Secuencia:
- Empezamos a
1
. - Primero agregamos el valor actual indexado al número anterior en la secuencia.
- Luego aplicamos las siguientes operaciones matemáticas en orden si se aplican a este valor actual:
- Divisible por
2
? => Adición - Divisible por
3
? => Resta - Divisible por
4
? => (Suma Y) Multiplicar - ¿No es divisible por ni
2
,3
ni4
? -> Continuar con el resultado de la suma actual
- Divisible por
Salida:
Salida de los primeros 100 números en esta secuencia:
1, 1, 21, 25, 30, 216, 223, 223, 2169, 2179, 2190, 2202, 2215, 2215, 2245, 2261, 2295, 2295, 2333, 2353, 2395, 2417, 56649, 56649, 56699, 56725, 1533033, 1533061, 1533090, 45993600, 45993631, 45993631, 1517792001, 1517792035, 1517792070, 1517792106, 1517792143, 1517792143, 1517792221, 1517792261, 1517792343, 1517792343, 1517792429, 1517792473, 1517792563, 1517792609, 71336257041, 71336257041, 71336257139, 71336257189, 3638149121841, 3638149121893, 3638149121946, 196460052588000, 196460052588055, 196460052588055, 11198222997525633, 11198222997525691, 11198222997525750, 11198222997525810, 11198222997525871, 11198222997525871, 11198222997525997, 11198222997526061, 11198222997526191, 11198222997526191, 11198222997526325, 11198222997526393, 11198222997526531, 11198222997526601, 795073832824398753, 795073832824398753, 795073832824398899, 795073832824398973, 59630537461829934225, 59630537461829934301, 59630537461829934378, 4651181922022734887568, 4651181922022734887647, 4651181922022734887647, 376745735683841525912529, 376745735683841525912611, 376745735683841525912694, 376745735683841525912778, 376745735683841525912863, 376745735683841525912863, 376745735683841525913037, 376745735683841525913125, 376745735683841525913303, 376745735683841525913303, 376745735683841525913485, 376745735683841525913577, 376745735683841525913763, 376745735683841525913857, 35790844889964944961834465, 35790844889964944961834465, 35790844889964944961834659, 35790844889964944961834757, 3543293644106529551221660545, 3543293644106529551221660645
Aquí están los primeros 10 números en la secuencia con explicación:
// Starting number of the sequence:
1
// 1 (previous number in the sequence)
// + 2 (current index in 1-indexed sequence)
// = 3 -> 3 - 2 (3 is divisible by 3, so we subtract the current index 2)
// = 1
1
// 1 (previous number in the sequence)
// + 3 (current index in 1-indexed sequence)
// = 4 -> 4 + 3 (4 is divisible by 2, so we first add the current index 3)
// = 7 -> 7 * 3 (and 4 is also divisible by 4, so we then also multiply the current index 3)
// = 21
21
// 21 (previous number in the sequence)
// + 4 (current index in 1-indexed sequence)
// = 25 (25 is not divisible by 2, 3 nor 4)
25
// 25 (previous number in the sequence)
// + 5 (current index in 1-indexed sequence)
// = 30 -> 30 + 5 (30 is divisible by 2, so we first add the current index 5)
// = 35 -> 35 - 5 (and 30 is also divisible by 3, so we then also subtract the current index 5)
// = 30
30
// 30 (previous number in the sequence)
// + 6 (current index in 1-indexed sequence)
// = 36 -> 36 + 6 (36 is divisible by 2, so we first add the current index 6)
// = 42 -> 42 - 6 (and 36 is also divisible by 3, so we then also subtract the current index 6)
// = 36 -> 36 * 6 (and 36 is also divisible by 4, so we then also multiply the current index 6)
// = 216
216
// 216 (previous number in the sequence)
// + 7 (current index in 1-indexed sequence)
// = 223 (223 is not divisible by 2, 3 nor 4)
223
// 223 (previous number in the sequence)
// + 8 (current index in 1-indexed sequence)
// = 231 -> 231 - 8 (231 is divisible by 3, so we subtract the current index 8)
// = 223
223
// 223 (previous number in the sequence)
// + 9 (current index in 1-indexed sequence)
// = 232 -> 232 + 9 (232 is divisible by 2, so we first add the current index 9)
// = 241 -> 241 * 9 (and 232 is also divisible by 4, so we then also multiply the current index 9)
// = 2169
2169
// 2169 (previous number in the sequence)
// + 10 (current index in 1-indexed sequence)
// 2179 (2179 is not divisible by 2, 3 nor 4)
2179
Reglas de desafío:
- Si su idioma no admite nada más grande que 2 31 -1, puede continuar la secuencia hasta ese máximo (por lo tanto, los primeros 46 números, hasta - e incluyendo -
1,517,792,609
). - El formato de salida es flexible. Puede devolver una matriz o lista, una cadena separada con espacios, comas, etc. Su llamada.
Reglas generales:
- Este es el código de golf , por lo que la respuesta más corta en bytes gana.
No permita que los lenguajes de code-golf lo desanimen a publicar respuestas con lenguajes que no sean codegolf. Trate de encontrar una respuesta lo más breve posible para 'cualquier' lenguaje de programación. - Se aplican reglas estándar para su respuesta, por lo que puede usar STDIN / STDOUT, funciones / método con los parámetros adecuados, programas completos. Tu llamada.
- Las lagunas predeterminadas están prohibidas.
- Si es posible, agregue un enlace con una prueba para su código.
- Además, agregue una explicación si es necesario.