Metagolf en realidad entero


17

Antecedentes

En realidad (el sucesor de Seriously ) es un lenguaje de golf imperativo basado en pila que creé en noviembre de 2015. Al igual que muchos otros idiomas de golf, tiene comandos de un byte que realizan diferentes funciones en función del contenido de la pila. Una de sus especialidades es la matemática: tiene una amplia variedad de comandos basados ​​en la matemática. Sin embargo, para realizar operaciones matemáticas, debe colocar (uno o más) números en la pila. Empujar un valor específico en la menor cantidad de bytes posible es complicado, porque hay muchas opciones diferentes. En este desafío, hará exactamente eso: representar números (específicamente, enteros) en realidad en la menor cantidad de bytes posible.

El reto

Dado un número entero Ncomo entrada, salida válida, en realidad, código que resulta en Nser empujado a la pila.

  • La entrada estará dentro del rango de un entero de complemento de dos con signo de 32 bits (es decir, los enteros en el rango inclusivo [-2147483648, 2147483647]).
  • El resultado debe ser un entero (no un flotante, una cadena, una lista o una función) y debe estar en la parte superior de la pila.
  • No puede hacer suposiciones sobre el contenido de la pila (como si está vacía o no). Los valores existentes en la pila no deben modificarse ni reorganizarse.
  • Se utilizará el último compromiso de En realidad en el momento en que escribo este desafío . Si hago correcciones de errores o mejoras de rendimiento (o cualquier otro cambio menor que no elimine o cambie la funcionalidad de los comandos permitidos), actualizaré esta versión.
  • Su solución debe funcionar al menos tan bien como la solución trivial (anteponer :a la entrada para hacer un literal numérico).
  • Su puntaje será la suma de las longitudes de las soluciones triviales menos la suma de las longitudes de las salidas para la selección de 1000 enteros complementarios de dos de 32 bits con signo utilizados para la puntuación, que se pueden encontrar a continuación. Me reservo el derecho de cambiar los enteros de puntuación en cualquier momento, si es necesario (como la optimización de los casos de prueba o los casos de prueba que no son lo suficientemente completos).
  • Las soluciones deben generar una respuesta válida en 30 segundos para cada entrada. El tiempo se realizará en un espacio de trabajo gratuito de Cloud9 estándar .

Comandos

Para simplificar, solo se pueden usar 141 de los 208 comandos (actualmente), y se han eliminado muchas sobrecargas de esos 141 que no están relacionadas con la reducción de números. Aquí está la lista de comandos permitidos (el formato es <hex code> (<symbol>): <descriptions of functions based on stack values and types>:

