Calcule el permanente lo más rápido posible


27

El desafío es escribir el código más rápido posible para calcular el permanente de una matriz .

El permanente de una matriz n-by- = ( ) se define comonAai,j

ingrese la descripción de la imagen aquí

Aquí S_nrepresenta el conjunto de todas las permutaciones de [1, n].

Como ejemplo (de la wiki):

ingrese la descripción de la imagen aquí

En esta pregunta, todas las matrices son cuadradas y solo tendrán los valores -1y 1en ellas.

Ejemplos

Entrada:

[[ 1 -1 -1  1]
 [-1 -1 -1  1]
 [-1  1 -1  1]
 [ 1 -1 -1  1]]

Permanente:

-4

Entrada:

[[-1 -1 -1 -1]
 [-1  1 -1 -1]
 [ 1 -1 -1 -1]
 [ 1 -1  1 -1]]

Permanente:

0

Entrada:

[[ 1 -1  1 -1 -1 -1 -1 -1]
 [-1 -1  1  1 -1  1  1 -1]
 [ 1 -1 -1 -1 -1  1  1  1]
 [-1 -1 -1  1 -1  1  1  1]
 [ 1 -1 -1  1  1  1  1 -1]
 [-1  1 -1  1 -1  1  1 -1]
 [ 1 -1  1 -1  1 -1  1 -1]
 [-1 -1  1 -1  1  1  1  1]]

Permanente:

192

Entrada:

[[1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1],
 [1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1],
 [-1, -1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1],
 [-1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1],
 [-1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1],
 [1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1],
 [1, -1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1],
 [1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1],
 [1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1],
 [-1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, 1],
 [-1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1],
 [1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1],
 [-1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1],
 [1, 1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1],
 [1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1],
 [1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1],
 [-1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1],
 [1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, 1],
 [1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1],
 [-1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1]]

Permanente:

1021509632

La tarea

Debería escribir un código que, dado npor una nmatriz, produzca su permanente.

Como tendré que probar su código, sería útil si pudiera darme una forma simple de dar una matriz como entrada a su código, por ejemplo, leyendo el estándar en.

Tenga en cuenta que el permanente puede ser grande (la matriz de todo 1 es el caso extremo).

Puntuaciones y lazos

Probaré su código en matrices aleatorias + -1 de tamaño creciente y me detendré la primera vez que su código tarde más de 1 minuto en mi computadora. Las matrices de puntuación serán consistentes para todas las presentaciones a fin de garantizar la equidad.

Si dos personas obtienen el mismo puntaje, entonces el ganador es el que tiene el valor más rápido n. Si están dentro de 1 segundo el uno del otro, entonces es el publicado primero.

Idiomas y bibliotecas

Puede usar cualquier idioma y bibliotecas disponibles que desee, pero ninguna función preexistente para calcular el permanente. Siempre que sea posible, sería bueno poder ejecutar su código, así que incluya una explicación completa de cómo ejecutar / compilar su código en Linux si es posible.

Implementaciones de referencia

Ya hay una pregunta de codegolf con mucho código en diferentes idiomas para calcular el permanente para matrices pequeñas. Mathematica y Maple también tienen implementaciones permanentes si puedes acceder a ellas.

Mi máquina Los tiempos se ejecutarán en mi máquina de 64 bits. Esta es una instalación estándar de ubuntu con 8 GB de RAM, procesador AMD FX-8350 de ocho núcleos y Radeon HD 4250. Esto también significa que necesito poder ejecutar su código.

Información de bajo nivel sobre mi máquina

cat /proc/cpuinfo/|grep flags da

. frág.

Haré una pregunta multilingüe de seguimiento estrechamente relacionada que no sufre el gran problema Int para que los amantes de Scala , Nim , Julia , Rust , Bash puedan mostrar sus idiomas también.

Tabla de líderes

  • n = 33 (45 segundos. 64 segundos para n = 34). Ton Hospel en C ++ con g ++ 5.4.0.
  • n = 32 (32 segundos). Dennis en C con gcc 5.4.0 usando las banderas gcc de Ton Hospel.
  • n = 31 (54 segundos). Christian Sievers en Haskell
  • n = 31 (60 segundos). primo en rpython
  • n = 30 (26 segundos). ezrast en Rust
  • n = 28 (49 segundos). xnor con Python + pypy 5.4.1
  • n = 22 (25 segundos). Shebang con Python + pypy 5.4.1

Nota . En la práctica, los horarios de Dennis y Ton Hospel varían mucho por razones misteriosas. ¡Por ejemplo, parecen ser más rápidos después de cargar un navegador web! Los tiempos citados son los más rápidos en todas las pruebas que he realizado.


55
Leí la primera oración, pensé 'Lembik', me desplacé hacia abajo, sí, Lembik.
orlp

@orlp :) Ha pasado mucho tiempo.

1
@Lembik agregué un gran caso de prueba. Esperaré a que alguien lo confirme para estar seguro.
xnor

2
Una de las respuestas imprime un resultado aproximado, ya que utiliza flotadores de doble precisión para almacenar el permanente. eso está permitido?
Dennis

1
@ChristianSievers Pensé que podría hacer algo de magia con signos, pero no funcionó ...
Socratic Phoenix

Respuestas:


14

gcc C ++ n ≈ 36 (57 segundos en mi sistema)

Utiliza la fórmula de Glynn con un código gris para las actualizaciones si todas las sumas de la columna son pares, de lo contrario utiliza el método de Ryser. Roscado y vectorizado. Optimizado para AVX, así que no esperes mucho en procesadores más antiguos. No se preocupe n>=35por una matriz con solo + 1, incluso si su sistema es lo suficientemente rápido, ya que el acumulador de 128 bits firmado se desbordará. Para matrices aleatorias, probablemente no alcanzará el desbordamiento. Para n>=37los multiplicadores internos comenzará a desbordarse para una 1/-1matriz completa. Así que solo use este programa para n<=36.

