Si las nuevas categorías llegan muy raramente, yo mismo prefiero la solución "uno contra todos" proporcionada por @oW_ . Para cada nueva categoría, entrena un nuevo modelo en X número de muestras de la nueva categoría (clase 1) y X número de muestras del resto de categorías (clase 0).
Sin embargo, si las nuevas categorías llegan con frecuencia y desea usar un solo modelo compartido , hay una manera de lograr esto usando redes neuronales.
En resumen, a la llegada de una nueva categoría, agregamos un nuevo nodo correspondiente a la capa softmax con pesos cero (o aleatorios), y mantenemos los pesos viejos intactos, luego entrenamos el modelo extendido con los nuevos datos. Aquí hay un boceto visual de la idea (dibujado por mí mismo):
Aquí hay una implementación para el escenario completo:
El modelo está entrenado en dos categorías,
Llega una nueva categoría,
Los formatos de modelo y destino se actualizan en consecuencia,
El modelo está entrenado en nuevos datos.
Código:
from keras import Model
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
from sklearn.metrics import f1_score
import numpy as np
# Add a new node to the last place in Softmax layer
def add_category(model, pre_soft_layer, soft_layer, new_layer_name, random_seed=None):
weights = model.get_layer(soft_layer).get_weights()
category_count = len(weights)
# set 0 weight and negative bias for new category
# to let softmax output a low value for new category before any training
# kernel (old + new)
weights[0] = np.concatenate((weights[0], np.zeros((weights[0].shape[0], 1))), axis=1)
# bias (old + new)
weights[1] = np.concatenate((weights[1], [-1]), axis=0)
# New softmax layer
softmax_input = model.get_layer(pre_soft_layer).output
sotfmax = Dense(category_count + 1, activation='softmax', name=new_layer_name)(softmax_input)
model = Model(inputs=model.input, outputs=sotfmax)
# Set the weights for the new softmax layer
model.get_layer(new_layer_name).set_weights(weights)
return model
# Generate data for the given category sizes and centers
def generate_data(sizes, centers, label_noise=0.01):
Xs = []
Ys = []
category_count = len(sizes)
indices = range(0, category_count)
for category_index, size, center in zip(indices, sizes, centers):
X = np.random.multivariate_normal(center, np.identity(len(center)), size)
# Smooth [1.0, 0.0, 0.0] to [0.99, 0.005, 0.005]
y = np.full((size, category_count), fill_value=label_noise/(category_count - 1))
y[:, category_index] = 1 - label_noise
Xs.append(X)
Ys.append(y)
Xs = np.vstack(Xs)
Ys = np.vstack(Ys)
# shuffle data points
p = np.random.permutation(len(Xs))
Xs = Xs[p]
Ys = Ys[p]
return Xs, Ys
def f1(model, X, y):
y_true = y.argmax(1)
y_pred = model.predict(X).argmax(1)
return f1_score(y_true, y_pred, average='micro')
seed = 12345
verbose = 0
np.random.seed(seed)
model = Sequential()
model.add(Dense(5, input_shape=(2,), activation='tanh', name='pre_soft_layer'))
model.add(Dense(2, input_shape=(2,), activation='softmax', name='soft_layer'))
model.compile(loss='categorical_crossentropy', optimizer=Adam())
# In 2D feature space,
# first category is clustered around (-2, 0),
# second category around (0, 2), and third category around (2, 0)
X, y = generate_data([1000, 1000], [[-2, 0], [0, 2]])
print('y shape:', y.shape)
# Train the model
model.fit(X, y, epochs=10, verbose=verbose)
# Test the model
X_test, y_test = generate_data([200, 200], [[-2, 0], [0, 2]])
print('model f1 on 2 categories:', f1(model, X_test, y_test))
# New (third) category arrives
X, y = generate_data([1000, 1000, 1000], [[-2, 0], [0, 2], [2, 0]])
print('y shape:', y.shape)
# Extend the softmax layer to accommodate the new category
model = add_category(model, 'pre_soft_layer', 'soft_layer', new_layer_name='soft_layer2')
model.compile(loss='categorical_crossentropy', optimizer=Adam())
# Test the extended model before training
X_test, y_test = generate_data([200, 200, 0], [[-2, 0], [0, 2], [2, 0]])
print('extended model f1 on 2 categories before training:', f1(model, X_test, y_test))
# Train the extended model
model.fit(X, y, epochs=10, verbose=verbose)
# Test the extended model on old and new categories separately
X_old, y_old = generate_data([200, 200, 0], [[-2, 0], [0, 2], [2, 0]])
X_new, y_new = generate_data([0, 0, 200], [[-2, 0], [0, 2], [2, 0]])
print('extended model f1 on two (old) categories:', f1(model, X_old, y_old))
print('extended model f1 on new category:', f1(model, X_new, y_new))
que salidas:
y shape: (2000, 2)
model f1 on 2 categories: 0.9275
y shape: (3000, 3)
extended model f1 on 2 categories before training: 0.8925
extended model f1 on two (old) categories: 0.88
extended model f1 on new category: 0.91
Debería explicar dos puntos con respecto a esta salida:
El rendimiento del modelo se reduce de 0.9275
a 0.8925
simplemente agregando un nuevo nodo. Esto se debe a que la salida del nuevo nodo también se incluye para la selección de categoría. En la práctica, la salida del nuevo nodo debe incluirse solo después de que el modelo se haya entrenado en una muestra considerable. Por ejemplo, deberíamos alcanzar el pico de la primera de las dos primeras entradas [0.15, 0.30, 0.55]
, es decir, segunda clase, en esta etapa.
El rendimiento del modelo extendido en dos categorías (antiguas) 0.88
es menor que el modelo anterior 0.9275
. Esto es normal, porque ahora el modelo extendido quiere asignar una entrada a una de tres categorías en lugar de dos. También se espera esta disminución cuando seleccionamos entre tres clasificadores binarios en comparación con dos clasificadores binarios en el enfoque "uno contra todos".