0B (♂): take the next command and map it over the top of the stack (for example, ♂A is equivalent to `A`M)
1F (▼): pop a,b: push b//gcd(a,b),a//gcd(a,b); pop [a]: push [x//gcd([a]) for x in [a]]
20 ( ): push the # of elements on the stack (push len(stack))
21 (!): pop a: push a! (factorial(a))
22 ("): string literal, reads until next " and pushes value onto stack. An implied " is present at EOF if needed.
23 (#): pop a: push list(a)
25 (%): pop a,b: push a%b
26 (&): pop a,b: push a & b (bitwise AND)
27 ('): pushes next character onto stack as character literal (length-1 string)
28 ((): rotates stack right by 1
29 ()): rotates stack left by 1
2A (*): pop a,b: push a*b; pop a,[b] or [b],a: apply a* to each element in the array; pop [a],[b]: push dot product of [a] and [b] (sum([a[i]*b[i] for i in len(a)])) (shorter is padded with 0s)
2B (+): pop a,b: push a+b; pop [a],[b]: push [a][b] (append [b] to [a]); pop a,[b] or [b],a: apply a+ to each element in the array
2D (-): pop a,b: push a-b; pop [a],[b]: push [a]-[b] (all elements of [a] not in [b])
2F (/): pop a,b: push a/b (float division); pop [a]: rotate [a] right by 1, push [a]
30 (0): push 0
31 (1): push 1
32 (2): push 2
33 (3): push 3
34 (4): push 4
35 (5): push 5
36 (6): push 6
37 (7): push 7
38 (8): push 8
39 (9): push 9
3A (:): numeric literal delimiter: pushes the longest string of characters in '0123456789+-.ij' as a numeric
3B (;): pop a: push a,a (duplicates top element)
3C (<): pop a,b: push 1 if a<b else 0
3D (=): pop a,b: push 1 if a==b else 0
3E (>): pop a,b: push 1 if a>b else 0
40 (@): pop a,b: push a,b (rotate top 2 elements)
41 (A): pop a: push abs(a)
43 (C): pop a: push cos(a)
44 (D): pop a: push a-1; pop [a]: push stddev([a])
45 (E): pop a: push erf(a); pop [a],b: push [a][b] (bth item in [a])
46 (F): pop a: push Fib(a) (Fib(0)=0, Fib(1)=Fib(2)=1); pop [a]: push a[0]
48 (H): pop [a],b: push [a][:b]
49 (I): pop a,b,c: push b if a is truthy, else push c
4B (K): pop a: push ceil(a)
4C (L): pop a: push floor(a)
4D (M): pop f,[a], execute f for each element in [a], using the element as a temporary stack, push [a] (similar to map(f,[a])); pop [a]: push max([a])
4E (N): pop [a]: push a[-1]
50 (P): pop a: push the a-th prime (zero-indexed)
52 (R): pop f,[a]: call f, using [a] as a temporary stack, push [a] (similar to reduce(f,[a])); pop [a]: push [a][::-1] (reverse); pop a: push [1,2,...,a] (range(1,a+1))
53 (S): pop a: push sin(a); pop [a]: push sorted(a)
54 (T): pop a: push tan(a); pop [a],b,c: set [a][b] to c, push [a]
55 (U): pop [a],[b]: push union of [a] and [b]
57 (W): loop delimiter: peek top of stack, repeat code in loop while a evaluates to true
58 (X): pop a: discard
59 (Y): pop a: push !bool(a) (logical negate, opposite of b)
5A (Z): pop [a],[b]: push zip([a],[b]); pop a, zip the next a lists
5B ([): begin list literal, values are delimited by commas (,)
5C (\): pop a,b: push a/b (integer division); pop [a]: rotate [a] left by 1, push [a]
5D (]): end list literal
5E (^): pop a,b: push a XOR b
5F (_): pop a: push ln(a)
60 (`): function literal delimiter, pushes function whose body contains all of the commands until the next `. An implied ` is present at EOF if needed.
61 (a): invert the stack ([a,b,c,d] -> [d,c,b,a])
62 (b): pop a: push 0 if a==0 else 1; pop "a" or [a]: push 0 if len(a)==0 else 1; pop f: push 0 if len(f)==0 else 1
63 (c): pop a: push character at ordinal a%256; pop [a],b: push [a].count(b)
64 (d): pop [a]: dequeue b from [a], push [a],b
65 (e): pop a: push exp(a)
66 (f): pop a: push the Fibonacci index of a if a is a Fibonacci number, else -1
67 (g): pop a,b: push gcd(a,b); pop [a]: push gcd([a])
68 (h): pop a,b: push sqrt(a*a+b*b) (Euclidean norm)
69 (i): pop [a]: push each element from [a], starting from end (flatten)
6B (k): pop all elements from stack, convert to list (in the order they were on the stack, starting from the top), and push
6C (l): pop [a]: push len([a])
6D (m): pop a: push int(a),frac(a) (modf(a)); pop [a]: push min([a])
6E (n): pop a,b: push a b times
6F (o): pop [a],b: push b to [a], push [a]
70 (p): pop a: push 1 if a is prime else 0; pop [a]: pop b from [a], push [a],b
71 (q): pop [a],b: enqueue b in [a], push [a]
72 (r): pop a: push [0,1,...,a-1] (range(0,a))
75 (u): pop a: push a+1
77 (w): pop a: push the full positive prime factorization of |a| (18 -> [[2,1],[3,2]], -5 -> [[5,1]])
78 (x): pop a,b: push [a,b) (range(a,b)); pop [a]: push range(*a)
79 (y): pop a: push the positive prime factors of |a| (18 -> [2,3], -5 -> [5])
7B ({): pop a: rotate stack right a times
7C (|): pop a,b: push a | b (bitwise OR)
7D (}): pop a: rotate stack left a times
7E (~): pop a: push ~a (unary bitwise negate)
80 (Ç): pop a,b: push a+bi; pop [a]: pop pairs of real numerics b,c from [a] and push b+ci (appending 0 to [a] if len([a]) is odd)
83 (â): pop a: push asin(a)
84 (ä): pop a: push acos(a)
85 (à): pop a: push atan(a)
86 (å): pop a,b: push atan2(a,b)
87 (ç): pop a: push asinh(a)
88 (ê): pop a: push acosh(a)
89 (ë): pop a: push atanh(a)
8B (ï): push i, the imaginary unit (sqrt(-1) or 0+1i)
8C (î): pop a, push 0+ai; pop [a], push [a] with every element multiplied by i
8D (ì): pop a: push 1/a
8E (Ä): pop a: push sinh(a)
8F (Å): pop a: push cosh(a)
90 (É): pop a: push tanh(a)
91 (æ): pop [a]: push mean([a])
9A (Ü): pop [a]: push mode([a])
9B (¢): pop a,b: push abs(a)*sgn(b)
9D (¥): pop [a],[b]: push the result of pairwise addition of [a] and [b], padding the shorter with 0s
9E (₧): pop z: push phase(z)
A0 (á): pop z: push the complex conjugate of z
A1 (í): pop [a],b: push [a].index(b) (0-based, -1 if not found)
A7 (º): pop a: push degrees(a)
A8 (¿): pop a,b: push int(a,b) (interpret a as a base-b int)
A9 (⌐): pop a: push a+2
AA (¬): pop a: push a-2
AB (½): pop a: push a/2 (float division)
AC (¼): pop a: push a/4 (float division)
AD (¡): pop a,b: push a string representing a in base b
B0 (░): pop [a],[b]: push [[b][i] if [a][i] for i in len(b)], pads [a] with 0s if necessary
B1 (▒): pop a: push totient(a) (# of integers <= a that are coprime with a)
B2 (▓): pop a: push pi(a) (# of primes <= a)
B3 (│): duplicate stack ([a,b,c] => [a,b,c,a,b,c])
B4 (┤): pop a,b: push 1 if a and b are coprime else 0
B9 (╣): pop a: push the ath row in Pascal's triangle
C5 (┼): duplicate each element on stack ([a,b,c] => [a,a,b,b,c,c])
C6 (╞): pop a: make a total copies of each element on stack (3 [a,b,c] -> [a,a,a,b,b,b,c,c,c])
C7 (╟): pop a: pop a elements and push a list containing those elements in their original order
CB (╦): push pi
CC (╠): push e
D1 (╤): pop a: push 10**a
D2 (╥): pop a: push log(a) (log base 10)
D3 (╙): pop a: push 2**a
D4 (╘): pop a: push lg(a) (log base 2)
D5 (╒): push ln(2)
DB (█): pop a,b: push C(a,b) (aCb)
DC (▄): pop a,b: push P(a,b) (aPb)
E2 (Γ): pop a: push Gamma(a)
E3 (π): pop [a]: push product([a])
E4 (Σ): pop [a]: push sum([a])
E7 (τ): pop a: push 2*a
ED (φ): push phi (golden ratio)
F1 (±): pop a: push -a (unary negate)
F2 (≥): pop a,b: push a>=b
F3 (≤): pop a,b: push a<=b
F7 (≈): pop a: push int(a)
F8 (°): pop a: push radians(a)
FB (√): pop a: push sqrt(a)
FC (ⁿ): pop a,b: push pow(a,b)
FD (²): pop a: push a*a

[a] refers to an iterable (list, string, etc.), "a" refers to a string, f refers to a function, and a (and b, and c, and so on) refers to a numeric (or any data type, if the command is type-agnostic).

Es probable que muchos de estos comandos no se usen, pero los he incluido en caso de que sean útiles.

Puntuación

Estos son los enteros que se usarán para calificar:

