Golf un entero de Brain-Flak


28

Los enteros son tediosos de representar en Brain-Flak . Hay 8 operadores:

()      Evaluates to 1, but does not push anything on any stack
[]      Evaluates to an indeterminate value for the purposes of this question
{}      Removes the top of the stack and evaluates to it
<>      Switches to or back from the alternate stack and evaluates to zero
(foo)   Pushes the value of the expression foo to the stack and evaluates to it
[foo]   Evaluates to the negation of foo
{foo}   Evaluates the expression foo until the top of the stack is zero
<foo>   Evaluates to zero but executes foo anyway

foopuede consistir en múltiples operadores, en cuyo caso son evaluados y sumados. Por ejemplo, (()())empuja 2a la pila (y también evalúa 2).

Obviamente, el (()...())mecanismo no es útil en Code Golf ya que grandes números tomarían n*2+2bytes para representar. Por lo tanto, su desafío es escribir un programa o función que genere en la menor cantidad de bytes posible un programa Brain-Flak que empuje un entero positivo dado na la pila activa. Este programa no debe hacer suposiciones sobre el contenido existente de las pilas, por lo que no debe dejar las pilas intercambiadas ni agregar o eliminar valores adicionales de las pilas.

Aunque su programa o función debe ser capaz de devolver un programa Brain-Flak en funcionamiento para todas las entradas de 1 a 1,000,000, el ganador será el programa o función que genere el conjunto más pequeño de programas Brain-Flak apropiados para todos los 1061 números primos entre 1,000 y 10,000 . Debe tener en cuenta el tamaño total de sus salidas para esas 1061 entradas como parte de su envío. Su programa o función puede aceptar el número entero y devolver el programa Brain-Flak (cadena) en cualquiera de los formatos de E / S aceptables habituales. Los lazos se romperán usando el tamaño de su programa o función.


44
Solo como una nota: el número de programas válidos de duración 2nes 4^n catalan(n).
Leaky Nun

2
Hmm, me gusta el desafío, pero creo que debería puntuarse en enteros desconocidos. De lo contrario, los programas enteros se puntúan sobre bruta podría ser forzada y otros números enteros justo a la izquierda como (()()()...()). Además, si solo usa números primos, eso podría perderse algunas optimizaciones posibles para los compuestos.
DJMcMayhem

Además, ¿por qué []no está definido para este desafío? Me resulta extraño implementar 7 de los 8 operadores. De cualquier manera, desafío genial, ¡me siento honrado de que alguien escriba un desafío inspirado en mi propio idioma!
DJMcMayhem

2
@DJMcMayhem Quiero que las personas puedan calcular su propia puntuación. Todos los números primos relevantes son uno más que un número compuesto, por lo que debería haber muchas optimizaciones potenciales. Además, no quiero que la gente confíe en un valor particular de []su respuesta.
Neil

1
@YetiCGN El tamaño del script solo cuenta como un desempate.
Neil

Respuestas:


16

Python 2, 59394 59244 58534 58416 58394 58250

Ok, esta es mi solución.

import re
import math

cache = {0:"<()>"}

def find(x,i,j):
    return i*((x**2+x)/2)+(j+1)*((x**2-x)/2)

def solve(x, i, j):
    a = (i + j + 1)/2.
    b = (i - j - 1)/2.
    c = -x
    return (-b + math.sqrt(b**2 - 4*a*c))/(2*a)

def size(i,j=0):
    return 4*(i+j)+14

def polynomials(n):
    upperBound = int(4*math.log(n,2))
    i = 0
    answers = []
    while size(i) < upperBound:
        for j in range(i):
            sol = int(solve(n, i-j, j)+.5)
            if find(sol, i-j, j) == n:
                answers.append((sol, i-j, j))
        i += 1
    return answers

def complement(character):
        dict = {"(":")","{":"}","<":">","[":"]",")":"(","}":"{",">":"<","]":"["}
        return dict[character]

def findMatch(snippet, index):
        increment = 1 if snippet[index] in "({<[" else -1
        stack = []
        if snippet[index] in "(){}<>[]":
                stack.append(snippet[index])
        while len(stack) > 0 and index + increment < len(snippet):
                index += increment
                if snippet[index] in "(){}<>[]":
                        if complement(snippet[index]) == stack[-1]:
                                stack = stack[:-1]
                        else:
                                stack.append(snippet[index])
        return index

def isPrime(n):
    return not [0 for x in range(2,int(n**.5)+1) if n%x==0] and n>1

def getPrimeFactors(n):
    return [x for x in range(2,n/2) if n%x==0 and isPrime(x)]

def divHardcode(n,m):
    assert n%m == 0
    assert m != 1
    assert n != 1
    binary = bin(m)[3:]
    return (binary.count("1")+len(binary))*"("+getBF(n/m)+")"*binary.count("1")+binary.replace("1","){}{}").replace("0","){}")

def isTriangular(n):
    #Triangles must be between sqrt(2n) and cbrt(2n)
    if n < 0: return isTriangular(-n)
    for x in range(int((2*n)**(1/3.)),int((2*n)**.5)+1):
        if (x**2+x) == 2*n:
            return True
    return False

def getTriangle(n):
    if n < 0: return -getTriangle(-n)
    #Triangles must be between sqrt(2n) and cbrt(2n)
    for x in range(int((2*n)**(1/3.)),int((2*n)**.5)+1):
        if (x**2+x) == 2*n:
            return x
    #If we don't find one we made a mistake
    assert False

