Java, 625 605
Código de golf:
import static java.math.BigInteger.*;
String f(BigInteger a, BigInteger b){BigInteger[]r=a.divideAndRemainder(b);String s=r[0].toString();if(r[1].signum()<0)s="-"+s;if(!ZERO.equals(r[1])){s+='.';List<BigInteger>x=new ArrayList();List<BigInteger>y=new ArrayList();for(BigInteger d=TEN.multiply(r[1].abs());;){BigInteger[]z=d.divideAndRemainder(b.abs());int i=y.indexOf(z[1]);if(i>-1&&i==x.indexOf(z[0])){for(int j=0;j<i;++j)s+=x.get(j);s+='(';for(int j=i;j<x.size();++j)s+=x.get(j);s+=')';break;}x.add(z[0]);y.add(z[1]);if(ZERO.equals(z[1])){for(BigInteger j:x)s+=j;break;}d=TEN.multiply(z[1]);}}return s;}
Nota: Cuento la importación estática como parte de la función para fines de golf.
Esta función comienza obteniendo el resultado de la división. Agrega la parte integral y el signo, si es necesario. Luego, si hay un resto, realiza una división larga de base 10. En cada paso, realiza la división. Almacene el dígito calculado y el resto en dos listas. Si nos encontramos con el mismo dígito y el resto nuevamente, hay una porción repetida y sabemos en qué índice comienza. El código agrega los dígitos (sin repetición) o los dígitos de repetición previa, luego los dígitos repetidos encerrados entre paréntesis.
Esto es un poco grande principalmente debido a BigInteger
. Si las entradas no se desbordan ni siquiera a, long
entonces podría ser un poco más corto. Aún así, espero que haya formas de mejorar esta entrada.
Código no protegido con método principal para probar:
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.List;
import static java.math.BigInteger.*;
public class FractionToExactDecimal {
public static void main(String[] args) {
// @formatter:off
String[][] testData = new String[][] {
{ "123562375921304812375087183597", "2777", "44494913907563850333124661" },
{ "81", "3", "27" },
{ "-6", "2", "-3" },
{ "1", "2", "0.5" },
{ "3289323463", "-250000000", "-13.157293852" },
{ "-1", "3", "-0.(3)" },
{ "235", "14", "16.7(857142)" },
{ "123", "321", "0.(38317757009345794392523364485981308411214953271028037)" },
{ "355", "113", "3.(1415929203539823008849557522123893805309734513274336283185840707964601769911504424778761061946902654867256637168)" }
};
// @formatter:on
for (String[] data : testData) {
System.out.println(data[0] + " / " + data[1]);
System.out.println(" Expected -> " + data[2]);
System.out.print(" Actual -> ");
System.out.println(new FractionToExactDecimal().f(new BigInteger(data[0]), new BigInteger(data[1])));
System.out.println();
}
}
// Begin golf
String f(BigInteger a, BigInteger b) {
BigInteger[] r = a.divideAndRemainder(b);
String s = r[0].toString();
if (r[1].signum() < 0) s = "-" + s;
if (!ZERO.equals(r[1])) {
s += '.';
List<BigInteger> x = new ArrayList();
List<BigInteger> y = new ArrayList();
for (BigInteger d = TEN.multiply(r[1].abs());;) {
BigInteger[] z = d.divideAndRemainder(b.abs());
int i = y.indexOf(z[1]);
if (i > -1 && i == x.indexOf(z[0])) {
for (int j = 0; j < i; ++j)
s += x.get(j);
s += '(';
for (int j = i; j < x.size(); ++j)
s += x.get(j);
s += ')';
break;
}
x.add(z[0]);
y.add(z[1]);
if (ZERO.equals(z[1])) {
for (BigInteger j : x)
s += j;
break;
}
d = TEN.multiply(z[1]);
}
}
return s;
}
// End golf
}
Salida del programa:
123562375921304812375087183597 / 2777
Expected -> 44494913907563850333124661
Actual -> 44494913907563850333124661
81 / 3
Expected -> 27
Actual -> 27
-6 / 2
Expected -> -3
Actual -> -3
1 / 2
Expected -> 0.5
Actual -> 0.5
3289323463 / -250000000
Expected -> -13.157293852
Actual -> -13.157293852
-1 / 3
Expected -> -0.(3)
Actual -> -0.(3)
235 / 14
Expected -> 16.7(857142)
Actual -> 16.7(857142)
123 / 321
Expected -> 0.(38317757009345794392523364485981308411214953271028037)
Actual -> 0.(38317757009345794392523364485981308411214953271028037)
355 / 113
Expected -> 3.(1415929203539823008849557522123893805309734513274336283185840707964601769911504424778761061946902654867256637168)
Actual -> 3.(1415929203539823008849557522123893805309734513274336283185840707964601769911504424778761061946902654867256637168)