-2124910654
-2117700574
-2098186988
-2095671996
-2083075613
-2058271687
-2052250777
-2024215903
-2019485642
-2016095616
-2009838326
-2009173317
-2007673992
-2000014444
-1999825668
-1992515610
-1989566707
-1975506037
-1955473208
-1950731112
-1949886423
-1920624450
-1918465596
-1916287469
-1905036556
-1903956118
-1888944417
-1865221863
-1856600057
-1842797147
-1835637734
-1812631357
-1805740096
-1798015647
-1726688233
-1723609647
-1713776890
-1700307138
-1687644479
-1645515069
-1617635994
-1610444000
-1579053372
-1556891649
-1549652116
-1537732956
-1535180388
-1527162056
-1524851611
-1524658412
-1523244369
-1521379172
-1520191198
-1519035741
-1516978241
-1508892332
-1489938422
-1482102944
-1481823232
-1470621147
-1469145091
-1446844485
-1441790509
-1437843276
-1435359182
-1434186947
-1429816311
-1429393781
-1419752032
-1400387846
-1385152926
-1372620863
-1369257355
-1361933674
-1360480816
-1334846204
-1323741718
-1323660173
-1312800992
-1308824840
-1304658551
-1287829999
-1283767920
-1276288210
-1264275838
-1263965596
-1262866901
-1255421887
-1251428680
-1244825786
-1243200329
-1235305532
-1233977691
-1220537074
-1214100716
-1199414474
-1190725823
-1190401800
-1178717689
-1172378149
-1147869245
-1142875190
-1138538768
-1137864183
-1124917489
-1102987222
-1095920186
-1083001017
-1080902655
-1047122002
-1031842676
-1029877334
-1020849489
-1001684838
-998419619
-990915088
-985235989
-982515261
-979074894
-974195629
-973832940
-965324937
-944246431
-938387588
-933873331
-932692878
-928039285
-927947459
-914008773
-907981688
-906376330
-903502449
-898112547
-887444438
-862658502
-843628573
-822463032
-786051095
-776932426
-776033951
-752042328
-746532472
-743149468
-740225710
-734414418
-725435852
-708101516
-699674783
-694869277
-693246525
-690571518
-689249770
-688581912
-686864294
-681445866
-647992869
-641101583
-631409299
-624686189
-613079884
-593711206
-591688546
-591331185
-574790069
-573024823
-565387051
-565137163
-556338668
-556291492
-541411509
-538932064
-500479857
-482419890
-468050561
-424532545
-420534171
-408741873
-406973874
-387664799
-382084509
-367095703
-352332569
-352195997
-346430007
-324596389
-320119776
-306594578
-305952425
-283718911
-267302378
-243302738
-242955859
-232180029
-225394407
-217418127
-212286453
-208344820
-191300139
-186177744
-175765723
-161763935
-157025501
-140389149
-132298608
-126175769
-70566352
-68748576
-53985905
-52674668
-50228620
-39678495
-19825663
-8349922
-8186722
-8125700
-8073135
-8043230
-7994382
-7874433
-7863624
-7784916
-7782477
-7696343
-7607278
-7531250
-7388060
-7368780
-7367625
-7353084
-7334489
-7281141
-7267149
-7140057
-7119066
-7010389
-6992089
-6975258
-6863360
-6784772
-6741079
-6585985
-6550401
-6520011
-6495144
-6459702
-6294273
-6178342
-6169344
-6139663
-6090928
-6022637
-5992707
-5971334
-5925304
-5880940
-5873707
-5807953
-5703992
-5692895
-5535131
-5488812
-5468330
-5404148
-5290247
-5274221
-5264144
-5234715
-5224048
-5179837
-5084014
-5043990
-5028537
-5011679
-4998333
-4922901
-4880159
-4874060
-4787390
-4749096
-4736217
-4502308
-4480611
-4424319
-4363262
-4349743
-4290050
-4240069
-4239657
-4174072
-4093051
-4045363
-4037689
-4033352
-3839265
-3766343
-3716899
-3680075
-3679053
-3581776
-3539227
-3461158
-3282526
-3205947
-3183427
-3169708
-3166430
-3089822
-3061531
-2947574
-2930733
-2919246
-2872882
-2830770
-2739228
-2713826
-2634018
-2613990
-2525529
-2439507
-2432921
-2376201
-2335005
-2307524
-2265548
-2176176
-2123133
-2108773
-2105934
-2075032
-2073940
-2045837
-2045648
-1978182
-1945769
-1935486
-1881608
-1654650
-1602520
-1506746
-1505294
-1475309
-1457605
-1327259
-1312217
-1178723
-1027439
-880781
-833776
-666675
-643098
-593446
-468772
-450369
-443225
-418164
-402004
-319964
-307400
-279414
-190199
-176644
-66862
-32745
-32686
-32352
-32261
-32035
-31928
-31414
-31308
-30925
-30411
-29503
-29182
-28573
-28500
-28093
-27743
-27716
-27351
-27201
-26834
-25946
-25019
-24469
-24341
-24292
-24151
-23732
-22769
-22242
-22002
-20863
-20762
-20644
-20189
-20009
-19142
-19036
-18980
-18616
-18196
-18123
-17942
-17915
-17601
-17494
-16669
-16417
-16317
-15051
-14796
-14742
-14600
-14443
-14159
-14046
-13860
-13804
-13745
-13634
-13498
-13497
-12688
-12471
-12222
-11993
-11467
-11332
-10783
-10250
-10114
-10089
-9930
-9434
-9336
-9128
-9109
-8508
-8460
-8198
-8045
-7850
-7342
-7229
-6762
-6302
-6245
-6171
-5957
-5842
-4906
-4904
-4630
-4613
-4567
-4427
-4091
-4084
-3756
-3665
-3367
-3186
-2922
-2372
-2331
-1936
-1683
-1350
-1002
-719
-152
-128
-127
-124
-122
-121
-119
-116
-113
-112
-111
-107
-104
-102
-101
-100
-95
-94
-91
-90
-87
-81
-80
-79
-78
-73
-72
-69
-68
-66
-65
-63
-57
-54
-52
-51
-48
-47
-46
-45
-43
-41
-37
-33
-31
-30
-27
-25
-21
-18
-15
-12
-8
-1
0
1
3
4
5
6
11
14
17
23
25
26
27
28
29
31
32
39
41
46
49
51
52
56
58
61
64
66
67
70
74
79
80
86
88
89
92
93
99
102
104
109
113
117
120
122
123
127
695
912
1792
2857
3150
3184
4060
4626
5671
6412
6827
7999
8017
8646
8798
9703
9837
10049
10442
10912
11400
11430
11436
11551
11937
12480
13258
13469
13689
13963
13982
14019
14152
14259
14346
15416
15613
15954
16241
16814
16844
17564
17702
17751
18537
18763
19890
21216
22238
22548
23243
23383
23386
23407
23940
24076
24796
24870
24898
24967
25139
25176
25699
26167
26536
26614
27008
27087
27142
27356
27458
27800
27827
27924
28595
29053
29229
29884
29900
30460
30556
30701
30815
30995
31613
31761
31772
32099
32308
32674
75627
80472
103073
110477
115718
172418
212268
242652
396135
442591
467087
496849
675960
759343
846297
881562
1003458
1153900
1156733
1164679
1208265
1318372
1363958
1411655
1522329
1559609
1677118
1693658
1703597
1811223
1831642
1838628
1884144
1931545
2085504
2168156
2170263
2239585
2308894
2329235
2364957
2432335
2435551
2596936
2684907
2691011
2705195
2738057
2851897
2925289
2995414
3051534
3216094
3267022
3271559
3338856
3440797
3638325
3651369
3718696
3724814
3811069
3854697
3866969
3893228
3963455
3984546
4098376
4100957
4128113
4200719
4256344
4286332
4306356
4316314
4438803
4458063
4461638
4552228
4563790
4584831
4607992
4884455
4907501
5045419
5066844
5150624
5157161
5190669
5314703
5337397
5434807
5440092
5502665
5523089
5547122
5566200
5582936
5634068
5690330
5776984
5778441
5818505
5826687
5827184
5885735
6010506
6084254
6131498
6138324
6250773
6292801
6306275
6315242
6331640
6484374
6502969
6545970
6666951
6690905
6763576
6766086
6895048
6912227
6929081
6941390
6978168
7045672
7085246
7193307
7197398
7270237
7276767
7295790
7375488
7472098
7687424
7840758
7880957
7904499
7948678
7974126
8015691
8037685
8112955
8131380
8140556
8142384
8220436
8308817
8331317
22581970
45809129
48103779
78212045
79674901
97299830
110308649
131744428
136663461
138485719
139842794
152061792
152685704
153070991
156228213
164884737
174776199
189346581
193148547
208582124
223891881
227308187
237373798
241214067
242476929
245495851
260606593
275202667
285717038
317009689
322759532
325369206
339724742
340122632
345010859
352375176
355826263
359695034
366118516
370008270
382712922
386379440
401153345
404986391
426084981
442843409
473909474
475192613
492302667
494747879
506279889
509813998
537558350
548423414
548467404
566383324
574188786
574792333
591678147
596558084
597423476
602432742
603067874
629552047
630893263
635249783
644959276
650710927
664859367
669433203
684329599
699991513
714451929
723556530
739294558
750895264
757618344
781123405
796973385
801637715
804776709
829003666
829219068
840167037
854882202
860066192
864304878
864808449
867107161
871871263
880591851
883020336
883178082
920223781
936008673
939417822
956776353
958281059
962183717
964059257
967860573
974322643
974999286
980009921
1032949015
1044249483
1064892676
1075628270
1080848022
1085571657
1173635593
1174809080
1176744978
1209783795
1212074975
1252323507
1254757790
1301450562
1302240953
1314501797
1315121266
1339304157
1364304289
1376260506
1383883477
1395158643
1411117754
1440755058
1448365702
1466814914
1468433821
1490105126
1493912601
1495600372
1509536621
1511014977
1545693948
1548924199
1566583103
1569747154
1574097219
1597784674
1610710480
1618324005
1646105187
1649417465
1655649169
1660619384
1668826887
1671093718
1672456990
1673477565
1678638502
1682302139
1682515769
1687920300
1690062315
1706031388
1713660819
1772170709
1778416812
1833443690
1861312062
1876004501
1876358085
1882435551
1916050713
1944906037
1950207172
1951593247
1973638546
1976288281
1994977271
2020053060
2025281195
2029716419
2033980539
2052482076
2058251762
2069273004
2073978021
2111013213
2119886932
2134609957
2140349794
2143934987