def getSimpleBF(n):
    if n in cache:return cache[n]
    if n < 0:
        # There is room for better solutions here
        return "["+getSimpleBF(-n)+"]"
    elif n == 0:
        return ""
    elif n < 6:
        return "()"*n
    #Non-edge cases
    solutions = []
    factors = getPrimeFactors(n)
    if n >= 78 and isTriangular(n):
        solutions.append(
           min([push(getTriangle(n))+"{({}[()])}{}","<"+push(getTriangle(n)+1)+">{({}[()])}{}"],key=len)
        )
    polynomialSolutions = polynomials(n)
    for polynomial in polynomialSolutions:
        solutions.append("<%s>{%s({}[()])%s}{}"%(push(polynomial[0]),"({})"*polynomial[1],"({})"*polynomial[2]))
        #Mod 3 tricks
    if n % 3 == 2:
       solutions.append(("((%s)()){}{}")%getBF(n/3))
    elif n % 3 == 1:
       solutions.append(("((%s)()()){}{}")%getBF(n/3-1))
    #Basic solutions
    if isPrime(n):
        solutions.append(getSimpleBF(n-1) + "()")
    else:
        #TODO multithread
        solutions += map(lambda m:divHardcode(n,m),factors)
    return min(solutions,key=lambda x:len(unpack(x)))

def getBF(n):
    if n in cache: return cache[n]
    result = getSimpleBF(n)
    index = n - 1
    while index > n-(len(result)/2):
        score = getSimpleBF(index)+getSimpleBF(n-index)
        if len(score) < len(result):result = score
        index -= 1
    index = n + 1
    while index < n+(len(result)/2):
        score = getSimpleBF(index)+getSimpleBF(n-index)
        if len(score) < len(result):result = score
        index += 1
    cache[n] = result
    return result

def unpack(string):
    reMatch = re.match("\(*<",string)
    if reMatch:
        location =reMatch.span()
        return string[location[1]:findMatch(string,location[1]-1)] +string[:location[1]-1] + string[findMatch(string,location[1]-1)+1:]
    return string

def push(n):
    return unpack("("+getBF(n)+")")

def kolmo(string):
    code = push(ord(string[-1]))
    stringVector = map(ord,string)
    for x,y in zip(stringVector[-1:0:-1],stringVector[-2::-1]):
        code = "("+code+getBF(y-x)+")"
    code = code.replace("<()>)",")")
    return code

def kolmo(stringVector):
    code = push(stringVector[-1])
    for x,y in zip(stringVector[-1:0:-1],stringVector[-2::-1]):
        code = "("+code+getBF(y-x)+")"
    code = code.replace("<()>)",")")
    return code


if __name__ == "__main__":
    import primes
    sum = 0
    for prime in primes.nums:
        print push(prime)
        sum += len(push(prime))
    print sum

La función relevante es push(n). Para llamarlo simplemente llame al push en el número entero que desea representar.

Explicación

La optimización principal realizada por el programa es la codificación de multiplicación. La idea de la codificación de multiplicación es bastante simple. Presiona el número y luego emerge y lo presiona para crear un nuevo valor. Por ejemplo, para multiplicar por dos, puede usar el siguiente código ((n){})donde n código produce un número específico. Esto funciona porque ambos (n)y {}tienen un valor de n.

Esta idea simple puede hacerse más compleja para números más grandes. Tomemos como ejemplo 5, hace un tiempo se descubrió que la mejor manera de multiplicar por cinco era (((n)){}){}{}. Este código hace dos copias de los n multiplica uno por 4 y agrega los dos. Usando la misma estrategia hago cada multiplicación basada en la representación binaria de un número. No entraré en los detalles de cómo funciona esto en este momento, pero lo hago cortando la primera representación binaria y reemplazando 0 con ){}y 1 con){}{}. Luego se asegura de que n se presione el número apropiado de veces y equilibra todos los paréntesis. (Si quieres saber cómo se hace esto, puedes mirar mi código). Si quieres saber por qué esto funciona, solo pregúntame en un comentario. No creo que nadie lea realmente todas las actualizaciones de mi publicación, así que dejé la explicación.

Cuando el algoritmo intenta encontrar un código de multiplicación, intenta todos los factores primos de los números. Ignora los factores compuestos porque en un punto los factores compuestos siempre podrían expresarse de manera más concisa como sus propios factores primos; no se sabe si esto sigue siendo cierto.

El otro mecanismo de ahorro de bytes es un buscador de soluciones polinómicas. Hay ciertas formas de polinomios que son fáciles de representar con bucles decrecientes. Estos polinomios incluyen, entre otros, números poligonales. Esta optimización encuentra polinomios que se ajustan al formulario y crea el código que los crea.

Salida

papelera


"si n es mayor o menor que n + 1" ??
Sparr

@Sparr si la interpretación de nes mayor o menor quen+1
Wheat Wizard

Debe desangrar las líneas desde if n % 3 == 2: el final de esa función en un nivel.
user202729

13

Brain-Flak, 64664

Pruébalo en línea!