Simplemente proporcione los elementos de la matriz en STDIN separados por cualquier tipo de espacio en blanco

permanent
1 2
3 4
^D

permanent.cpp:

/*
  Compile using something like:
    g++ -Wall -O3 -march=native -fstrict-aliasing -std=c++11 -pthread -s permanent.cpp -o permanent
*/

#include <iostream>
#include <iomanip>
#include <cstdlib>
#include <cstdint>
#include <climits>
#include <array>
#include <vector>
#include <thread>
#include <future>
#include <ctgmath>
#include <immintrin.h>

using namespace std;

bool const DEBUG = false;
int const CACHE = 64;

using Index  = int_fast32_t;
Index glynn;
// Number of elements in our vectors
Index const POW   = 3;
Index const ELEMS = 1 << POW;
// Over how many floats we distribute each row
Index const WIDTH = 9;
// Number of bits in the fraction part of a floating point number
int const FLOAT_MANTISSA = 23;
// Type to use for the first add/multiply phase
using Sum  = float;
using SumN = __restrict__ Sum __attribute__((vector_size(ELEMS*sizeof(Sum))));
// Type to convert to between the first and second phase
using ProdN = __restrict__ int32_t __attribute__((vector_size(ELEMS*sizeof(int32_t))));
// Type to use for the third and last multiply phase.
// Also used for the final accumulator
using Value = __int128;
using UValue = unsigned __int128;

// Wrap Value so C++ doesn't really see it and we can put it in vectors etc.
// Needed since C++ doesn't fully support __int128
struct Number {
    Number& operator+=(Number const& right) {
        value += right.value;
        return *this;
    }
    // Output the value
    void print(ostream& os, bool dbl = false) const;
    friend ostream& operator<<(ostream& os, Number const& number) {
        number.print(os);
        return os;
    }

    Value value;
};

using ms = chrono::milliseconds;

auto nr_threads = thread::hardware_concurrency();
vector<Sum> input;

// Allocate cache aligned datastructures
template<typename T>
T* alloc(size_t n) {
    T* mem = static_cast<T*>(aligned_alloc(CACHE, sizeof(T) * n));
    if (mem == nullptr) throw(bad_alloc());
    return mem;
}

// Work assigned to thread k of nr_threads threads
Number permanent_part(Index n, Index k, SumN** more) {
    uint64_t loops = (UINT64_C(1) << n) / nr_threads;
    if (glynn) loops /= 2;
    Index l = loops < ELEMS ? loops : ELEMS;
    loops /= l;
    auto from = loops * k;
    auto to   = loops * (k+1);

    if (DEBUG) cout << "From=" << from << "\n";
    uint64_t old_gray = from ^ from/2;
    uint64_t bit = 1;
    bool bits = (to-from) & 1;

    Index nn = (n+WIDTH-1)/WIDTH;
    Index ww = nn * WIDTH;
    auto column = alloc<SumN>(ww);
    for (Index i=0; i<n; ++i)
        for (Index j=0; j<ELEMS; ++j) column[i][j] = 0;
    for (Index i=n; i<ww; ++i)
        for (Index j=0; j<ELEMS; ++j) column[i][j] = 1;
    Index b;
    if (glynn) {
        b = n > POW+1 ? n - POW - 1: 0;
        auto c = n-1-b;
        for (Index k=0; k<l; k++) {
            Index gray = k ^ k/2;
            for (Index j=0; j< c; ++j)
                if (gray & 1 << j)
                    for (Index i=0; i<n; ++i)
                        column[i][k] -= input[(b+j)*n+i];
                else
                    for (Index i=0; i<n; ++i)
                        column[i][k] += input[(b+j)*n+i];
        }
        for (Index i=0; i<n; ++i)
            for (Index k=0; k<l; k++)
                column[i][k] += input[n*(n-1)+i];

        for (Index k=1; k<l; k+=2)
            column[0][k] = -column[0][k];

        for (Index i=0; i<b; ++i, bit <<= 1) {
            if (old_gray & bit) {
                bits = bits ^ 1;
                for (Index j=0; j<ww; ++j)
                    column[j] -= more[i][j];
            } else {
                for (Index j=0; j<ww; ++j)
                    column[j] += more[i][j];
            }
        }

        for (Index i=0; i<n; ++i)
            for (Index k=0; k<l; k++)
                column[i][k] /= 2;
    } else {
        b = n > POW ? n - POW : 0;
        auto c = n-b;
        for (Index k=0; k<l; k++) {
            Index gray = k ^ k/2;
            for (Index j=0; j<c; ++j)
                if (gray & 1 << j)
                    for (Index i=0; i<n; ++i)
                        column[i][k] -= input[(b+j)*n+i];
        }

        for (Index k=1; k<l; k+=2)
            column[0][k] = -column[0][k];

        for (Index i=0; i<b; ++i, bit <<= 1) {
            if (old_gray & bit) {
                bits = bits ^ 1;
                for (Index j=0; j<ww; ++j)
                    column[j] -= more[i][j];
            }
        }
    }

    if (DEBUG) {
        for (Index i=0; i<ww; ++i) {
            cout << "Column[" << i << "]=";
            for (Index j=0; j<ELEMS; ++j) cout << " " << column[i][j];
            cout << "\n";
        }
    }

    --more;
    old_gray = (from ^ from/2) | UINT64_C(1) << b;
    Value total = 0;
    SumN accu[WIDTH];
    for (auto p=from; p<to; ++p) {
        uint64_t new_gray = p ^ p/2;
        uint64_t bit = old_gray ^ new_gray;
        Index i = __builtin_ffsl(bit);
        auto diff = more[i];
        auto c = column;
        if (new_gray > old_gray) {
            // Phase 1 add/multiply.
            // Uses floats until just before loss of precision
            for (Index i=0; i<WIDTH; ++i) accu[i] = *c++ -= *diff++;

            for (Index j=1; j < nn; ++j)
                for (Index i=0; i<WIDTH; ++i) accu[i] *= *c++ -= *diff++;
        } else {
            // Phase 1 add/multiply.
            // Uses floats until just before loss of precision
            for (Index i=0; i<WIDTH; ++i) accu[i] = *c++ += *diff++;

            for (Index j=1; j < nn; ++j)
                for (Index i=0; i<WIDTH; ++i) accu[i] *= *c++ += *diff++;
        }

        if (DEBUG) {
            cout << "p=" << p << "\n";
            for (Index i=0; i<ww; ++i) {
                cout << "Column[" << i << "]=";
                for (Index j=0; j<ELEMS; ++j) cout << " " << column[i][j];
                cout << "\n";
            }
        }

        // Convert floats to int32_t
        ProdN prod32[WIDTH] __attribute__((aligned (32)));
        for (Index i=0; i<WIDTH; ++i)
            // Unfortunately gcc doesn't recognize the static_cast<int32_t>
            // as a vector pattern, so force it with an intrinsic
#ifdef __AVX__
            //prod32[i] = static_cast<ProdN>(accu[i]);
            reinterpret_cast<__m256i&>(prod32[i]) = _mm256_cvttps_epi32(accu[i]);
#else   // __AVX__
            for (Index j=0; j<ELEMS; ++j)
                prod32[i][j] = static_cast<int32_t>(accu[i][j]);
#endif  // __AVX__