Aquí hay un programa de Python 3 que puede usarse para verificar y calificar un envío:

#!/usr/bin/env python3

import shlex
import os
import sys
import subprocess

try:
    from seriously import Seriously
except:
    print("Unable to load Seriously. Run 'pip3 install seriously' to install it.")
    exit()

if len(sys.argv) < 2:
    print("Usage: python3 {} 'command_to_call_your_program'".format(sys.argv[0]))
    exit()

sys.stdin = open(os.devnull, 'r')

with open('nums.txt') as f:
    nums = [int(x) for x in f]

total = 0

for num in nums:
    p = subprocess.Popen(shlex.split(sys.argv[1]), stdin=subprocess.PIPE, stdout=subprocess.PIPE, universal_newlines=True)
    try:
        out = p.communicate(str(num), timeout=30)[0].strip()
    except subprocess.TimeoutExpired:
        print("Program failed to finish within 30 seconds for {}".format(num))
        exit()
    val = Seriously().eval(out)[0]
    if not len(out) <= len(':'+str(num)):
        print("Failed to do at least as well as naive on {} ({})".format(num, out))
        exit()
    elif val != num or not isinstance(val, int):
        print("Incorrect output: {} instead of {}".format(val, num))
        exit()
    else:
        print("{}: {} ({})".format(num, out, len(out)))
        total += len(out)

print("Total:", total)

¿Podemos usar datos persistentes? (Como para almacenar un montón de números primos o números de Fibonacci)
Azul

"Su solución debe funcionar mejor que la solución trivial, a menos que la solución trivial sea óptima para el valor dado". por cada entrada? entonces, si mi algoritmo solo funciona mejor que la solución trivial el 99% del tiempo, ¿el otro 1% me descalifica si alguno de ellos no es óptimo?
Sparr

@Blue Eso es aceptable.
Mego

1
@Sparr Significa que no puede simplemente dar salida a la solución trivial si hay una solución mejor.
Mego

1
@ven Eso es normal. El nombre del idioma es en serio. En este desafío, estamos tratando específicamente con Seriously v2, que se llama Actually.
Mego

Respuestas:


5

Python 3, 51 52 57 bytes guardados

Este programa bruto se abre paso a través de un número significativo de programas de 1 a 5 caracteres, usando un conjunto limitado de 54 56 instrucciones y mucha poda en función del estado de la pila antes de agregar cada nueva instrucción. Se tarda aproximadamente un minuto en ejecutarse en mi computadora portátil. 6 personajes tomarían horas.

#!/usr/bin/env python3
# -*- coding: cp437 -*-

import os
import sys
import json
import math
import time
import random
import timeit

try:
    from seriously import Seriously,chr_cp437,ord_cp437
except:
    print("Unable to load Seriously. Run 'pip3 install seriously' to install it.")
    exit()

MAXLEN=5
MAX=2**31


future_alphabet=[

    chr_cp437(0x4D), #  (M): pop f,[a], execute f for each element in [a], using the element as a temporary stack, push [a] (similar to map(f,[a])); pop [a]: push max([a])
    chr_cp437(0x52), #  (R): pop f,[a]: call f, using [a] as a temporary stack, push [a] (similar to reduce(f,[a])); pop [a]: push [a][::-1] (reverse); pop a: push [1,2,...,a] (range(1,a+1))
    chr_cp437(0x57), #  (W): loop delimiter: peek top of stack, repeat code in loop while a evaluates to true
    chr_cp437(0x60), #  (`): function literal delimiter, pushes function whose body contains all of the commands until the next `. An implied ` is present at EOF if needed.

]

def next_instruction(program,stack):
    plen = len(program)
    slen = len(stack)
    if plen>0 and program[-1]==chr_cp437(0x0B): # introspect the list on top of the stack
        maybes = set(next_instruction(program[:-1],[stack[0][0]]))
        # print(maybes)
        for i in stack[0][1:]:
            maybes = maybes & set(next_instruction(program[:-1],[i]))
            # print(maybes)
        maybes.discard(chr_cp437(0x72)) # no ranges of lists
        maybes.discard(chr_cp437(0xB9)) # no pascal rows of lists
        return list(maybes)

    candidates = []

    if plen==MAXLEN-1 and slen>1:
        if any(isinstance(x,list) for x in stack):
            return [] # lost cause
        if slen==2 and isinstance( stack[0], int ) and isinstance( stack[1], int ):
            candidates = candidates + [
                chr_cp437(0x2A), #  (*): pop a,b: push a*b; pop a,[b] or [b],a: apply a* to each element in the array; pop [a],[b]: push dot product of [a] and [b] (sum([a[i]*b[i] for i in len(a)])) (shorter is padded with 0s)
                chr_cp437(0x2B), #  (+): pop a,b: push a+b; pop [a],[b]: push [a][b] (append [b] to [a]); pop a,[b] or [b],a: apply a+ to each element in the array
                chr_cp437(0x2D), #  (-): pop a,b: push a-b; pop [a],[b]: push [a]-[b] (all elements of [a] not in [b])
                chr_cp437(0x2F), #  (/): pop a,b: push a/b (float division); pop [a]: rotate [a] right by 1, push [a]
                chr_cp437(0x5C), #  (\): pop a,b: push a/b (integer division); pop [a]: rotate [a] left by 1, push [a]
            ]
            if stack[0]>1 and stack[0]<int(math.pow(MAX,1.0/3))+1 and stack[1]>2 and stack[1]<int(math.log(MAX)/math.log(3))+1:
                candidates.append(chr_cp437(0xFC))  #  (ⁿ): pop a,b: push pow(a,b)
            if stack[0]>2 and stack[0]<1000 and stack[1]>2 and stack[1]<stack[0]:
                candidates = candidates + [
                    chr_cp437(0xDB), #  (█): pop a,b: push C(a,b) (aCb)
                    chr_cp437(0xDC) #  (▄): pop a,b: push P(a,b) (aPb)
                ]
        return candidates