Aquí está mi código anotado

({}<
 ((((()()()()()){}){}){}()) #41
>)
{
 (({})[()()()()()()])
 ([({}<(())>)](<>)){({}())<>}{}<>{}{}<>(({})){(<{}({}<>)>)}{}({}<>)
 {((< #IF
  {} 
  {({}[()]< #FOR
   ((((()()()()()){}){}){}()) #41
   (({})[()])                 #40
  >)}{}
 >))}{}
 (({}))
 #MOD2
 {(<
  ({}<(())>)({<({}[()]<>)><>(()[{}])<><({}<>)>}{}<({}<>)><>)<>({}<>)
  {((<{}({}< #IF
   {}
   (((()()()()())({})({})({}){})({})({})({}){})  #125
   (({})[()()])                                  #123
   ((((()()()()()){}){}){}())                    #41
   <>
   ((((()()()()()){}){}){})                      #40
   <>
   >)

  >))}{}{}
 >)}{}
 #MOD2 (number 2)
 (({}))
 ({}(())){({}[()]<>)<>(()[{}])<>({}<>)}{}
 (({})<([{}]{})>)
 {
  ({}[()]<<>
    ((((()()()()()){}){}){}) #40
    (({})())                 #41
   <>>)
 }{}
}{}
<>{({}<>)<>}<>((((()()()()()){}){}){})

Explicación

Esto solo implementa dos reglas a partir de ahora:

  • Si n es divisible por dos devuelve (n/2){}

  • Si n no es divisible por dos devuelve n-1()

También codifica todos los números menores que 6.


Parece que una verificación de la divisibilidad entre tres debería reducir la puntuación bastante
solo ASCII el

@ Solo ASCII En realidad lo implementé y aumentó el recuento de bytes. Estoy trabajando en una forma de implementar una versión más inteligente de la divisibilidad por tres.
Wheat Wizard el

Ok, usando Brain-Flak para hacer un programa que genere números de Brain-Frak. Agradable.
Draco18s

10

Perl, 59222 59156 58460 caracteres

  • n() (11322660 caracteres)
  • (n){}() (64664 caracteres)
  • ((n)){}{} (63610 caracteres)
  • ((n)()){}{} (63484 caracteres) - este es un cálculo novedoso
  • (n){({}[()])}{} (60748 caracteres)
  • n[m] (62800 caracteres)
  • (n){m({}[l])}{} (58460 caracteres) - este es un cálculo novedoso

La fórmula para ese último cálculo es n(n/l+1)/2+mn/l. He intentado algunos otros cálculos, pero ya no son útiles para el resultado dado. El programa realmente genera todos los valores hasta 9999 pero luego enumera los números primos dados y su longitud total.

@primes = (<list of the 4-digit prime numbers here>);
@numbers = ();
for ($i = 1; $i < 10000; $i++) {
  $numbers[$i] = "()" x $i; # default calculation
}
for ($i = 2; $i < 10000; $i++) {
  for ($j = 1; $j < 8; $j++) {
    &try($i, "$numbers[$i+$j]\[$numbers[$j]]");
  }
  &try($i + 1, "$numbers[$i]()");
  &try($i * 2, "($numbers[$i]){}");
  &try($i * 3, "(($numbers[$i])){}{}");
  &try($i * 3 + 2, "(($numbers[$i])()){}{}");
  for ($l = 1; $l * $l < $i; $l++) { 
    unless ($i % $l) { 
      for ($j = 0; ($k = (($i + $j + $j) * $i / $l + $i) / 2) < 10000; $j++) { 
        &try($k, "($numbers[$i]){$numbers[$j]({}[$numbers[$l]])}{}");
      } 
    } 
  } 
}
$len = 0;
foreach (@primes) {
  print "($numbers[$_])\n";
  $len += 2 + length $numbers[$_];
}
print "$len\n";
sub try {
  ($n, $s) = @_;
  $numbers[$n] = $s if (length($numbers[$n]) > length $s);
}

¿Podría proporcionar un enlace a la salida?
DJMcMayhem

@DJMcMayhem Vaya, accidentalmente he corrompido mi lista de números primos, invalidando mi recuento de personajes.
Neil

@Linus ((X) ()) {} {} empuja X, luego agrega 1, empuja el resultado, luego saca X + 1 y X. Total 3X + 2. Creo que probé la otra fórmula en Pruébelo en línea, pero puedo verificar si lo desea.
Neil

@Neil Mi error ... Se ven bien, pero ¿qué es exactamente lo que corrompe tus primos?
Linus

1
@Neil Obtengo 58158 cuando agrego &try($i * $i, "$numbers[$i]{({})({}[()])}{}");, que baja a 58032 cuando también agrego &try((3 * $i * $i - $i) / 2, "$numbers[$i]{({})({}[()])({})}{}");(números cuadrados / pentagonales) - es de aquí
solo ASCII

5

Python, 59136 58676 caracteres

Función de golf número de Brainflak:

m=11111
R=range(0,m)
R[1]="()"
R[2]="()()"
l=2
def a(v,r):
 if v>0 and v<m:
  if isinstance(R[v],int) or len(r)<len(R[v]):
   R[v]=r
   if v<R[0]:
    R[0]=v
def s(v,k):
 S=0
 while v>0:
  S+=v
  v-=k
 return S
p=lambda r:"("+r+")"
w=lambda r:"{({}["+r+"])}{}"
def q(r,v):
 for i in range(1,v):
  r="("+r+")"
 for i in range(1,v):
  r+="{}"
 return r
def e(r,v,k):
 for i in range(0,k):
  r=q(r,v)
 return r
while l<m:
 R[0]=l+1
 a(l*2,q(R[l],2)) 
 a(l*3,q(R[l],3))
 a(l*5,q(R[l],5))
 a(l*7,q(R[l],7))
 for i in range(1,l):
  a(l+i,R[l]+R[i])
  a(l-i,R[l]+"["+R[i]+"]")
  if l%i==0:
   t=s(l-i,i)
   a(s(l,i),p(R[l])+w(R[i]))
   a(l+2*t,p(R[l])+q(w(R[i]),2))
   a(l+4*t,p(R[l])+e(w(R[i]),2,2))
   a(l+8*t,p(R[l])+e(w(R[i]),2,3))
   a(l+16*t,p(R[l])+e(w(R[i]),2,4))
   a(l+32*t,p(R[l])+e(w(R[i]),2,5))
   a(l+64*t,p(R[l])+e(w(R[i]),2,6))
   a(l+128*t,p(R[l])+e(w(R[i]),2,7))
   a(l+3*t,p(R[l])+q(w(R[i]),3))
   a(l+9*t,p(R[l])+e(w(R[i]),3,2))
   a(l+27*t,p(R[l])+e(w(R[i]),3,3))
   a(l+5*t,p(R[l])+q(w(R[i]),5))
   a(l+6*t,p(R[l])+q(q(w(R[i]),3),2))
   a(l+10*t,p(R[l])+q(q(w(R[i]),5),2))
   a(l+15*t,p(R[l])+q(q(w(R[i]),5),3))
   a(l+12*t,p(R[l])+q(q(q(w(R[i]),3),2),2))
   a(l+18*t,p(R[l])+q(q(q(w(R[i]),3),3),2))
   a(l+20*t,p(R[l])+q(q(q(w(R[i]),5),2),2))
   a(l+24*t,p(R[l])+q(q(q(q(w(R[i]),3),2),2),2))
   a(l+36*t,p(R[l])+q(q(q(q(w(R[i]),3),3),2),2))
   a(l+40*t,p(R[l])+q(q(q(q(w(R[i]),5),2),2),2))
 l=R[0]
f=lambda v:p(R[v])

Iteración de números primos:

def isPrime(v):
 i=2
 while i*i<=v:
  if v%i==0:
   return False
  i+=1
 return True

for i in range(1000,10000):
 if isPrime(i):
  print f(i)

Salida:

Pastebin

Explicación:

Prepoblamos una lista R de representación de Brain-flak evaluando a enteros individuales en un rango mayor que el necesario [1, m -1] para definir nuestra función f . Las representaciones se forman tomando la representación no utilizada más baja (indexada por l ) y formando muchas representaciones nuevas a partir de ella, manteniendo solo la más corta. La representación no utilizada más baja supone que a todos los números 1 a 1 se les ha asignado una representación, y que estas representaciones ya se han utilizado para producir nuevos números. Si un valor menor que l obtiene una representación más corta, debemos retroceder y reproducir los números que comienzan desde ese punto. La función f produce un programa que guarda el número en la pila agregando paréntesis.

No conocía Brainflak cuando comencé esto, y aprecio mucho la respuesta de Eamon Olive por señalar la fórmula para los números de triángulo. En general, he generalizado el resumen y he sido implacable sobre el control de sumas y diferencias. Agregar muchos múltiplos de sumas ha tenido un gran efecto.

Para aquellos a quienes les importa, aquí está el código de borrador que usé para ver qué fórmulas valieron la pena.

Fórmulas de representación:

  1. Multiplicación por pequeños números primos:
    (X){}
    ((X)){}{}
    ((((X)))){}{}{}{}
    ((((((X)))))){}{}{}{}{}{}
  2. Suma X + Y :
    XY
  3. Resta X - Y :
    X[Y]
  4. Sumando e incluyendo X del incremento Y :
    (X){({}[Y])}{}
  5. Múltiples de sumas a X de incremento Y , más X :
    (X)({({}[Y])}{}){}
    (X)(({({}[Y])}{})){}{}
    (X)(({({}[Y])}{}){}){}
    etc.

Pensé que 5 * no era útil, pero ahora veo que ahorra 10 caracteres en mi respuesta. Pensé que había intentado esas sumas, ¡pero lo comprobaré dos veces!
Neil

Las sumas de incrementos más múltiplos me ahorran otros 46 bytes, e incluso entonces tengo que enjuagar y repetir tres veces para atraparlos a todos.
Neil

Resulta que si uso resta, entonces no uso 5 * nuevamente.
Neil

4

Lua 5.3, 57522

De hecho, comencé a trabajar en esto cuando se publicó la pregunta, pero lo olvidé hasta el aniversario de Brain-Flak.

-- 64 gives all results through 10000 (should run in about 1 second)
-- 78 gives all results through 100000 (should run in about 20 seconds)
-- 90 gives all results through 1000000 (should run in about 200 seconds)
-- Note: Timings may not be accurate, as the are not updated every time new cases are added.

local k_max_len = 64
local k_limit = 10000

local pre = os.clock()

local function compute_multiplier_helper(prefix, suffix, m)
  if m == 2 then
    prefix[#prefix + 1] = "("
    suffix[#suffix + 1] = "){}"
  elseif m % 2 == 0 then
    prefix[#prefix + 1] = "("
    compute_multiplier_helper(prefix, suffix, m // 2)
    suffix[#suffix + 1] = "){}"
  else
    suffix[#suffix + 1] = ")"
    compute_multiplier_helper(prefix, suffix, m - 1)
    prefix[#prefix + 1] = "("
    suffix[#suffix + 1] = "{}"
  end
end

local function compute_multiplier(m)
  local prefix = {}
  local suffix = {}
  compute_multiplier_helper(prefix, suffix, m)
  return table.concat(prefix), table.concat(suffix)
end

local multipliers = {}
for m = 2, k_limit do
  -- Including all factors, not just primes.
  -- This did improve a few numbers, although none in the ppcg test set.
  local prefix, suffix = compute_multiplier(m)
  local mult = {prefix = prefix, suffix = suffix, m = m, cost = #prefix + #suffix}
  table.insert(multipliers, mult)
end
table.sort(multipliers, function(a, b) return a.cost < b.cost end)