        // Phase 2 multiply. Uses int64_t until just before overflow
        int64_t prod64[3][ELEMS];
        for (Index i=0; i<3; ++i) {
            for (Index j=0; j<ELEMS; ++j)
                prod64[i][j] = static_cast<int64_t>(prod32[i][j]) * prod32[i+3][j] * prod32[i+6][j];
        }
        // Phase 3 multiply. Collect into __int128. For large matrices this will
        // actually overflow but that's ok as long as all 128 low bits are
        // correct. Terms will cancel and the final sum can fit into 128 bits
        // (This will start to fail at n=35 for the all 1 matrix)
        // Strictly speaking this needs the -fwrapv gcc option
        for (Index j=0; j<ELEMS; ++j) {
            auto value = static_cast<Value>(prod64[0][j]) * prod64[1][j] * prod64[2][j];
            if (DEBUG) cout << "value[" << j << "]=" << static_cast<double>(value) << "\n";
            total += value;
        }
        total = -total;

        old_gray = new_gray;
    }

    return bits ? Number{-total} : Number{total};
}

// Prepare datastructures, Assign work to threads
Number permanent(Index n) {
    Index nn = (n+WIDTH-1)/WIDTH;
    Index ww = nn*WIDTH;

    Index rows  = n > (POW+glynn) ? n-POW-glynn : 0;
    auto data = alloc<SumN>(ww*(rows+1));
    auto pointers = alloc<SumN *>(rows+1);
    auto more = &pointers[0];
    for (Index i=0; i<rows; ++i)
        more[i] = &data[ww*i];
    more[rows] = &data[ww*rows];
    for (Index j=0; j<ww; ++j)
        for (Index i=0; i<ELEMS; ++i)
            more[rows][j][i] = 0;

    Index loops = n >= POW+glynn ? ELEMS : 1 << (n-glynn);
    auto a = &input[0];
    for (Index r=0; r<rows; ++r) {
        for (Index j=0; j<n; ++j) {
            for (Index i=0; i<loops; ++i)
                more[r][j][i] = j == 0 && i %2 ? -*a : *a;
            for (Index i=loops; i<ELEMS; ++i)
                more[r][j][i] = 0;
            ++a;
        }
        for (Index j=n; j<ww; ++j)
            for (Index i=0; i<ELEMS; ++i)
                more[r][j][i] = 0;
    }

    if (DEBUG)
        for (Index r=0; r<=rows; ++r)
            for (Index j=0; j<ww; ++j) {
                cout << "more[" << r << "][" << j << "]=";
                for (Index i=0; i<ELEMS; ++i)
                    cout << " " << more[r][j][i];
                cout << "\n";
            }

    // Send work to threads...
    vector<future<Number>> results;
    for (auto i=1U; i < nr_threads; ++i)
        results.emplace_back(async(DEBUG ? launch::deferred: launch::async, permanent_part, n, i, more));
    // And collect results
    auto r = permanent_part(n, 0, more);
    for (auto& result: results)
        r += result.get();

    free(data);
    free(pointers);

    // For glynn we should double the result, but we will only do this during
    // the final print. This allows n=34 for an all 1 matrix to work
    // if (glynn) r *= 2;
    return r;
}

// Print 128 bit number
void Number::print(ostream& os, bool dbl) const {
    const UValue BILLION = 1000000000;

    UValue val;
    if (value < 0) {
        os << "-";
        val = -value;
    } else
        val = value;
    if (dbl) val *= 2;

    uint32_t output[5];
    for (int i=0; i<5; ++i) {
        output[i] = val % BILLION;
        val /= BILLION;
    }
    bool print = false;
    for (int i=4; i>=0; --i) {
        if (print) {
            os << setfill('0') << setw(9) << output[i];
        } else if (output[i] || i == 0) {
            print = true;
            os << output[i];
        }
    }
}

// Read matrix, check for sanity
void my_main() {
    Sum a;
    while (cin >> a)
        input.push_back(a);

    size_t n = sqrt(input.size());
    if (input.size() != n*n)
        throw(logic_error("Read " + to_string(input.size()) +
                          " elements which does not make a square matrix"));

    vector<double> columns_pos(n, 0);
    vector<double> columns_neg(n, 0);
    Sum *p = &input[0];
    for (size_t i=0; i<n; ++i)
        for (size_t j=0; j<n; ++j, ++p) {
            if (*p >= 0) columns_pos[j] += *p;
            else         columns_neg[j] -= *p;
        }
    std::array<double,WIDTH> prod;
    prod.fill(1);

    int32_t odd = 0;
    for (size_t j=0; j<n; ++j) {
        prod[j%WIDTH] *= max(columns_pos[j], columns_neg[j]);
        auto sum = static_cast<int32_t>(columns_pos[j] - columns_neg[j]);
        odd |= sum;
    }
    glynn = (odd & 1) ^ 1;
    for (Index i=0; i<WIDTH; ++i)
        // A float has an implicit 1. in front of the fraction so it can
        // represent 1 bit more than the mantissa size. And 1 << (mantissa+1)
        // itself is in fact representable
        if (prod[i] && log2(prod[i]) > FLOAT_MANTISSA+1)
            throw(range_error("Values in matrix are too large. A subproduct reaches " + to_string(prod[i]) + " which doesn't fit in a float without loss of precision"));

    for (Index i=0; i<3; ++i) {
        auto prod3 = prod[i] * prod[i+3] * prod[i+6];
        if (log2(prod3) >= CHAR_BIT*sizeof(int64_t)-1)
            throw(range_error("Values in matrix are too large. A subproduct reaches " + to_string(prod3) + " which doesn't fit in an int64"));
    }

    nr_threads = pow(2, ceil(log2(static_cast<float>(nr_threads))));
    uint64_t loops = UINT64_C(1) << n;
    if (glynn) loops /= 2;
    if (nr_threads * ELEMS > loops)
        nr_threads = max(loops / ELEMS, UINT64_C(1));
    // if (DEBUG) nr_threads = 1;

    cout << n << " x " << n << " matrix, method " << (glynn ? "Glynn" : "Ryser") << ", " << nr_threads << " threads" << endl;

    // Go for the actual calculation
    auto start = chrono::steady_clock::now();
    auto perm = permanent(n);
    auto end = chrono::steady_clock::now();
    auto elapsed = chrono::duration_cast<ms>(end-start).count();

    cout << "Permanent=";
    perm.print(cout, glynn);
    cout << " (" << elapsed / 1000. << " s)" << endl;
}

// Wrapper to print any exceptions
int main() {
    try {
        my_main();
    } catch(exception& e) {
        cerr << "Error: " << e.what() << endl;
        exit(EXIT_FAILURE);
    }
    exit(EXIT_SUCCESS);
}

. F16C lahf_lm cmp_legacy SVM extapic cr8_legacy ABM SSE4A misalignsse 3dnowprefetch osvw IBS xop skinit wdt lwp FMA4 tec nodeid_msr tbm topoext perfctr_core perfctr_nb CPB hw_pstate vmmcall IMC1 arat TNP lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold

Todavía estoy depurando mi arnés de prueba para ejecutar su código, pero se ve muy rápido, ¡gracias! Me preguntaba si el tamaño int más grande podría estar causando un problema de velocidad (como sugirió). Vi accu.org/index.php/articles/1849 en caso de que sea de algún interés.