    if plen==MAXLEN-1 and slen==1 and isinstance(stack[0],list):
        candidates = candidates + [
            chr_cp437(0xE3), #  (π): pop [a]: push product([a])
            chr_cp437(0xE4)  #  (Σ): pop [a]: push sum([a])
        ]
        return candidates

    candidates = candidates + [
        chr_cp437(0x30), #  (0): push 0
        chr_cp437(0x31), #  (1): push 1
        chr_cp437(0x32), #  (2): push 2
        chr_cp437(0x33), #  (3): push 3
        chr_cp437(0x34), #  (4): push 4
        chr_cp437(0x35), #  (5): push 5
        chr_cp437(0x36), #  (6): push 6
        chr_cp437(0x37), #  (7): push 7
        chr_cp437(0x38), #  (8): push 8
        chr_cp437(0x39)  #  (9): push 9
    ]

    if plen==0 or (plen>0 and program[-1]!=":"):
        candidates.append(chr_cp437(0x3A)) #  (:): numeric literal delimiter: pushes the longest string of characters in '0123456789+-.ij' as a numeric

    # if plen>0 and program[-1]==":":
    #     candidates.append(chr_cp437(0x2D)) # negative literal coming

    if slen>0:
        candidates.append(chr_cp437(0xB3)) #  (│): duplicate stack ([a,b,c] => [a,b,c,a,b,c])

    if slen>0 and isinstance( stack[0], int ):
        candidates = candidates + [
            chr_cp437(0x44), #  (D): pop a: push a-1; pop [a]: push stddev([a])
            chr_cp437(0x54), #  (T): pop a: push tan(a); pop [a],b,c: set [a][b] to c, push [a]
            chr_cp437(0x65), #  (e): pop a: push exp(a)
            chr_cp437(0x75), #  (u): pop a: push a+1
            chr_cp437(0xA9), #  (⌐): pop a: push a+2
            chr_cp437(0xAA), #  (¬): pop a: push a-2
            chr_cp437(0xAB), #  (½): pop a: push a/2 (float division)
            chr_cp437(0xAC), #  (¼): pop a: push a/4 (float division)
            chr_cp437(0xE7), #  (τ): pop a: push 2*a
            chr_cp437(0xF1), #  (±): pop a: push -a (unary negate)
            chr_cp437(0xFD), #  (²): pop a: push a*a
            chr_cp437(0x7E)  #  (~): pop a: push ~a (unary bitwise negate)
        ]
        candidates.append(chr_cp437(0x3B)) #  (;): pop a: push a,a (duplicates top element)
        if stack[0]>=0:
            if stack[0]<13:
                candidates.append(chr_cp437(0x21)) #  (!): pop a: push a! (factorial(a))
                candidates.append(chr_cp437(0xD1)) #  (╤): pop a: push 10**a
            if stack[0]<32:
                candidates.append(chr_cp437(0xD3)) #  (╙): pop a: push 2**a
                candidates.append(chr_cp437(0xB9)) #  (╣): pop a: push the ath row in Pascal's triangle
            if stack[0]<100:
                candidates.append(chr_cp437(0x46)) #  (F): pop a: push Fib(a) (Fib(0)=0, Fib(1)=Fib(2)=1); pop [a]: push a[0]
                candidates.append(chr_cp437(0x50)) #  (P): pop a: push the a-th prime (zero-indexed)
            if stack[0]<500 and plen<MAXLEN-1:
                candidates.append(chr_cp437(0x72)) #  (r): pop a: push [0,1,...,a-1] (range(0,a))


    if slen>0 and isinstance( stack[0], float ):
        candidates = candidates + [
            chr_cp437(0x4B), #  (K): pop a: push ceil(a)
            chr_cp437(0x4C)  #  (L): pop a: push floor(a)
        ]

    if slen>0 and isinstance( stack[0], list ) and len(stack[0])>0:
        candidates = candidates + [
            chr_cp437(0xE3), #  (π): pop [a]: push product([a])
            chr_cp437(0xE4)  #  (Σ): pop [a]: push sum([a])
        ]
        candidates.append(chr_cp437(0x69)) #  (i): pop [a]: push each element from [a], starting from end (flatten)
        if plen<MAXLEN-2:
            candidates.append(chr_cp437(0x0B)) #  (♂): take the next command and map it over the top of the stack (for example, ♂A is equivalent to `A`M)

    if slen>1:
        candidates.append(chr_cp437(0x6B)) #  (k): pop all elements from stack, convert to list (in the order they were on the stack, starting from the top), and push

    if slen>1 and isinstance( stack[0], int ):
        candidates = candidates + [
            chr_cp437(0x61), #  (a): invert the stack ([a,b,c,d] -> [d,c,b,a])
            chr_cp437(0xC5), #  (┼): duplicate each element on stack ([a,b,c] => [a,a,b,b,c,c])
            chr_cp437(0xC7)  #  (╟): pop a: pop a elements and push a list containing those elements in their original order
        ]
        if stack[0]<100:
            candidates.append(chr_cp437(0xC6)) #  (╞): pop a: make a total copies of each element on stack (3 [a,b,c] -> [a,a,a,b,b,b,c,c,c])     

    if slen>1 and isinstance( stack[0], int ) and isinstance( stack[1], int ):
        candidates = candidates + [
            chr_cp437(0x2A), #  (*): pop a,b: push a*b; pop a,[b] or [b],a: apply a* to each element in the array; pop [a],[b]: push dot product of [a] and [b] (sum([a[i]*b[i] for i in len(a)])) (shorter is padded with 0s)
            chr_cp437(0x2B), #  (+): pop a,b: push a+b; pop [a],[b]: push [a][b] (append [b] to [a]); pop a,[b] or [b],a: apply a+ to each element in the array
            chr_cp437(0x2D), #  (-): pop a,b: push a-b; pop [a],[b]: push [a]-[b] (all elements of [a] not in [b])
            chr_cp437(0x2F), #  (/): pop a,b: push a/b (float division); pop [a]: rotate [a] right by 1, push [a]
            chr_cp437(0x5C), #  (\): pop a,b: push a/b (integer division); pop [a]: rotate [a] left by 1, push [a]
        ]
        if stack[0]>1 and stack[0]<int(math.pow(MAX,1.0/3))+1 and stack[1]>2 and stack[1]<int(math.log(MAX)/math.log(3))+1:
            candidates.append(chr_cp437(0xFC))  #  (ⁿ): pop a,b: push pow(a,b)
        if stack[0]>2 and stack[0]<1000 and stack[1]>2 and stack[1]<stack[0]:
            candidates = candidates + [
                chr_cp437(0xDB), #  (█): pop a,b: push C(a,b) (aCb)
                chr_cp437(0xDC) #  (▄): pop a,b: push P(a,b) (aPb)
            ]
        if stack[1]-stack[0]>0 and stack[1]-stack[0]<500:
            candidates.append(chr_cp437(0x78)) #  (x): pop a,b: push [a,b) (range(a,b)); pop [a]: push range(*a)