local poly_multipliers = {}
poly_multipliers[1] = {m = 1, s = "({})", l = 4}
for m = 2, k_limit do
  local prefix, suffix = compute_multiplier(m)
  local s = prefix .. "({})" .. suffix
  assert(#s <= 4 * m)
  poly_multipliers[m] = {m = m, s = s, l = #s}
end
poly_multipliers[k_limit + 1] = {m = 0, s = "", l = 0}

table.sort(poly_multipliers, function(a, b) return a.l < b.l end)

local pcache = {}
local plen_cache = {}

local function register_push(prefix, suffix, value, pvalue)
  if value > 1500000 or value < -1500000 then return end
  local old_res = pcache[value]
  if old_res == nil then
    local res = {prefix = prefix, suffix = suffix, value = value, pvalue = pvalue}
    pcache[value] = res
    local length = #prefix + #suffix
    local lcache = plen_cache[length]
    if lcache == nil then
      lcache = {}
      plen_cache[length] = lcache
    end
    lcache[#lcache + 1] = res
  end
end

local function get_pushes(length)
  return ipairs(plen_cache[length] or {})
end

register_push("", "()", 1, 0)
register_push("", "<()>", 0, 0)

local function triangle(n)
  return (n * (n + 1)) // 2
end

local function process(length)
  -- basic
  for _, res in get_pushes(length - 2) do
    register_push(res.prefix, res.suffix .. "()", res.value + 1, res.pvalue)
    register_push(res.prefix, "[" .. res.suffix .. "]", -res.value, res.pvalue)
  end

  -- multiplication by constant (precomputed)
  for _, mult in ipairs(multipliers) do
    local cost = mult.cost
    if length - cost >= 4 then
      local m, prefix, suffix = mult.m, mult.prefix, mult.suffix
      for _, pus in get_pushes(length - cost) do
        local name = prefix .. pus.suffix .. suffix
        register_push(pus.prefix, name, pus.value * m, pus.pvalue)
      end
    else
      break
    end
  end

  -- residue 2 mod3 trick (Neil)
  -- ((n)()){}{}
  --  (n)        -- push n
  -- (   ())     -- push n + 1
  --        {}{} -- (n + 1) + (n + 1) + n
  if length - 10 >= 2 then
    for _, res in get_pushes(length - 10) do
      local name = "((" .. res.suffix .. ")()){}{}"
      register_push(res.prefix, name, 3 * res.value + 2, res.pvalue)
    end
  end

  -- residue 1 mod3 trick (Wheat Wizard)
  -- ((n)()()){}{}
  --  (n)          -- push n
  -- (   ()())     -- push n + 2
  --          {}{} -- (n + 2) + (n + 2) + n
  -- not useful, but fast...
  if length - 12 >= 2 then
    for _, res in get_pushes(length - 12) do
      local name = "((" .. res.suffix .. ")()()){}{}"
      register_push(res.prefix, name, 3 * res.value + 4, res.pvalue)
    end
  end

  -- residue 2 mod5 trick (tehtmi)
  -- (((n)){}()){}{}
  --   (n)           -- push n
  --  (   )          -- push n
  -- (     {}())     -- push 2n + 1
  --            {}{} -- (2n + 1) + (2n + 1) + n
  -- [[
  if length - 14 >= 2 then
    for _, res in get_pushes(length - 14) do
      local name = "(((" .. res.suffix .. ")){}()){}{}"
      register_push(res.prefix, name, 5 * res.value + 2, res.pvalue)
    end
  end
  -- ]]

  -- residue 4 mod5 trick (tehtmi)
  -- (((n)()){}){}{}
  --   (n)           -- push n
  --  (   ())        -- push n + 1
  -- (       {})     -- push 2n + 2
  --            {}{} -- (2n + 2) + (2n + 2) + n
  -- [[
  if length - 14 >= 2 then
    for _, res in get_pushes(length - 14) do
      local name = "(((" .. res.suffix .. ")()){}){}{}"
      register_push(res.prefix, name, 5 * res.value + 4, res.pvalue)
    end
  end
  -- ]]

  -- residue 6 mod7 trick (tehtmi)
  -- ((((n)())){}{}){}{}
  --    (n)              -- push n
  --   (   ())           -- push n + 1
  --  (       )          -- push n + 1
  -- (         {}{})     -- push 3n + 3
  --                {}{} -- (3n + 3) + (3n + 3) + n
  -- [[
  if length - 18 >= 2 then
    for _, res in get_pushes(length - 18) do
      local name = "((((" .. res.suffix .. ")())){}{}){}{}"
      register_push(res.prefix, name, 7 * res.value + 6, res.pvalue)
    end
  end
  --]]

  -- residue 4 mod7 trick (tehtmi)
  -- ((((n))()){}{}){}{}
  --    (n)              -- push n
  --   (   )             -- push n
  --  (     ())          -- push n + 1
  -- (         {}{})     -- push 3n + 2
  --                {}{} -- (3n + 2) + (3n + 2) + n
  -- [[
  if length - 18 >= 2 then
    for _, res in get_pushes(length - 18) do
      local name = "((((" .. res.suffix .. "))()){}{}){}{}"
      register_push(res.prefix, name, 7 * res.value + 4, res.pvalue)
    end
  end
  --]]