Tuve que modificar su código para eliminar quick_exit, ya que era muy difícil de usar en un arnés de prueba. Por interés, ¿por qué estás usando la fórmula de Ryser cuando el wiki parece afirmar que el otro debería ser el doble de rápido?

@Lembik Cambié a la fórmula de Ryser ya que con la otra necesito escalar 2 << (n-1)al final, lo que significa que mi acumulador int128 se desbordó mucho antes de ese punto.
Ton Hospel

1
@Lembik Sí :-)
Ton Hospel

7

C99, n ≈ 33 (35 segundos)

#include <stdint.h>
#include <stdio.h>

#define CHUNK_SIZE 12
#define NUM_THREADS 8

#define popcnt __builtin_popcountll
#define BILLION (1000 * 1000 * 1000)
#define UPDATE_ROW_PPROD() \
    update_row_pprod(row_pprod, row, rows, row_sums, mask, mask_popcnt)

typedef __int128 int128_t;

static inline int64_t update_row_pprod
(
    int64_t* row_pprod, int64_t row, int64_t* rows,
    int64_t* row_sums, int64_t mask, int64_t mask_popcnt
)
{
    int64_t temp = 2 * popcnt(rows[row] & mask) - mask_popcnt;

    row_pprod[0] *= temp;
    temp -= 1;
    row_pprod[1] *= temp;
    temp -= row_sums[row];
    row_pprod[2] *= temp;
    temp += 1;
    row_pprod[3] *= temp;

    return row + 1;
}

int main(int argc, char* argv[])
{
    int64_t size = argc - 1, rows[argc - 1];
    int64_t row_sums[argc - 1];
    int128_t permanent = 0, sign = size & 1 ? -1 : 1;

    if (argc == 2)
    {
        printf("%d\n", argv[1][0] == '-' ? -1 : 1);
        return 0;
    }

    for (int64_t row = 0; row < size; row++)
    {
        char positive = argv[row + 1][0] == '+' ? '-' : '+';

        sign *= ',' - positive;
        rows[row] = row_sums[row] = 0;

        for (char* p = &argv[row + 1][1]; *p; p++)
        {
            rows[row] <<= 1;
            rows[row] |= *p == positive;
            row_sums[row] += *p == positive;
        }

        row_sums[row] = 2 * row_sums[row] - size;
    }

    #pragma omp parallel for reduction(+:permanent) num_threads(NUM_THREADS)
    for (int64_t mask = 1; mask < 1LL << (size - 1); mask += 2)
    {
        int64_t mask_popcnt = popcnt(mask);
        int64_t row = 0;
        int128_t row_prod = 1 - 2 * (mask_popcnt & 1);
        int128_t row_prod_high = -row_prod;
        int128_t row_prod_inv = row_prod;
        int128_t row_prod_inv_high = -row_prod;

        for (int64_t chunk = 0; chunk < size / CHUNK_SIZE; chunk++)
        {
            int64_t row_pprod[4] = {1, 1, 1, 1};

            for (int64_t i = 0; i < CHUNK_SIZE; i++)
                row = UPDATE_ROW_PPROD();

            row_prod *= row_pprod[0], row_prod_high *= row_pprod[1];
            row_prod_inv *= row_pprod[3], row_prod_inv_high *= row_pprod[2];
        }

        int64_t row_pprod[4] = {1, 1, 1, 1};

        while (row < size)
            row = UPDATE_ROW_PPROD();

        row_prod *= row_pprod[0], row_prod_high *= row_pprod[1];
        row_prod_inv *= row_pprod[3], row_prod_inv_high *= row_pprod[2];
        permanent += row_prod + row_prod_high + row_prod_inv + row_prod_inv_high;
    }

    permanent *= sign;

    if (permanent < 0)
        printf("-"), permanent *= -1;

    int32_t output[5], print = 0;

    output[0] = permanent % BILLION, permanent /= BILLION;
    output[1] = permanent % BILLION, permanent /= BILLION;
    output[2] = permanent % BILLION, permanent /= BILLION;
    output[3] = permanent % BILLION, permanent /= BILLION;
    output[4] = permanent % BILLION;

    if (output[4])
        printf("%u", output[4]), print = 1;
    if (print)
        printf("%09u", output[3]);
    else if (output[3])
        printf("%u", output[3]), print = 1;
    if (print)
        printf("%09u", output[2]);
    else if (output[2])
        printf("%u", output[2]), print = 1;
    if (print)
        printf("%09u", output[1]);
    else if (output[1])
        printf("%u", output[1]), print = 1;
    if (print)
        printf("%09u\n", output[0]);
    else
        printf("%u\n", output[0]);
}

La entrada es actualmente un poco engorrosa; se toma con filas como argumentos de línea de comando, donde cada entrada está representada por su signo, es decir, + indica un 1 y - indica un -1 .

Prueba de funcionamiento

$ gcc -Wall -std=c99 -march=native -Ofast -fopenmp -fwrapv -o permanent permanent.c
$ ./permanent +--+ ---+ -+-+ +--+
-4
$ ./permanent ---- -+-- +--- +-+-
0
$ ./permanent +-+----- --++-++- +----+++ ---+-+++ +--++++- -+-+-++- +-+-+-+- --+-++++
192
$ ./permanent +-+--+++----++++-++- +-+++++-+--+++--+++- --+++----+-+++---+-- ---++-++++++------+- -+++-+++---+-+-+++++ +-++--+-++++-++-+--- +--+---+-++++---+++- +--+-++-+++-+-+++-++ +-----+++-----++-++- --+-+-++-+-++++++-++ -------+----++++---- ++---++--+-++-++++++ -++-----++++-----+-+ ++---+-+----+-++-+-+ +++++---+++-+-+++-++ +--+----+--++-+----- -+++-++--+++--++--++ ++--++-++-+++-++-+-+ +++---+--++---+----+ -+++-------++-++-+--
1021509632
$ time ./permanent +++++++++++++++++++++++++++++++{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}     # 31
8222838654177922817725562880000000

real    0m8.365s
user    1m6.504s
sys     0m0.000s
$ time ./permanent ++++++++++++++++++++++++++++++++{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}   # 32
263130836933693530167218012160000000

real    0m17.013s
user    2m15.226s
sys     0m0.001s
$ time ./permanent +++++++++++++++++++++++++++++++++{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,} # 33
8683317618811886495518194401280000000

real    0m34.592s
user    4m35.354s
sys     0m0.001s

¿Tienes alguna idea para mejorar?
xnor

@xnor Algunos. Quiero probar la multiplicación empaquetada con SSE y desenrollar parcialmente el bucle grande (para ver si puedo acelerar la paralelización y calcular más de 4 valores a la vez sin llamar popcnt). Si eso ahorra tiempo, el próximo gran obstáculo es el tipo entero. Para matrices generadas aleatoriamente, el permanente es comparativamente pequeño. Si puedo encontrar una manera fácil de calcular un límite antes de hacer el cálculo real, podría envolver todo en un gran condicional.
Dennis