    if slen>1 and (isinstance( stack[0], list ) or isinstance( stack[1], list )):
        candidates = candidates + [
            chr_cp437(0x2A), #  (*): pop a,b: push a*b; pop a,[b] or [b],a: apply a* to each element in the array; pop [a],[b]: push dot product of [a] and [b] (sum([a[i]*b[i] for i in len(a)])) (shorter is padded with 0s)
            chr_cp437(0x2B), #  (+): pop a,b: push a+b; pop [a],[b]: push [a][b] (append [b] to [a]); pop a,[b] or [b],a: apply a+ to each element in the array
            chr_cp437(0x2D), #  (-): pop a,b: push a-b; pop [a],[b]: push [a]-[b] (all elements of [a] not in [b])
            chr_cp437(0x2F), #  (/): pop a,b: push a/b (float division); pop [a]: rotate [a] right by 1, push [a]
            chr_cp437(0x5C), #  (\): pop a,b: push a/b (integer division); pop [a]: rotate [a] left by 1, push [a]
        ]

    return candidates

# p = "8"+chr_cp437(0x72)+chr_cp437(0x0B)
# res = Seriously().eval(p)
# print(p)
# print(res)
# print(next_instruction(p,res))
# sys.exit()

programs = [[['',None]]]
best = {}

def l(n,force_colon=False):
    if force_colon:
        return ':'+str(n)
    if n>=0 and n<10:
        return str(n)
    elif n<0 and n>-10:
        return str(-n)+'±'
    return ':'+str(n)

def cand(n,rep):
    # print(n,rep,len(rep),l(n),len(l(n)),best[n] if n in best else "")
    if n<=MAX and n>=-MAX and (len(rep)==1 or len(rep)<len(l(n))) and (n not in best or len(rep)<len(best[n])):
        best[n] = rep
        # print("woot")
        return True
    return False

for proglen in range(0,MAXLEN+1):
    print(proglen,"/",MAXLEN)
    if proglen<MAXLEN:
        programs.append([])
    first = ""
    for p in programs[proglen]:
        try:
            if first!=p[0][0]:
                first=p[0][0]
                print(" ",p[0][0],"/",9)
        except:
            pass
        if chr_cp437(0x7E) in p[0]:
            print(p[0])
        now = time.clock()
        try:
            res = Seriously().eval(p[0])
            elapsed = time.clock()-now
            if elapsed>0.0005:
                timed = timeit.timeit('Seriously().eval("'+str(p[0].encode('unicode_escape'))+'")','from seriously import Seriously',number=1000)
                if elapsed>0.01:
                    print("SLOW:")
                    print(p[0])
                    print(res)
                    print(elapsed)
            if chr_cp437(0x7E) in p[0]:
                print(res)
            if len(res)==1 and isinstance( res[0], int ):
                # print("cand",res[0],p[0])
                cand(res[0],p[0])
            p[1] = res
            if proglen<MAXLEN:
                # bail out if the stack is too complex to collapse in time
                if proglen==MAXLEN-1:
                    if len(res)>0 and isinstance( res[0], list ) and not isinstance( res[0][0], int ):
                        continue
                    if len(res)>1 and isinstance( res[0], list ):
                        continue
                    if len(res)>2:
                        continue
                for c in next_instruction(p[0],res):
                    programs[proglen+1].append([p[0]+c,None])
        except:
            pass

# print(programs)

def best_or_l(n,force_colon=False):
    if n in best:
        return best[n]
    if n<0 and -n in best:
        return best[-n]+chr_cp437(0xF1)
    return l(n,force_colon)