  -- residue 2 mod7 trick (tehtmi)
  -- ((((n))){}{}()){}{}
  --    (n)              -- push n
  --   (   )             -- push n
  --  (     )            -- push n
  -- (       {}{}())     -- push 3n + 1
  --                {}{} -- (3n + 1) + (3n + 1) + n
  -- [[
  if length - 18 >= 2 then
    for _, res in get_pushes(length - 18) do
      local name = "((((" .. res.suffix .. "))){}{}()){}{}"
      register_push(res.prefix, name, 7 * res.value + 2, res.pvalue)
    end
  end
  --]]

  -- triangle numbers (?)
  --(n){({}[()])}{}
  --(n)              -- push n
  --   {        }    -- sum and repeat
  --    (      )     -- push
  --     {}[()]      -- top - 1
  --             {}  -- pop 0
  if length - 14 >= 2 then
    for _, res in get_pushes(length - 14) do
      if res.value > 0 then
        local code = "{({}[()])}{}"
        register_push(res.prefix .. "(" .. res.suffix .. ")", code, triangle(res.value - 1), res.pvalue + res.value)
        register_push(res.prefix, "(" .. res.suffix .. ")" .. code, triangle(res.value), res.pvalue)
        register_push("", res.prefix .. "(" .. res.suffix .. ")" .. code, triangle(res.value) + res.pvalue, 0)
      end
    end
  end

  -- negative triangle numbers (tehtmi)
  --(n){({}())}{}
  --(n)            -- push n
  --   {      }    -- sum and repeat
  --    (    )     -- push
  --     {}()      -- top + 1
  --           {}  -- pop 0
  if length - 12 >= 2 then
    for _, res in get_pushes(length - 12) do
      if res.value < 0 then
        local code = "{({}())}{}"
        register_push(res.prefix .. "(" .. res.suffix .. ")", code, -triangle(-res.value - 1), res.pvalue + res.value)
        register_push(res.prefix, "(" .. res.suffix .. ")" .. code, -triangle(-res.value), res.pvalue)
        register_push("", res.prefix .. "(" .. res.suffix .. ")" .. code, -triangle(-res.value) + res.pvalue, 0)
      end
    end
  end

  -- cubic (tehtmi)
  -- (n){(({}[()])){({}[()])}{}}{}
  -- (n^3-3*n^2+8*n-6)/6
  -- (-6 + n*(8 + n*(-3 + n)))/6
  --[[ superceded by negative cubic because 
       it is the same cost of -ncubic(-n)
  if length - 28 >= 2 then
    for _, res in get_pushes(length - 28) do
      if res.value > 0 then
        local code = "{(({}[()])){({}[()])}{}}{}"
        local v = res.value + 1
        v = (-6 + v*(8 + v*(-3 + v)))//6
        register_push(res.prefix .. "(" .. res.suffix .. ")", code, v - res.value, res.pvalue + res.value)
        register_push(res.prefix, "(" .. res.suffix .. ")" .. code, v, res.pvalue)
        register_push("", res.prefix .. "(" .. res.suffix .. ")" .. code, v + res.pvalue, 0)
      end
    end
  end
  --]]

  -- negative cubic (tehtmi)
  -- (n){(({}())){({}())}{}}{}
  -- (n^3-3*n^2+8*n-6)/6
  -- (-6 + n*(8 + n*(-3 + n)))/6
  -- [[
  if length - 24 >= 2 then
    for _, res in get_pushes(length - 24) do
      if res.value < 0 then
        local code = "{(({}())){({}())}{}}{}"
        local v = -res.value + 1
        v = (-6 + v*(8 + v*(-3 + v)))//6
        v = -v
        register_push(res.prefix .. "(" .. res.suffix .. ")", code, v - res.value, res.pvalue + res.value)
        register_push(res.prefix, "(" .. res.suffix .. ")" .. code, v, res.pvalue)
        register_push("", res.prefix .. "(" .. res.suffix .. ")" .. code, v + res.pvalue, 0)
      end
    end
  end
  --]]

  -- polynomial (Wheat Wizard, modified by tehtmi)
  -- <(n)>{A({}[()])B}{} where A, B are ({})({})({})... repeated a, b times
  -- <(n)>                -- push n (without adding)
  --      {          }    -- repeat until top is zero
  --       A              -- top * a
  --        ({}[()])      -- top = top - 1; += top - 1
  --                B     -- (top - 1) * b
  --                  {}  -- pop 0
  -- triangular numbers are with a = b = 0
  -- from B and base:
  -- (n - 1) * (B + 1) * (n - 2) * (B + 1) * ...
  -- (B + 1) * (1 + ... + n - 1)
  -- (B + 1) * n * (n - 1) / 2
  -- from A:
  -- n * A + (n - 1) * A + ...
  -- A * (1 + ... n)
  -- A * (n + 1) * n / 2
  -- total: (B + 1) * n * (n - 1) / 2 + A * (n + 1) * n / 2
  --        [(A + B + 1) * n^2 + (A - B - 1) * n] / 2
  -- S := 4 * (A + B)
  -- [[
  if length - 18 >= 2 then
    for S = 4, length - 14, 4 do
      for _, res in get_pushes(length - 14 - S) do
        if res.value > 0 then
          for _, A in ipairs(poly_multipliers) do
            if A.l > S then
              break
            end
            for _, B in ipairs(poly_multipliers) do
              if A.l + B.l < S then
                -- continue
              elseif A.l + B.l > S then
                break
              else
                local a = A.m
                local b = B.m

                local logic = "{" .. A.s .. "({}[()])" .. B.s .. "}{}"
                local v = res.value
                v = ((a + b + 1) * v * v + (a - b - 1) * v) // 2
                register_push(res.prefix .. "(" .. res.suffix .. ")", logic, v, res.pvalue + res.value)
                register_push(res.prefix, "(" .. res.suffix .. ")" .. logic, v + res.value, res.pvalue)
                register_push("", res.prefix .. "(" .. res.suffix .. ")" .. logic, v + res.value + res.pvalue, 0)
              end
            end
          end
        end
      end
    end
  end
  --]]