@Dennis Acerca de desenrollar el bucle, una pequeña optimización posible es hacer que la fila superior sea todos +1.
xnor

@xnor Sí, lo intenté en algún momento, pero luego revertí el cambio para intentar otra cosa (que no funcionó en absoluto ). El cuello de botella parece ser la multiplicación entera (que es lenta para 64 bits y realmente lenta para 128), por lo que espero que SSE ayude un poco.
Dennis

1
@ Dennis ya veo. Acerca de los límites, un límite no obvio es en términos de la norma del operador | Por (M) | <= | M | ^ n. Ver arxiv.org/pdf/1606.07474v1.pdf
xnor

5

Python 2, n ≈ 28

from operator import mul

def fast_glynn_perm(M):
    row_comb = [sum(c) for c in zip(*M)]
    n=len(M)

    total = 0
    old_grey = 0 
    sign = +1

    binary_power_dict = {2**i:i for i in range(n)}
    num_loops = 2**(n-1)

    for bin_index in xrange(1, num_loops + 1):  
        total += sign * reduce(mul, row_comb)

        new_grey = bin_index^(bin_index/2)
        grey_diff = old_grey ^ new_grey
        grey_diff_index = binary_power_dict[grey_diff]

        new_vector = M[grey_diff_index]
        direction = 2 * cmp(old_grey,new_grey)      

        for i in range(n):
            row_comb[i] += new_vector[i] * direction

        sign = -sign
        old_grey = new_grey

    return total/num_loops

Utiliza la fórmula de Glynn con un código gris para las actualizaciones. Se ejecuta n=23en un minuto en mi máquina. Seguramente se puede mejorar implementando esto en un lenguaje más rápido y con mejores estructuras de datos. Esto no usa que la matriz tenga un valor de ± 1.

La implementación de una fórmula de Ryser es muy similar, sumando todos los vectores de coeficientes 0/1 en lugar de ± 1-vectores. Lleva aproximadamente el doble de tiempo que la fórmula de Glynn porque agrega todos los 2 ^ n de tales vectores, mientras que las mitades de Glynn usan la simetría solo para aquellos que comienzan +1.

from operator import mul

def fast_ryser_perm(M):
    n=len(M)
    row_comb = [0] * n

    total = 0
    old_grey = 0 
    sign = +1

    binary_power_dict = {2**i:i for i in range(n)}
    num_loops = 2**n

    for bin_index in range(1, num_loops) + [0]: 
        total += sign * reduce(mul, row_comb)

        new_grey = bin_index^(bin_index/2)
        grey_diff = old_grey ^ new_grey
        grey_diff_index = binary_power_dict[grey_diff]

        new_vector = M[grey_diff_index]
        direction = cmp(old_grey, new_grey)

        for i in range(n):
            row_comb[i] += new_vector[i] * direction

        sign = -sign
        old_grey = new_grey

    return total * (-1)**n

Increíble. ¿Tienes pypy para probar también?

@Lembik No, no tengo mucho instalado.
xnor

Usaré pypy cuando lo pruebe también. ¿Puedes ver cómo implementar la otra fórmula rápida? Lo encuentro confuso.

@Lembik ¿Cuál es la otra fórmula rápida?
xnor

1
Como referencia, en mi máquina con pypyesto pude calcular fácilmente n=28en 44,6 segundos. El sistema de Lembik parece ser bastante comparable al mío en velocidad, si no un poco más rápido.
Kade

5

Haskell, n = 31 (54 s)

Con muchas contribuciones invaluables de @Angs: use Vector, use productos de cortocircuito, mire n impares.

import Control.Parallel.Strategies
import qualified Data.Vector.Unboxed as V
import Data.Int

type Row = V.Vector Int8

x :: Row -> [Row] -> Integer -> Int -> Integer
x p (v:vs) m c = let c' = c - 1
                     r = if c>0 then parTuple2 rseq rseq else r0
                     (a,b) = ( x p                  vs m    c' ,
                               x (V.zipWith(-) p v) vs (-m) c' )
                             `using` r
                 in a+b
x p _      m _ = prod m p

prod :: Integer -> Row -> Integer
prod m p = if 0 `V.elem` p then 0 
                           else V.foldl' (\a b->a*fromIntegral b) m p

p, pt :: [Row] -> Integer
p (v:vs) = x (foldl (V.zipWith (+)) v vs) (map (V.map (2*)) vs) 1 11
           `div` 2^(length vs)
p [] = 1 -- handle 0x0 matrices too  :-)

pt (v:vs) | even (length vs) = p ((V.map (2*) v) : vs ) `div` 2
pt mat                       = p mat

main = getContents >>= print . pt . map V.fromList . read

Mis primeros intentos de paralelismo en Haskell. Puede ver muchos pasos de optimización a través del historial de revisiones. Sorprendentemente, en su mayoría fueron cambios muy pequeños. El código se basa en la fórmula en la sección "Fórmula Balasubramanian-Bax / Franklin-Glynn" en el artículo de Wikipedia sobre computación permanente .

pcalcula el permanente. Se llama a través de ptque transforma la matriz de una manera que siempre es válida, pero especialmente útil para las matrices que obtenemos aquí.

Compilar con ghc -O2 -threaded -fllvm -feager-blackholing -o <name> <name>.hs. Para ejecutar con la paralelización, darle runtime parámetros como esto: ./<name> +RTS -N. La entrada es de stdin con listas anidadas separadas por comas entre paréntesis, [[1,2],[3,4]]como en el último ejemplo (se permiten nuevas líneas en todas partes).


