostgreSQL y BRIN
Pruébalo por ti mismo. Esto no es un problema en una computadora portátil de 5 años con un ssd.
EXPLAIN ANALYZE
CREATE TABLE electrothingy
AS
SELECT
x::int AS id,
(x::int % 20000)::int AS locid, -- fake location ids in the range of 1-20000
now() AS tsin, -- static timestmap
97.5::numeric(5,2) AS temp, -- static temp
x::int AS usage -- usage the same as id not sure what we want here.
FROM generate_series(1,1728000000) -- for 1.7 billion rows
AS gs(x);
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------------
Function Scan on generate_series gs (cost=0.00..15.00 rows=1000 width=4) (actual time=173119.796..750391.668 rows=1728000000 loops=1)
Planning time: 0.099 ms
Execution time: 1343954.446 ms
(3 rows)
Por lo tanto, tardó 22 minutos en crear la tabla. En gran parte, porque la mesa es un modesto 97GB. Luego creamos los índices,
CREATE INDEX ON electrothingy USING brin (tsin);
CREATE INDEX ON electrothingy USING brin (id);
VACUUM ANALYZE electrothingy;
Tomó bastante tiempo crear los índices también. Aunque debido a que son BRIN, solo tienen 2-3 MB y se almacenan fácilmente en ram. Leer 96 GB no es instantáneo, pero no es un problema real para mi computadora portátil en su carga de trabajo.
Ahora lo consultamos.
explain analyze
SELECT max(temp)
FROM electrothingy
WHERE id BETWEEN 1000000 AND 1001000;
QUERY PLAN
---------------------------------------------------------------------------------------------------------------------------------------------
Aggregate (cost=5245.22..5245.23 rows=1 width=7) (actual time=42.317..42.317 rows=1 loops=1)
-> Bitmap Heap Scan on electrothingy (cost=1282.17..5242.73 rows=993 width=7) (actual time=40.619..42.158 rows=1001 loops=1)
Recheck Cond: ((id >= 1000000) AND (id <= 1001000))
Rows Removed by Index Recheck: 16407
Heap Blocks: lossy=128
-> Bitmap Index Scan on electrothingy_id_idx (cost=0.00..1281.93 rows=993 width=0) (actual time=39.769..39.769 rows=1280 loops=1)
Index Cond: ((id >= 1000000) AND (id <= 1001000))
Planning time: 0.238 ms
Execution time: 42.373 ms
(9 rows)
Actualizar con marcas de tiempo
Aquí generamos una tabla con diferentes marcas de tiempo para satisfacer la solicitud de indexar y buscar en una columna de marca de tiempo, la creación tarda un poco más porque to_timestamp(int)
es sustancialmente más lenta que now()
(que se almacena en caché para la transacción)
EXPLAIN ANALYZE
CREATE TABLE electrothingy
AS
SELECT
x::int AS id,
(x::int % 20000)::int AS locid,
-- here we use to_timestamp rather than now(), we
-- this calculates seconds since epoch using the gs(x) as the offset
to_timestamp(x::int) AS tsin,
97.5::numeric(5,2) AS temp,
x::int AS usage
FROM generate_series(1,1728000000)
AS gs(x);
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------------
Function Scan on generate_series gs (cost=0.00..17.50 rows=1000 width=4) (actual time=176163.107..5891430.759 rows=1728000000 loops=1)
Planning time: 0.607 ms
Execution time: 7147449.908 ms
(3 rows)
Ahora podemos ejecutar una consulta en un valor de marca de tiempo en su lugar ,,
explain analyze
SELECT count(*), min(temp), max(temp)
FROM electrothingy WHERE tsin BETWEEN '1974-01-01' AND '1974-01-02';
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------------------------------
Aggregate (cost=296073.83..296073.84 rows=1 width=7) (actual time=83.243..83.243 rows=1 loops=1)
-> Bitmap Heap Scan on electrothingy (cost=2460.86..295490.76 rows=77743 width=7) (actual time=41.466..59.442 rows=86401 loops=1)
Recheck Cond: ((tsin >= '1974-01-01 00:00:00-06'::timestamp with time zone) AND (tsin <= '1974-01-02 00:00:00-06'::timestamp with time zone))
Rows Removed by Index Recheck: 18047
Heap Blocks: lossy=768
-> Bitmap Index Scan on electrothingy_tsin_idx (cost=0.00..2441.43 rows=77743 width=0) (actual time=40.217..40.217 rows=7680 loops=1)
Index Cond: ((tsin >= '1974-01-01 00:00:00-06'::timestamp with time zone) AND (tsin <= '1974-01-02 00:00:00-06'::timestamp with time zone))
Planning time: 0.140 ms
Execution time: 83.321 ms
(9 rows)
Resultado:
count | min | max
-------+-------+-------
86401 | 97.50 | 97.50
(1 row)
Entonces, en 83.321 ms podemos agregar 86.401 registros en una tabla con 1.7 mil millones de filas. Eso debería ser razonable.