  -- negative polynomial (tehtmi)
  -- <(n)>{A({}())B}{}
  -- [[
  if length - 16 >= 2 then
    for S = 4, length - 12, 4 do
      for _, res in get_pushes(length - 12 - S) do
        if res.value < 0 then
          for _, A in ipairs(poly_multipliers) do
            if A.l > S then
              break
            end
            for _, B in ipairs(poly_multipliers) do
              if A.l + B.l < S then
                -- continue
              elseif A.l + B.l > S then
                break
              else
                local a = A.m
                local b = B.m

                local logic = "{" .. A.s .. "({}())" .. B.s .. "}{}"
                local v = -res.value
                v = ((a + b + 1) * v * v + (a - b - 1) * v) // -2

                register_push(res.prefix .. "(" .. res.suffix .. ")", logic, v, res.pvalue + res.value)
                register_push(res.prefix, "(" .. res.suffix .. ")" .. logic, v + res.value, res.pvalue)
                register_push("", res.prefix .. "(" .. res.suffix .. ")" .. logic, v + res.value + res.pvalue, 0)
              end
            end
          end
        end
      end
    end
  end
  --]]

  -- addition
  -- [[
  if length >= 4 then
    for part1 = 4, length // 2, 2 do
      for _, res1 in get_pushes(part1) do
        for _, res2 in get_pushes(length - part1) do
          register_push(res2.prefix .. res1.prefix, res1.suffix .. res2.suffix, res1.value + res2.value, res1.pvalue + res2.pvalue)
        end
      end
    end
  end
  --]]

  -- pseudo-exponentiation (tehtmi)
  -- (n)<>(m){({}[()])<>(({}){})<>}{}<>{}
  -- (n)<>(m)                             -- push n and m on opposite stacks
  --         {                    }       -- sum and repeat
  --          ({}[()])                    -- top(m) - 1
  --                  <>(({}){})<>        -- n = 2*n; += n
  --                               {}     -- pop 0
  --                                 <>   -- swap to result
  --                                   {} -- pop and add n
  -- [[
  if length - 34 >= 4 then
    local subl = length - 34
    for part1 = 2, subl - 2, 2 do
      for _, res2 in get_pushes(part1) do
        local b = res2.value
        if b > 0 and b < 55 then -- overflow could be a problem, so bound...
          for _, res1 in get_pushes(subl - part1) do
            -- 2n + 4n + 8n + ... + (2^m)*n + 2^m * n
            -- n( 2 + 4 + 8 + .. 2^m + 2^m)
            -- n( 3 * 2^m - 2 )
            local a = res1.value
            local body = "(" .. res1.suffix .. ")<>" .. res2.prefix .. "(" .. res2.suffix .. "){({}[()])<>(({}){})<>}{}<>{}"
            local v = a * (3 * (1 << b) - 2) + b * (b - 1) // 2 + a + b + res2.pvalue
            register_push(res1.prefix, body, v, res1.pvalue)
            register_push("", res1.prefix .. body, v + res1.pvalue, 0)
          end
        end
      end
    end
  end
  --]]
end

--print(os.clock(), "seconds (startup)")

local start = os.clock()
for i = 2, k_max_len - 2, 2 do
  --print(i)
  process(i)
end

plen_cache = nil

local final = {}
for i = 1, k_limit do
  if pcache[i] ~= nil then
    final[i] = pcache[i].prefix .. "(" .. pcache[i].suffix .. ")"
  end
end

pcache = nil

-- hard coded to 10000 for ppcg test
local sieve = {}
for i = 1, 10000 do sieve[i] = true end
for i = 2, 10000 do
  for j = i * i, 10000, i do
    sieve[j] = false
  end
end

--print(os.clock() - start, "seconds (calculation)")

--local bf = require("execute2")

local count = 0
local sum = 0
local sum2 = 0
local maxlen = 0
local pcount = 0
for i = 1, k_limit do
  local res = final[i]
  final[i] = nil
  --print(i, #res, res)
  --local ev = res and bf.eval1(bf.compile(res)) or -1; assert( res == nil or ev == i, string.format("Failed %d %s %d", i, res or "", ev))
  if sieve[i] and i > 1000 then
    sum = #res + sum
    pcount = pcount + 1
  end
  if res then
    sum2 = #res + sum2
    maxlen = math.max(maxlen, #res)
    count = count + 1
  end
end
print("sum", sum)
--print("coverage", count / k_limit, "missing", k_limit - count)
--print("sum2", sum2)
--print("maxlen", maxlen)
assert(pcount == 1061)

Idea similar a las otras respuestas donde se utilizan funciones útiles conocidas para construir números más grandes a partir de buenas representaciones de números más simples.

Una diferencia es que en lugar de resolver subproblemas en términos de números más pequeños, estoy resolviendo subproblemas en términos de números con representaciones más cortas. Creo que esto hace que sea más elegante aprovechar los números negativos y manejar el caso en que los números más pequeños se representan en términos de números más grandes.