1
Pude obtener una mejora de velocidad del 20-25% al ​​conectarme Data.Vector. Los cambios excluyendo cambiaron los tipos de función: import qualified Data.Vector as V, x (V.zipWith(-) p v) vs (-m) c' ), p (v:vs) = x (foldl (V.zipWith (+)) v vs) (map (V.map (2*)) vs) 1 11,main = getContents >>= print . p . map V.fromList . read
Angs

1
@ Angs Muchas gracias! Realmente no tenía ganas de buscar tipos de datos más adecuados. Es sorprendente lo poco que las cosas tienen que cambiar (también tuvieron que usar V.product). Eso solo me dio ~ 10%. Cambió el código para que los vectores solo contengan Ints. Eso está bien porque solo se suman, los números grandes provienen de la multiplicación. Entonces fue ~ 20%. Había intentado el mismo cambio con el código anterior, pero en ese momento lo ralentizó. Lo intenté nuevamente porque permite usar vectores sin caja , ¡lo que ayudó mucho!
Christian Sievers

1
@ christian-sievers glab podría ser de ayuda. Aquí hay otra optimización divertida basada en la suerte que encontré: x p _ m _ = m * (sum $ V.foldM' (\a b -> if b==0 then Nothing else Just $ a*fromIntegral b) 1 p)- producto como un pliegue monádico donde 0 es un caso especial. Parece ser beneficioso la mayoría de las veces.
Angs

1
@Angs Genial! Cambié eso a una forma que no necesita Transversable(veo que no productcambiaste de comelier no fue un error ...) para ghc de, por ejemplo, Debian estable. Está utilizando la forma de la entrada, pero parece estar bien: no confiamos en ella, solo la optimizamos. Hace que el tiempo sea mucho más emocionante: mi matriz aleatoria de 30x30 es ligeramente más rápida que 29x29, pero luego 31x31 toma 4 veces más tiempo. - Ese INLINE no parece funcionar para mí. AFAIK se ignora para las funciones recursivas.
Christian Sievers

1
@ christian-sievers Sí, estaba a punto de decir algo al respecto, product pero lo olvidé. Parece que solo las longitudes pares tienen ceros p, por lo que para longitudes impares deberíamos usar el producto regular en lugar del cortocircuito para obtener lo mejor de ambos mundos.
Angs

4

Rust + extprim

Este sencillo Ryser con implementación de código Gray tarda aproximadamente 65 90 segundos en ejecutar n = 31 en mi computadora portátil. Me imagino que su máquina llegará en menos de 60 años. Estoy usando extprim 1.1.1 para i128.

Nunca he usado Rust y no tengo idea de lo que estoy haciendo. No hay opciones de compilación aparte de lo que sea que cargo build --releasehaga. Comentarios / sugerencias / optimizaciones son apreciados.

La invocación es idéntica al programa de Dennis.

use std::env;
use std::thread;
use std::sync::Arc;
use std::sync::mpsc;

extern crate extprim;
use extprim::i128::i128;

static THREADS : i64 = 8; // keep this a power of 2.

fn main() {
  // Read command line args for the matrix, specified like
  // "++- --- -+-" for [[1, 1, -1], [-1, -1, -1], [-1, 1, -1]].
  let mut args = env::args();
  args.next();

  let mat : Arc<Vec<Vec<i64>>> = Arc::new(args.map( |ss|
    ss.trim().bytes().map( |cc| if cc == b'+' {1} else {-1}).collect()
  ).collect());

  // Figure how many iterations each thread has to do.
  let size = 2i64.pow(mat.len() as u32);
  let slice_size = size / THREADS; // Assumes divisibility.

  let mut accumulator : i128;
  if slice_size >= 4 { // permanent() requires 4 divides slice_size
    let (tx, rx) = mpsc::channel();

    // Launch threads.
    for ii in 0..THREADS {
      let mat = mat.clone();
      let tx = tx.clone();
      thread::spawn(move ||
        tx.send(permanent(&mat, ii * slice_size, (ii+1) * slice_size))
      );
    }

    // Accumulate results.
    accumulator = extprim::i128::ZERO;
    for _ in 0..THREADS {
      accumulator += rx.recv().unwrap();
    }
  }
  else { // Small matrix, don't bother threading.
    accumulator = permanent(&mat, 0, size);
  }
  println!("{}", accumulator);
}

fn permanent(mat: &Vec<Vec<i64>>, start: i64, end: i64) -> i128 {
  let size = mat.len();
  let sentinel = std::i64::MAX / size as i64;

  let mut bits : Vec<bool> = Vec::with_capacity(size);
  let mut sums : Vec<i64> = Vec::with_capacity(size);

  // Initialize gray code bits.
  let gray_number = start ^ (start / 2);

  for row in 0..size {
    bits.push((gray_number >> row) % 2 == 1);
    sums.push(0);
  }

  // Initialize column sums
  for row in 0..size {
    if bits[row] {
      for column in 0..size {
        sums[column] += mat[row][column];
      }
    }
  }

  // Do first two iterations with initial sums
  let mut total = product(&sums, sentinel);
  for column in 0..size {
    sums[column] += mat[0][column];
  }
  bits[0] = true;

  total -= product(&sums, sentinel);

  // Do rest of iterations updating gray code bits incrementally
  let mut gray_bit : usize;
  let mut idx = start + 2;
  while idx < end {
    gray_bit = idx.trailing_zeros() as usize;

    if bits[gray_bit] {
      for column in 0..size {
        sums[column] -= mat[gray_bit][column];
      }
      bits[gray_bit] = false;
    }
    else {
      for column in 0..size {
        sums[column] += mat[gray_bit][column];
      }
      bits[gray_bit] = true;
    }

    total += product(&sums, sentinel);

    if bits[0] {
      for column in 0..size {
        sums[column] -= mat[0][column];
      }
      bits[0] = false;
    }
    else {
      for column in 0..size {
        sums[column] += mat[0][column];
      }
      bits[0] = true;
    }

    total -= product(&sums, sentinel);
    idx += 2;
  }
  return if size % 2 == 0 {total} else {-total};
}

#[inline]
fn product(sums : &Vec<i64>, sentinel : i64) -> i128 {
  let mut ret : Option<i128> = None;
  let mut tally = sums[0];
  for ii in 1..sums.len() {
    if tally.abs() >= sentinel {
      ret = Some(ret.map_or(i128::new(tally), |n| n * i128::new(tally)));
      tally = sums[ii];
    }
    else {
      tally *= sums[ii];
    }
  }
  if ret.is_none() {
    return i128::new(tally);
  }
  return ret.unwrap() * i128::new(tally);
}

¿Podría dar líneas de comando copiables y pegables para instalar extprim y compilar el código, por favor?

La salida se ve como "i128! (- 2)" donde -2 es la respuesta correcta. ¿Es esto esperado y podría cambiarlo solo para generar el permanente por favor?