# for key,value in sorted(best.items()):
#     # if random.random()<0.01:
#     print(key,value)

score = 0
for i in [-2124910654, -2117700574, -2098186988, -2095671996, -2083075613, -2058271687, -2052250777, -2024215903, -2019485642, -2016095616, -2009838326, -2009173317, -2007673992, -2000014444, -1999825668, -1992515610, -1989566707, -1975506037, -1955473208, -1950731112, -1949886423, -1920624450, -1918465596, -1916287469, -1905036556, -1903956118, -1888944417, -1865221863, -1856600057, -1842797147, -1835637734, -1812631357, -1805740096, -1798015647, -1726688233, -1723609647, -1713776890, -1700307138, -1687644479, -1645515069, -1617635994, -1610444000, -1579053372, -1556891649, -1549652116, -1537732956, -1535180388, -1527162056, -1524851611, -1524658412, -1523244369, -1521379172, -1520191198, -1519035741, -1516978241, -1508892332, -1489938422, -1482102944, -1481823232, -1470621147, -1469145091, -1446844485, -1441790509, -1437843276, -1435359182, -1434186947, -1429816311, -1429393781, -1419752032, -1400387846, -1385152926, -1372620863, -1369257355, -1361933674, -1360480816, -1334846204, -1323741718, -1323660173, -1312800992, -1308824840, -1304658551, -1287829999, -1283767920, -1276288210, -1264275838, -1263965596, -1262866901, -1255421887, -1251428680, -1244825786, -1243200329, -1235305532, -1233977691, -1220537074, -1214100716, -1199414474, -1190725823, -1190401800, -1178717689, -1172378149, -1147869245, -1142875190, -1138538768, -1137864183, -1124917489, -1102987222, -1095920186, -1083001017, -1080902655, -1047122002, -1031842676, -1029877334, -1020849489, -1001684838, -998419619, -990915088, -985235989, -982515261, -979074894, -974195629, -973832940, -965324937, -944246431, -938387588, -933873331, -932692878, -928039285, -927947459, -914008773, -907981688, -906376330, -903502449, -898112547, -887444438, -862658502, -843628573, -822463032, -786051095, -776932426, -776033951, -752042328, -746532472, -743149468, -740225710, -734414418, -725435852, -708101516, -699674783, -694869277, -693246525, -690571518, -689249770, -688581912, -686864294, -681445866, -647992869, -641101583, -631409299, -624686189, -613079884, -593711206, -591688546, -591331185, -574790069, -573024823, -565387051, -565137163, -556338668, -556291492, -541411509, -538932064, -500479857, -482419890, -468050561, -424532545, -420534171, -408741873, -406973874, -387664799, -382084509, -367095703, -352332569, -352195997, -346430007, -324596389, -320119776, -306594578, -305952425, -283718911, -267302378, -243302738, -242955859, -232180029, -225394407, -217418127, -212286453, -208344820, -191300139, -186177744, -175765723, -161763935, -157025501, -140389149, -132298608, -126175769, -70566352, -68748576, -53985905, -52674668, -50228620, -39678495, -19825663, -8349922, -8186722, -8125700, -8073135, -8043230, -7994382, -7874433, -7863624, -7784916, -7782477, -7696343, -7607278, -7531250, -7388060, -7368780, -7367625, -7353084, -7334489, -7281141, -7267149, -7140057, -7119066, -7010389, -6992089, -6975258, -6863360, -6784772, -6741079, -6585985, -6550401, -6520011, -6495144, -6459702, -6294273, -6178342, -6169344, -6139663, -6090928, -6022637, -5992707, -5971334, -5925304, -5880940, -5873707, -5807953, -5703992, -5692895, -5535131, -5488812, -5468330, -5404148, -5290247, -5274221, -5264144, -5234715, -5224048, -5179837, -5084014, -5043990, -5028537, -5011679, -4998333, -4922901, -4880159, -4874060, -4787390, -4749096, -4736217, -4502308, -4480611, -4424319, -4363262, -4349743, -4290050, -4240069, -4239657, -4174072, -4093051, -4045363, -4037689, -4033352, -3839265, -3766343, -3716899, -3680075, -3679053, -3581776, -3539227, -3461158, -3282526, -3205947, -3183427, -3169708, -3166430, -3089822, -3061531, -2947574, -2930733, -2919246, -2872882, -2830770, -2739228, -2713826, -2634018, -2613990, -2525529, -2439507, -2432921, -2376201, -2335005, -2307524, -2265548, -2176176, -2123133, -2108773, -2105934, -2075032, -2073940, -2045837, -2045648, -1978182, -1945769, -1935486, -1881608, -1654650, -1602520, -1506746, -1505294, -1475309, -1457605, -1327259, -1312217, -1178723, -1027439, -880781, -833776, -666675, -643098, -593446, -468772, -450369, -443225, -418164, -402004, -319964, -307400, -279414, -190199, -176644, -66862, -32745, -32686, -32352, -32261, -32035, -31928, -31414, -31308, -30925, -30411, -29503, -29182, -28573, -28500, -28093, -27743, -27716, -27351, -27201, -26834, -25946, -25019, -24469, -24341, -24292, -24151, -23732, -22769, -22242, -22002, -20863, -20762, -20644, -20189, -20009, -19142, -19036, -18980, -18616, -18196, -18123, -17942, -17915, -17601, -17494, -16669, -16417, -16317, -15051, -14796, -14742, -14600, -14443, -14159, -14046, -13860, -13804, -13745, -13634, -13498, -13497, -12688, -12471, -12222, -11993, -11467, -11332, -10783, -10250, -10114, -10089, -9930, -9434, -9336, -9128, -9109, -8508, -8460, -8198, -8045, -7850, -7342, -7229, -6762, -6302, -6245, -6171, -5957, -5842, -4906, -4904, -4630, -4613, -4567, -4427, -4091, -4084, -3756, -3665, -3367, -3186, -2922, -2372, -2331, -1936, -1683, -1350, -1002, -719, -152, -128, -127, -124, -122, -121, -119, -116, -113, -112, -111, -107, -104, -102, -101, -100, -95, -94, -91, -90, -87, -81, -80, -79, -78, -73, -72, -69, -68, -66, -65, -63, -57, -54, -52, -51, -48, -47, -46, -45, -43, -41, -37, -33, -31, -30, -27, -25, -21, -18, -15, -12, -8, -1, 0, 1, 3, 4, 5, 6, 11, 14, 17, 23, 25, 26, 27, 28, 29, 31, 32, 39, 41, 46, 49, 51, 52, 56, 58, 61, 64, 66, 67, 70, 74, 79, 80, 86, 88, 89, 92, 93, 99, 102, 104, 109, 113, 117, 120, 122, 123, 127, 695, 912, 1792, 2857, 3150, 3184, 4060, 4626, 5671, 6412, 6827, 7999, 8017, 8646, 8798, 9703, 9837, 10049, 10442, 10912, 11400, 11430, 11436, 11551, 11937, 12480, 13258, 13469, 13689, 13963, 13982, 14019, 14152, 14259, 14346, 15416, 15613, 15954, 16241, 16814, 16844, 17564, 17702, 17751, 18537, 18763, 19890, 21216, 22238, 22548, 23243, 23383, 23386, 23407, 23940, 24076, 24796, 24870, 24898, 24967, 25139, 25176, 25699, 26167, 26536, 26614, 27008, 27087, 27142, 27356, 27458, 27800, 27827, 27924, 28595, 29053, 29229, 29884, 29900, 30460, 30556, 30701, 30815, 30995, 31613, 31761, 31772, 32099, 32308, 32674, 75627, 80472, 103073, 110477, 115718, 172418, 212268, 242652, 396135, 442591, 467087, 496849, 675960, 759343, 846297, 881562, 1003458, 1153900, 1156733, 1164679, 1208265, 1318372, 1363958, 1411655, 1522329, 1559609, 1677118, 1693658, 1703597, 1811223, 1831642, 1838628, 1884144, 1931545, 2085504, 2168156, 2170263, 2239585, 2308894, 2329235, 2364957, 2432335, 2435551, 2596936, 2684907, 2691011, 2705195, 2738057, 2851897, 2925289, 2995414, 3051534, 3216094, 3267022, 3271559, 3338856, 3440797, 3638325, 3651369, 3718696, 3724814, 3811069, 3854697, 3866969, 3893228, 3963455, 3984546, 4098376, 4100957, 4128113, 4200719, 4256344, 4286332, 4306356, 4316314, 4438803, 4458063, 4461638, 4552228, 4563790, 4584831, 4607992, 4884455, 4907501, 5045419, 5066844, 5150624, 5157161, 5190669, 5314703, 5337397, 5434807, 5440092, 5502665, 5523089, 5547122, 5566200, 5582936, 5634068, 5690330, 5776984, 5778441, 5818505, 5826687, 5827184, 5885735, 6010506, 6084254, 6131498, 6138324, 6250773, 6292801, 6306275, 6315242, 6331640, 6484374, 6502969, 6545970, 6666951, 6690905, 6763576, 6766086, 6895048, 6912227, 6929081, 6941390, 6978168, 7045672, 7085246, 7193307, 7197398, 7270237, 7276767, 7295790, 7375488, 7472098, 7687424, 7840758, 7880957, 7904499, 7948678, 7974126, 8015691, 8037685, 8112955, 8131380, 8140556, 8142384, 8220436, 8308817, 8331317, 22581970, 45809129, 48103779, 78212045, 79674901, 97299830, 110308649, 131744428, 136663461, 138485719, 139842794, 152061792, 152685704, 153070991, 156228213, 164884737, 174776199, 189346581, 193148547, 208582124, 223891881, 227308187, 237373798, 241214067, 242476929, 245495851, 260606593, 275202667, 285717038, 317009689, 322759532, 325369206, 339724742, 340122632, 345010859, 352375176, 355826263, 359695034, 366118516, 370008270, 382712922, 386379440, 401153345, 404986391, 426084981, 442843409, 473909474, 475192613, 492302667, 494747879, 506279889, 509813998, 537558350, 548423414, 548467404, 566383324, 574188786, 574792333, 591678147, 596558084, 597423476, 602432742, 603067874, 629552047, 630893263, 635249783, 644959276, 650710927, 664859367, 669433203, 684329599, 699991513, 714451929, 723556530, 739294558, 750895264, 757618344, 781123405, 796973385, 801637715, 804776709, 829003666, 829219068, 840167037, 854882202, 860066192, 864304878, 864808449, 867107161, 871871263, 880591851, 883020336, 883178082, 920223781, 936008673, 939417822, 956776353, 958281059, 962183717, 964059257, 967860573, 974322643, 974999286, 980009921, 1032949015, 1044249483, 1064892676, 1075628270, 1080848022, 1085571657, 1173635593, 1174809080, 1176744978, 1209783795, 1212074975, 1252323507, 1254757790, 1301450562, 1302240953, 1314501797, 1315121266, 1339304157, 1364304289, 1376260506, 1383883477, 1395158643, 1411117754, 1440755058, 1448365702, 1466814914, 1468433821, 1490105126, 1493912601, 1495600372, 1509536621, 1511014977, 1545693948, 1548924199, 1566583103, 1569747154, 1574097219, 1597784674, 1610710480, 1618324005, 1646105187, 1649417465, 1655649169, 1660619384, 1668826887, 1671093718, 1672456990, 1673477565, 1678638502, 1682302139, 1682515769, 1687920300, 1690062315, 1706031388, 1713660819, 1772170709, 1778416812, 1833443690, 1861312062, 1876004501, 1876358085, 1882435551, 1916050713, 1944906037, 1950207172, 1951593247, 1973638546, 1976288281, 1994977271, 2020053060, 2025281195, 2029716419, 2033980539, 2052482076, 2058251762, 2069273004, 2073978021, 2111013213, 2119886932, 2134609957, 2140349794, 2143934987]:
    print(i,best_or_l(i,True),len(l(i)),len(best_or_l(i,True)))
    score = score + (len(l(i))-len(best_or_l(i,True)))
print("Score:",score)

