Python 2 + PySCIPOpt , 267 bytes
from pyscipopt import*
R=input()
m=Model()
V,C=m.addVar,m.addCons
a,b,c=V(),V(),V()
m.setObjective(c)
C(a*b<=c)
P=[]
for r in R:
x,y=V(),V();C(r<=x);C(x<=a-r);C(r<=y);C(y<=b-r)
for u,v,s in P:C((x-u)**2+(y-v)**2>=(r+s)**2)
P+=(x,y,r),
m.optimize()
m.printBestSol()
Cómo funciona
Escribimos el problema de la siguiente manera: minimice c sobre las variables a , b , c , x 1 , y 1 , ..., x n , y n , donde
- ab ≤ c ;
- r i ≤ x i ≤ a - r i y r i ≤ y i ≤ b - y i , para 1 ≤ i ≤ n ;
- ( x i - x j ) 2 + ( y i - y j ) 2 ≥ ( r i + r j ) 2 , para 1 ≤ j < i ≤ n .
Obviamente, estamos utilizando una biblioteca de optimización externa para estas restricciones, pero no puede simplemente alimentarlas a cualquier optimizador antiguo, incluso Mathematica se NMinimize
queda atascado en los mínimos locales para estos pequeños casos de prueba. Si observa atentamente las restricciones, verá que constituyen un programa cuadrático con restricciones cuadráticas , y encontrar el óptimo global para un QCQP no convexo es NP-hard. Así que necesitamos un poco de magia increíblemente poderosa. Elegí el solucionador industrial SCIP , que es el único solucionador global QCQP que pude encontrar con una licencia gratuita para uso académico. Afortunadamente, tiene algunos enlaces Python muy bonitos.
Entrada y salida
Pase la lista de radios en stdin, como [5,3,1.5]
. La salida muestra objective value:
el área de rectángulo, x1
, x2
dimensiones rectángulo, x3
área rectangular de nuevo, x4
, x5
primeras coordenadas del centro del círculo, x6
, x7
segundas coordenadas del centro del círculo, etc.
Casos de prueba
[5,3,1.5]
↦ 157.459666673757
SCIP Status : problem is solved [optimal solution found]
Solving Time (sec) : 0.04
Solving Nodes : 187
Primal Bound : +1.57459666673757e+02 (9 solutions)
Dual Bound : +1.57459666673757e+02
Gap : 0.00 %
objective value: 157.459666673757
x1 10 (obj:0)
x2 15.7459666673757 (obj:0)
x3 157.459666673757 (obj:1)
x4 5 (obj:0)
x5 5 (obj:0)
x6 7 (obj:0)
x7 12.7459666673757 (obj:0)
x8 1.5 (obj:0)
x9 10.4972522849871 (obj:0)
[9,4,8,2]
↦ 709.061485909243
Esto es mejor que la solución del OP. Las dimensiones exactas son 18 por 29 + 6√3.
SCIP Status : problem is solved [optimal solution found]
Solving Time (sec) : 1.07
Solving Nodes : 4650
Primal Bound : +7.09061485909243e+02 (6 solutions)
Dual Bound : +7.09061485909243e+02
Gap : 0.00 %
objective value: 709.061485909243
x1 18 (obj:0)
x2 39.3923047727357 (obj:0)
x3 709.061485909243 (obj:1)
x4 9 (obj:0)
x5 30.3923047727357 (obj:0)
x6 14 (obj:0)
x7 18.3923048064677 (obj:0)
x8 8 (obj:0)
x9 8 (obj:0)
x10 2 (obj:0)
x11 19.6154311552252 (obj:0)
[18,3,1]
↦ 1295.999999999
SCIP Status : problem is solved [optimal solution found]
Solving Time (sec) : 0.00
Solving Nodes : 13
Primal Bound : +1.29599999999900e+03 (4 solutions)
Dual Bound : +1.29599999999900e+03
Gap : 0.00 %
objective value: 1295.999999999
x1 35.9999999999722 (obj:0)
x2 36 (obj:0)
x3 1295.999999999 (obj:1)
x4 17.9999999999722 (obj:0)
x5 18 (obj:0)
x6 32.8552571627738 (obj:0)
x7 3 (obj:0)
x8 1 (obj:0)
x9 1 (obj:0)
Casos de bonificación
[1,2,3,4,5]
↦ 230.244214912998
SCIP Status : problem is solved [optimal solution found]
Solving Time (sec) : 401.31
Solving Nodes : 1400341
Primal Bound : +2.30244214912998e+02 (16 solutions)
Dual Bound : +2.30244214912998e+02
Gap : 0.00 %
objective value: 230.244214912998
x1 13.9282031800476 (obj:0)
x2 16.530790960676 (obj:0)
x3 230.244214912998 (obj:1)
x4 1 (obj:0)
x5 9.60188492354373 (obj:0)
x6 11.757778088743 (obj:0)
x7 3.17450418828415 (obj:0)
x8 3 (obj:0)
x9 13.530790960676 (obj:0)
x10 9.92820318004764 (obj:0)
x11 12.530790960676 (obj:0)
x12 5 (obj:0)
x13 5 (obj:0)
[3,4,5,6,7]
↦ 553.918025310597
SCIP Status : problem is solved [optimal solution found]
Solving Time (sec) : 90.28
Solving Nodes : 248281
Primal Bound : +5.53918025310597e+02 (18 solutions)
Dual Bound : +5.53918025310597e+02
Gap : 0.00 %
objective value: 553.918025310597
x1 21.9544511351279 (obj:0)
x2 25.2303290086403 (obj:0)
x3 553.918025310597 (obj:1)
x4 3 (obj:0)
x5 14.4852813557912 (obj:0)
x6 4.87198593295855 (obj:0)
x7 21.2303290086403 (obj:0)
x8 16.9544511351279 (obj:0)
x9 5 (obj:0)
x10 6 (obj:0)
x11 6 (obj:0)
x12 14.9544511351279 (obj:0)
x13 16.8321595389753 (obj:0)
[3,4,5,6,7,8]
↦ 777.87455544487
SCIP Status : problem is solved [optimal solution found]
Solving Time (sec) : 218.29
Solving Nodes : 551316
Primal Bound : +7.77874555444870e+02 (29 solutions)
Dual Bound : +7.77874555444870e+02
Gap : 0.00 %
objective value: 777.87455544487
x1 29.9626413867546 (obj:0)
x2 25.9614813640722 (obj:0)
x3 777.87455544487 (obj:1)
x4 13.7325948669477 (obj:0)
x5 15.3563780595534 (obj:0)
x6 16.0504838821134 (obj:0)
x7 21.9614813640722 (obj:0)
x8 24.9626413867546 (obj:0)
x9 20.7071098175984 (obj:0)
x10 6 (obj:0)
x11 19.9614813640722 (obj:0)
x12 7 (obj:0)
x13 7 (obj:0)
x14 21.9626413867546 (obj:0)
x15 8.05799919177801 (obj:0)