Agregando a la solución en https://github.com/keras-team/keras/issues/2115 . Si necesita más que una ponderación de clase donde desee costos diferentes para falsos positivos y falsos negativos. Con la nueva versión de Keras ahora puede anular la función de pérdida respectiva como se indica a continuación. Tenga en cuenta que weights
es una matriz cuadrada.
from tensorflow.python import keras
from itertools import product
import numpy as np
from tensorflow.python.keras.utils import losses_utils
class WeightedCategoricalCrossentropy(keras.losses.CategoricalCrossentropy):
def __init__(
self,
weights,
from_logits=False,
label_smoothing=0,
reduction=losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE,
name='categorical_crossentropy',
):
super().__init__(
from_logits, label_smoothing, reduction, name=f"weighted_{name}"
)
self.weights = weights
def call(self, y_true, y_pred):
weights = self.weights
nb_cl = len(weights)
final_mask = keras.backend.zeros_like(y_pred[:, 0])
y_pred_max = keras.backend.max(y_pred, axis=1)
y_pred_max = keras.backend.reshape(
y_pred_max, (keras.backend.shape(y_pred)[0], 1))
y_pred_max_mat = keras.backend.cast(
keras.backend.equal(y_pred, y_pred_max), keras.backend.floatx())
for c_p, c_t in product(range(nb_cl), range(nb_cl)):
final_mask += (
weights[c_t, c_p] * y_pred_max_mat[:, c_p] * y_true[:, c_t])
return super().call(y_true, y_pred) * final_mask