1
@Lembik: La salida debería arreglarse ahora. Parece que descubriste la compilación, pero la lancé en Git para que puedas hacerlo git clone https://gitlab.com/ezrast/permanent.git; cd permanent; cargo build --releasesi quieres estar seguro de tener la misma configuración que yo. La carga manejará las dependencias. Binario entra target/release.
Ezrast

Desafortunadamente, esto da la respuesta incorrecta para n = 29. bpaste.net/show/99d6e826d968

1
@Lembik gah, lo siento, los valores intermedios se desbordaron antes de lo que pensaba. Está arreglado, aunque el programa ahora es mucho más lento.
Ezrast

3

Mathematica, n ≈ 20

p[m_] := Last[Fold[Take[ListConvolve[##, {1, -1}, 0], 2^Length[m]]&,
  Table[If[IntegerQ[Log2[k]], m[[j, Log2[k] + 1]], 0], {j, n}, {k, 0, 2^Length[m] - 1}]]]

Usando el Timingcomando, una matriz de 20x20 requiere aproximadamente 48 segundos en mi sistema. Esto no es exactamente tan eficiente como el otro, ya que se basa en el hecho de que el permanente se puede encontrar como el coeficiente del producto de los polimomios de cada fila de la matriz. La multiplicación polinómica eficiente se realiza creando listas de coeficientes y realizando convolución usando ListConvolve. Esto requiere aproximadamente O (2 n n 2 ) tiempo, suponiendo que la convolución se realice utilizando una transformada rápida de Fourier o similar que requiere tiempo O ( n log n ).


3

Python 2, n = 22 [Referencia]

Esta es la implementación de 'referencia' que compartí con Lembik ayer, se pierde n=23por unos segundos en su máquina, en mi máquina lo hace en unos 52 segundos. Para lograr estas velocidades, debe ejecutar esto a través de PyPy.

La primera función calcula el permanente de forma similar a cómo se podría calcular el determinante, revisando cada submatriz hasta que quede con un 2x2 al que puede aplicar la regla básica. Es increiblemente lento .

La segunda función es la que implementa la función Ryser (la segunda ecuación listada en Wikipedia). El conjunto Ses esencialmente el conjunto de potencia de los números {1,...,n}(variable s_listen el código).

from random import *
from time import time
from itertools import*

def perm(a): # naive method, recurses over submatrices, slow 
    if len(a) == 1:
        return a[0][0]
    elif len(a) == 2:
        return a[0][0]*a[1][1]+a[1][0]*a[0][1]
    else:
        tsum = 0
        for i in xrange(len(a)):
            transposed = [zip(*a)[j] for j in xrange(len(a)) if j != i]
            tsum += a[0][i] * perm(zip(*transposed)[1:])
        return tsum

def perm_ryser(a): # Ryser's formula, using matrix entries
    maxn = len(a)
    n_list = range(1,maxn+1)
    s_list = chain.from_iterable(combinations(n_list,i) for i in range(maxn+1))
    total = 0
    for st in s_list:
        stotal = (-1)**len(st)
        for i in xrange(maxn):
            stotal *= sum(a[i][j-1] for j in st)
        total += stotal
    return total*((-1)**maxn)


def genmatrix(d):
    mat = []
    for x in xrange(d):
        row = []
        for y in xrange(d):
            row.append([-1,1][randrange(0,2)])
        mat.append(row)
    return mat

def main():
    for i in xrange(1,24):
        k = genmatrix(i)
        print 'Matrix: (%dx%d)'%(i,i)
        print '\n'.join('['+', '.join(`j`.rjust(2) for j in a)+']' for a in k)
        print 'Permanent:',
        t = time()
        p = perm_ryser(k)
        print p,'(took',time()-t,'seconds)'

if __name__ == '__main__':
    main()

Creo que debería reformular la descripción "similar a cómo se calcularía el determinante". No es que el método para los determinantes sea lento para los permanentes, pero un método lento para los determinantes funciona de manera similar (y tan lento) para los permanentes.
Christian Sievers

1
@ChristianSievers Buen punto, lo he alterado.
Kade

2

RPython 5.4.1, n ≈ 32 (37 segundos)

from rpython.rlib.rtime import time
from rpython.rlib.rarithmetic import r_int, r_uint
from rpython.rlib.rrandom import Random
from rpython.rlib.rposix import pipe, close, read, write, fork, waitpid
from rpython.rlib.rbigint import rbigint

from math import log, ceil
from struct import pack

bitsize = len(pack('l', 1)) * 8 - 1

bitcounts = bytearray([0])
for i in range(16):
  b = bytearray([j+1 for j in bitcounts])
  bitcounts += b


def bitcount(n):
  bits = 0
  while n:
    bits += bitcounts[n & 65535]
    n >>= 16
  return bits


def main(argv):
  if len(argv) < 2:
    write(2, 'Usage: %s NUM_THREADS [N]'%argv[0])
    return 1
  threads = int(argv[1])

  if len(argv) > 2:
    n = int(argv[2])
    rnd = Random(r_uint(time()*1000))
    m = []
    for i in range(n):
      row = []
      for j in range(n):
        row.append(1 - r_int(rnd.genrand32() & 2))
      m.append(row)
  else:
    m = []
    strm = ""
    while True:
      buf = read(0, 4096)
      if len(buf) == 0:
        break
      strm += buf
    rows = strm.split("\n")
    for row in rows:
      r = []
      for val in row.split(' '):
        r.append(int(val))
      m.append(r)
    n = len(m)

  a = []
  for row in m:
    val = 0
    for v in row:
      val = (val << 1) | -(v >> 1)
    a.append(val)

  batches = int(ceil(n * log(n) / (bitsize * log(2))))

  pids = []
  handles = []
  total = rbigint.fromint(0)
  for i in range(threads):
    r, w = pipe()
    pid = fork()
    if pid:
      close(w)
      pids.append(pid)
      handles.append(r)
    else:
      close(r)
      total = run(n, a, i, threads, batches)
      write(w, total.str())
      close(w)
      return 0

  for pid in pids:
    waitpid(pid, 0)

  for handle in handles:
    strval = read(handle, 256)
    total = total.add(rbigint.fromdecimalstr(strval))
    close(handle)

  print total.rshift(n-1).str()

  return 0


def run(n, a, mynum, threads, batches):
  start = (1 << n-1) * mynum / threads
  end = (1 << n-1) * (mynum+1) / threads

  dtotal = rbigint.fromint(0)
  for delta in range(start, end):
    pdelta = rbigint.fromint(1 - ((bitcount(delta) & 1) << 1))
    for i in range(batches):
      pbatch = 1
      for j in range(i, n, batches):
        pbatch *= n - (bitcount(delta ^ a[j]) << 1)
      pdelta = pdelta.int_mul(pbatch)
    dtotal = dtotal.add(pdelta)

  return dtotal


def target(*args):
  return main

Compilar, descargue la fuente PyPy más reciente y ejecute lo siguiente:

pypy /path/to/pypy-src/rpython/bin/rpython matrix-permanent.py

El ejecutable resultante será nombrado matrix-permanent-co similar en el directorio de trabajo actual.

