Esto sugiere que todos los ejemplos de entrenamiento tienen una longitud de secuencia fija, a saber timesteps
.
Eso no es del todo correcto, ya que esa dimensión puede ser None
, es decir, longitud variable. Dentro de un solo lote , debe tener el mismo número de pasos de tiempo (esto es típicamente donde se ve el relleno 0 y el enmascaramiento). Pero entre lotes no existe tal restricción. Durante la inferencia, puede tener cualquier longitud.
Código de ejemplo que crea lotes aleatorios de datos de entrenamiento de duración prolongada.
from keras.models import Sequential
from keras.layers import LSTM, Dense, TimeDistributed
from keras.utils import to_categorical
import numpy as np
model = Sequential()
model.add(LSTM(32, return_sequences=True, input_shape=(None, 5)))
model.add(LSTM(8, return_sequences=True))
model.add(TimeDistributed(Dense(2, activation='sigmoid')))
print(model.summary(90))
model.compile(loss='categorical_crossentropy',
optimizer='adam')
def train_generator():
while True:
sequence_length = np.random.randint(10, 100)
x_train = np.random.random((1000, sequence_length, 5))
# y_train will depend on past 5 timesteps of x
y_train = x_train[:, :, 0]
for i in range(1, 5):
y_train[:, i:] += x_train[:, :-i, i]
y_train = to_categorical(y_train > 2.5)
yield x_train, y_train
model.fit_generator(train_generator(), steps_per_epoch=30, epochs=10, verbose=1)
Y esto es lo que imprime. Tenga en cuenta que las formas de salida (None, None, x)
indican un tamaño de lote variable y un tamaño de paso de tiempo variable.
__________________________________________________________________________________________
Layer (type) Output Shape Param #
==========================================================================================
lstm_1 (LSTM) (None, None, 32) 4864
__________________________________________________________________________________________
lstm_2 (LSTM) (None, None, 8) 1312
__________________________________________________________________________________________
time_distributed_1 (TimeDistributed) (None, None, 2) 18
==========================================================================================
Total params: 6,194
Trainable params: 6,194
Non-trainable params: 0
__________________________________________________________________________________________
Epoch 1/10
30/30 [==============================] - 6s 201ms/step - loss: 0.6913
Epoch 2/10
30/30 [==============================] - 4s 137ms/step - loss: 0.6738
...
Epoch 9/10
30/30 [==============================] - 4s 136ms/step - loss: 0.1643
Epoch 10/10
30/30 [==============================] - 4s 142ms/step - loss: 0.1441
Masking
capa para ignorar