Creo que sería interesante escribir ambos de una manera que solo cambiando algunas líneas de código le daría un algoritmo u otro, para que vea que su dillema no es tan fuerte como parece ser al principio .
Personalmente, me gusta la interpretación de BFS como una inundación de un paisaje: las áreas de baja altitud se inundarán primero, y solo entonces las áreas de alta altitud seguirán. Si imagina las altitudes del paisaje como isolinas como vemos en los libros de geografía, es fácil ver que BFS llena todas las áreas bajo la misma isolínea al mismo tiempo, tal como sería con la física. Por lo tanto, interpretar las altitudes como distancia o costo escalado da una idea bastante intuitiva del algoritmo.
Con esto en mente, puede adaptar fácilmente la idea detrás de la búsqueda de amplitud para encontrar fácilmente el árbol de expansión mínimo, la ruta más corta y también muchos otros algoritmos de minimización.
Todavía no vi ninguna interpretación intuitiva de DFS (solo la estándar sobre el laberinto, pero no es tan poderosa como la BFS y las inundaciones), por lo que para mí parece que BFS parece correlacionarse mejor con los fenómenos físicos como se describió anteriormente, mientras que DFS se correlaciona mejor con las opciones de dillema en sistemas racionales (es decir, personas o computadoras que deciden qué movimiento hacer en un juego de ajedrez o salir de un laberinto).
Entonces, para mí, la diferencia entre mentiras es qué fenómeno natural se adapta mejor a su modelo de propagación (transversal) en la vida real.