Además, tratar de encontrar todos los números que se puedan representar en un determinado tamaño en lugar de intentar representar un número particular lo más pronto posible, en realidad simplifica ciertos cálculos. En lugar de trabajar una fórmula a la inversa para ver si se puede aplicar a un número, la fórmula se puede avanzar y aplicar a cada número.

Otra diferencia es que las soluciones conocidas se almacenan en dos partes: un "prefijo" (opcional) y un "sufijo" (más parecido a un infijo). Se espera que la valoración del prefijo se ignore al calcular el número dado: el prefijo solo contiene código que configura el sufijo para que se ejecute (generalmente empujando una o más cosas a la pila). Entonces, dado un prefijo y un sufijo, el número correspondiente se puede insertar en la pila con prefix(suffix).

Esta división básicamente resuelve el mismo problema que la unpackfunción en la respuesta del Asistente de trigo. En lugar de ajustar el código <...>solo para deshacer esto más tarde, dicho código simplemente se agrega al prefijo.

En algunos casos, el prefijo realmente se evalúa (principalmente para la operación de pseudo-exponenciación), por lo que su valoración también se almacena. Sin embargo, esto realmente no causa un gran problema, ya que el generador no está tratando de construir números específicos. Parece implicar teóricamente que podría haber dos piezas de código de la misma longitud y generar el mismo número que no sería redundante en el caché debido a que tienen diferentes valoraciones de prefijos. Sin embargo, no me molesté en explicar esto, ya que no parece importar mucho (al menos en este dominio).

Me imagino que sería fácil reducir el recuento de bytes simplemente agregando más casos, pero por el momento he tenido suficiente.

He corrido hasta 1000000, pero solo he hecho la comprobación de cordura hasta 100000.

Pastebin de salida en primos dados.


¿Qué hacer k_limity k_max_lenhacer? No estoy seguro de entender el encabezado.
Wheat Wizard

1
En lugar de tratar de calcular números particulares, estoy calculando todos los programas útiles (es decir, dar números no demasiado grandes más cortos que cualquier otro programa encontrado) hasta una cierta longitud - k_max_len. Podría verificar fácilmente que ha encontrado todos los números que solicitó después de procesar cada longitud, pero fue útil para mí poder vincular la longitud máxima durante las pruebas para que el programa se ejecute más rápido. (El procesamiento de longitudes más grandes puede ser muy lento). k_limitBásicamente es el parámetro de entrada (generará programas para números hasta este), suponiendo que sea k_max_lenlo suficientemente grande como para encontrarlos.
tehtmi 01 de

4

rubí, 60246 bytes

$brain_flak = Hash.new{|h, k|
    a = []
    a.push "()"*k
    if k > 1
        if k > 10
            # Triangle Numbers:
            n = (Math.sqrt(1+8*k).to_i-1)/2
            if (n*n+n)/2 == k
                a.push "("+h[n]+"){({}[()])}{}" 
                a.push  h[n+n]+")({({}[()])}{}"
            end
        end
        (k**0.51).to_i.downto(2){|i|
            # multiplication:
            if k%i==0
                a.push "("*(i-1) + h[k/i] + ")"*(i-1)+"{}"*(i-1)

            end
        }
        (k/2).downto(1){|i|
            # Addition
            a.push h[k-i] + h[i]
        }
    end

    h[k] = a.min_by{|x|x.length}
}
$brain_flak[0] = "<><>"

def get_code_for (i)
  "(#{$brain_flak[i]})"
end

Yo uso un hash. Encuentro el mejor golf para un número determinado y utilizo los más pequeños para encontrar los más grandes.

¡Los hashes recursivos son muy divertidos!


2

Python, 64014 caracteres

No sabía nada sobre Brainflak antes de este desafío y solo jugueteé un poco con él en tryitonline, por lo que podría haber atajos obvios que me perdí. Esta es una solución bastante aburrida, solo divide la entrada en x=x/2+x%2o x=x/3+x%3, lo que sea más corto.

k=lambda x:"(("+o(x/3)+")){}{}"+(x%3)*"()"if x>3else"()"*x
m=lambda x:"("+o(x/2)+"){}"+(x%2)*"()"if x>6else"()"*x
o=lambda x:min(k(x),m(x),key=len)
b=lambda x:"("+o(x)+")"

Llámalo así: b(42)

salida en pastebin


1

Lua, 64664 bytes

El programa imprime la longitud total de los programas y el programa para la 203a prima (hay una línea que puede cambiar para cambiar cuál se imprime o descomentar una línea para imprimir todos los programas)

En este momento, la única optimización es x = 2 * n + 1

Espero tener tiempo para agregar algunas optimizaciones más para reducir el puntaje.

local primeS = [[<INSERT PRIMES HERE>]]

local primes = {}

for num in primeS:gmatch("%d+") do
    table.insert(primes, num+0)
end

local progs = {}
progs[0] = ""
progs[1] = "()"
progs[2] = "()()"

local function half(n)
    if progs[n] then return progs[n] end
    local p = ""
    local div = math.floor(n/2)
    local rem = n%2 == 1 and "()" or ""
    return "("..progs[div].."){}"..rem
end

for i = 3, 10000 do

    local bin = half(i)

    progs[i] = progs[i-1] .. "()"

    if #bin < #progs[i] then
        progs[i] = bin
    end

    if i % 1000 == 0 then
        print(i)
    end

end

local n = 203 -- This is the program it outputs
print(n..", ("..progs[203]..")")

local len = 0
for i,v in ipairs(primes) do
    len = len + #progs[v] + 2
    --print(v.." ("..progs[v]..")\n")
end
print("Total len: "..len)
Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.