A partir de PyPy 5.0, las primitivas de subprocesos de RPython son mucho menos primitivas de lo que solían ser. Los subprocesos recién generados requieren el GIL, que es más o menos inútil para cálculos paralelos. Lo he usado en su forklugar, por lo que puede que no funcione como se esperaba en Windows, aunque no lo he probado no se puede compilar ( unresolved external symbol _fork).

El ejecutable acepta hasta dos parámetros de línea de comando. El primero es el número de hilos, el segundo parámetro opcional esn . Si se proporciona, se generará una matriz aleatoria, de lo contrario, se leerá desde stdin. Cada fila debe estar separada por una nueva línea (sin una nueva línea final), y cada espacio de valores debe estar separado. El tercer ejemplo de entrada se daría como:

1 -1 1 -1 -1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 1 1 -1
1 -1 1 1 1 1 1 -1 1 -1 -1 1 1 1 -1 -1 1 1 1 -1
-1 -1 1 1 1 -1 -1 -1 -1 1 -1 1 1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 1 -1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 -1
-1 1 1 1 -1 1 1 1 -1 -1 -1 1 -1 1 -1 1 1 1 1 1
1 -1 1 1 -1 -1 1 -1 1 1 1 1 -1 1 1 -1 1 -1 -1 -1
1 -1 -1 1 -1 -1 -1 1 -1 1 1 1 1 -1 -1 -1 1 1 1 -1
1 -1 -1 1 -1 1 1 -1 1 1 1 -1 1 -1 1 1 1 -1 1 1
1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1 1 1 -1 1 1 -1
-1 -1 1 -1 1 -1 1 1 -1 1 -1 1 1 1 1 1 1 -1 1 1
-1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1
1 1 -1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 1 1 1 1 1
-1 1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 1 -1 1
1 1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 1 -1 1 1 -1 1 -1 1
1 1 1 1 1 -1 -1 -1 1 1 1 -1 1 -1 1 1 1 -1 1 1
1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1 -1 1 -1 -1 -1 -1 -1
-1 1 1 1 -1 1 1 -1 -1 1 1 1 -1 -1 1 1 -1 -1 1 1
1 1 -1 -1 1 1 -1 1 1 -1 1 1 1 -1 1 1 -1 1 -1 1
1 1 1 -1 -1 -1 1 -1 -1 1 1 -1 -1 -1 1 -1 -1 -1 -1 1
-1 1 1 1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 1 1 -1 1 -1 -1

Uso de muestra

$ time ./matrix-permanent-c 8 30
8395059644858368

real    0m8.582s
user    1m8.656s
sys     0m0.000s

Método

He usado la fórmula Balasubramanian-Bax / Franklin-Glynn , con una complejidad de tiempo de ejecución de O (2 n n) . Sin embargo, en lugar de iterar el δ en orden de código gris, he reemplazado la multiplicación de fila de vectores con una sola operación xor (mapeo (1, -1) → (0, 1)). La suma del vector también se puede encontrar en una sola operación, tomando n menos dos veces el popcount.


Desafortunadamente, el código da la respuesta incorrecta para bpaste.net/show/8690251167e7

@Lembik actualizado. Por curiosidad, ¿podría decirme el resultado del siguiente código? bpaste.net/show/76ec65e1b533
primo

Da "Verdadero 18446744073709551615". Agregué los resultados para su muy agradable de codificar ahora también.

@Lembik gracias. Ya había dividido la multiplicación para no desbordar 63 bits. ¿El resultado enumerado se tomó con 8 hilos? ¿2 o 4 hacen la diferencia? Si 30 termina en 25, parece que 31 debería ser menos de un minuto.
primo

-1

Raqueta 84 bytes

La siguiente función simple funciona para matrices más pequeñas, pero se bloquea en mi máquina para matrices más grandes:

(for/sum((p(permutations(range(length l)))))(for/product((k l)(c p))(list-ref k c)))

Sin golf:

(define (f ll) 
  (for/sum ((p (permutations (range (length ll))))) 
    (for/product ((l ll)(c p)) 
      (list-ref l c))))

El código se puede modificar fácilmente para un número desigual de filas y columnas.

Pruebas:

(f '[[ 1 -1 -1  1]
     [-1 -1 -1  1]
     [-1  1 -1  1]
     [ 1 -1 -1  1]])

(f '[[ 1 -1  1 -1 -1 -1 -1 -1]
 [-1 -1  1  1 -1  1  1 -1]
 [ 1 -1 -1 -1 -1  1  1  1]
 [-1 -1 -1  1 -1  1  1  1]
 [ 1 -1 -1  1  1  1  1 -1]
 [-1  1 -1  1 -1  1  1 -1]
 [ 1 -1  1 -1  1 -1  1 -1]
 [-1 -1  1 -1  1  1  1  1]])

Salida:

-4
192

Como mencioné anteriormente, depende de las siguientes pruebas:

(f '[[1 -1 1 -1 -1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 1 1 -1]
 [1 -1 1 1 1 1 1 -1 1 -1 -1 1 1 1 -1 -1 1 1 1 -1]
 [-1 -1 1 1 1 -1 -1 -1 -1 1 -1 1 1 1 -1 -1 -1 1 -1 -1]
 [-1 -1 -1 1 1 -1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 -1]
 [-1 1 1 1 -1 1 1 1 -1 -1 -1 1 -1 1 -1 1 1 1 1 1]
 [1 -1 1 1 -1 -1 1 -1 1 1 1 1 -1 1 1 -1 1 -1 -1 -1]
 [1 -1 -1 1 -1 -1 -1 1 -1 1 1 1 1 -1 -1 -1 1 1 1 -1]
 [1 -1 -1 1 -1 1 1 -1 1 1 1 -1 1 -1 1 1 1 -1 1 1]
 [1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1 1 1 -1 1 1 -1]
 [-1 -1 1 -1 1 -1 1 1 -1 1 -1 1 1 1 1 1 1 -1 1 1]
 [-1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1]
 [1 1 -1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 1 1 1 1 1]
 [-1 1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 1 -1 1]
 [1 1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 1 -1 1 1 -1 1 -1 1]
 [1 1 1 1 1 -1 -1 -1 1 1 1 -1 1 -1 1 1 1 -1 1 1]
 [1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1 -1 1 -1 -1 -1 -1 -1]
 [-1 1 1 1 -1 1 1 -1 -1 1 1 1 -1 -1 1 1 -1 -1 1 1]
 [1 1 -1 -1 1 1 -1 1 1 -1 1 1 1 -1 1 1 -1 1 -1 1]
 [1 1 1 -1 -1 -1 1 -1 -1 1 1 -1 -1 -1 1 -1 -1 -1 -1 1]
 [-1 1 1 1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 1 1 -1 1 -1 -1]])

55
¿Es esta respuesta mejor en la versión de codegolf en lugar de la versión de velocidad de esta pregunta?
Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.