Hora final
Calcular el final de la hora también es bastante fácil, truncar las marcas de tiempo y luego simplemente agregar una hora.
SELECT date_trunc('hour', tsin) + '1 hour' AS tsin,
count(*),
min(temp),
max(temp)
FROM electrothingy
WHERE tsin >= '1974-01-01'
AND tsin < '1974-01-02'
GROUP BY date_trunc('hour', tsin)
ORDER BY 1;
tsin | count | min | max
------------------------+-------+-------+-------
1974-01-01 01:00:00-06 | 3600 | 97.50 | 97.50
1974-01-01 02:00:00-06 | 3600 | 97.50 | 97.50
1974-01-01 03:00:00-06 | 3600 | 97.50 | 97.50
1974-01-01 04:00:00-06 | 3600 | 97.50 | 97.50
1974-01-01 05:00:00-06 | 3600 | 97.50 | 97.50
1974-01-01 06:00:00-06 | 3600 | 97.50 | 97.50
1974-01-01 07:00:00-06 | 3600 | 97.50 | 97.50
1974-01-01 08:00:00-06 | 3600 | 97.50 | 97.50
1974-01-01 09:00:00-06 | 3600 | 97.50 | 97.50
1974-01-01 10:00:00-06 | 3600 | 97.50 | 97.50
1974-01-01 11:00:00-06 | 3600 | 97.50 | 97.50
1974-01-01 12:00:00-06 | 3600 | 97.50 | 97.50
1974-01-01 13:00:00-06 | 3600 | 97.50 | 97.50
1974-01-01 14:00:00-06 | 3600 | 97.50 | 97.50
1974-01-01 15:00:00-06 | 3600 | 97.50 | 97.50
1974-01-01 16:00:00-06 | 3600 | 97.50 | 97.50
1974-01-01 17:00:00-06 | 3600 | 97.50 | 97.50
1974-01-01 18:00:00-06 | 3600 | 97.50 | 97.50
1974-01-01 19:00:00-06 | 3600 | 97.50 | 97.50
1974-01-01 20:00:00-06 | 3600 | 97.50 | 97.50
1974-01-01 21:00:00-06 | 3600 | 97.50 | 97.50
1974-01-01 22:00:00-06 | 3600 | 97.50 | 97.50
1974-01-01 23:00:00-06 | 3600 | 97.50 | 97.50
1974-01-02 00:00:00-06 | 3600 | 97.50 | 97.50
(24 rows)
Time: 116.695 ms
Es importante tener en cuenta que no está utilizando un índice en la agregación, aunque podría hacerlo. Si esa es su consulta típica, probablemente desee un BRIN date_trunc('hour', tsin)
allí, ya que date_trunc
existe un pequeño problema que no es inmutable, por lo que primero debe envolverlo para que sea así.
Fraccionamiento
Otro punto importante de información sobre PostgreSQL es que PG 10 trae particiones DDL . Entonces, por ejemplo, puede crear particiones fácilmente para cada año. Desglosando su modesta base de datos en pequeñas que son pequeñas. Al hacerlo, debería poder usar y mantener índices btree en lugar de BRIN, lo que sería aún más rápido.
CREATE TABLE electrothingy_y2016 PARTITION OF electrothingy
FOR VALUES FROM ('2016-01-01') TO ('2017-01-01');
O lo que sea.