with open("brute_serious.json","w") as outfile:
    outfile.write(json.dumps(best,sort_keys=True,indent=2))

Aquí hay una muestra aleatoria de los tipos de programas que actualmente encuentran este algoritmo:

-387420483 99ⁿ6-
-16777208 4!╙8-
-999999 6╤1-
-362864 9!4²-
-46369 4!Fu±
-5045 57!±-
8101 9eL¬
19900 2╤τrΣ
46367 4!FD
68072 5╙│F\
99990 1╤5╤-
156246 75ⁿ¬τ
518393 76!²-
1814399 59!*D
6534927 35╙F*
14930357 56²F+
19999995 57╤τ-
25396560 7!│D*
65691025 9eKu²
100001000 3╤8╤+
200000002 8╤uτ
800000008 88╤u*
1626347584 88!+²
2000000018 99╤+τ

4

Ruby, 52 caracteres guardados

basado en mi respuesta a una pregunta similar. Esto genera una gran lista de formas de llegar a un número y selecciona la más corta. A diferencia de las otras respuestas publicadas, obtiene la mayoría de sus ahorros en números pequeños. De hecho, no intento números con valores absolutos superiores a 2000.

$s = {};
Fact = [1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880]
Fib = [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155, 165580141, 267914296, 433494437, 701408733, 1134903170, 1836311903]
Prime = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999]
def shortest a,b=nil
    return $s[[a,b]] if $s[[a,b]]
    return $s[[a,b]] = ":#{a}" if (b||a).abs > 2000 #gives up on big inputs
    $s[[a,b]] = ":#{a}" #set a temp value to block calling with the same paramiters recursivly.
    l = []
    if b
        if a == b
            return $s[[a,b]] = ""
        elsif a > b
            l.push shortest(a-b)+"-"
            l.push "X"+shortest(b)
            l.push "¬" if b+2==a
            l.push "D" if b+1==a
        elsif a < b
            l.push shortest(b-a)+"+"
            l.push "²"+shortest(a*a,b) if a*a>a && a*a<=b+2
            l.push "τ"+shortest(a+a,b) if a+a<=b+2 && a+a>a
            l.push shortest(b/a)+"*" if a>2 && b%a == 0
            l.push ";"+shortest(a,b/a)+"*" if a>2 && b%a == 0
            l.push "╙"+shortest(2**a,b) if 2**a<=b+2
            l.push "╤"+shortest(10**a,b) if 10**a<=b+2
            l.push "F"+shortest(Fib[a],b) if Fib[a] and Fib[a]<=b+2 and a > 5
            l.push "P"+shortest(Prime[a],b) if Prime[a] and Prime[a]<=b+2
            l.push "!"+shortest(Fact[a],b) if Fact[a] and Fact[a]<=b+2 and a > 3
        end
    else
        return ($s[[a,b]] = a.to_s) if a<10 and a>-1
        l.push ":#{a}"
        if a<0
            l.push shortest(-a)+"±" 
            l.push shortest(~a)+"~"
            l.push shortest(a+1)+"D"
            l.push shortest(a+2)+"¬"
        else
            l.push shortest(a-1)+"u" 
            l.push shortest(a-2)+"⌐"
            (1..[a/2,100].min).each {|n|
                l.push shortest(n)+shortest(n,a)
            }
        end
    end
    return $s[[a,b]] = l.min_by{|x|x.length}
end

a = [-4427,-4091,-4084,-3756,-3665,-3367,-3186,-2922,-2372,-2331,-1936,-1683,-1350,-1002,-719,-152,-128,-127,-124,-122,-121,-119,-116,-113,-112,-111,-107,-104,-102,-101,-100,-95,-94,-91,-90,-87,-81,-80,-79,-78,-73,-72,-69,-68,-66,-65,-63,-57,-54,-52,-51,-48,-47,-46,-45,-43,-41,-37,-33,-31,-30,-27,-25,-21,-18,-15,-12,-8,-1,0,1,3,4,5,6,11,14,17,23,25,26,27,28,29,31,32,39,41,46,49,51,52,56,58,61,64,66,67,70,74,79,80,86,88,89,92,93,99,102,104,109,113,117,120,122,123,127,695,912,1792,2857,3150,3184,4060,4626,5671,6412,6827,7999,8017]
a.sort_by!{|x|x.abs}
c = a.map{
    |i|
    p [i,shortest(i)]
    shortest(i)
}
p c.inject(0){|a,b|a+b.length}

Y una lista completa de todos los números acortados (ordenados por valor absoluto):

[0, "0"]
[-1, "1±"]
[1, "1"]
[3, "3"]
[4, "4"]
[5, "5"]
[6, "6"]
[-8, "8±"]
[11, "9⌐"]
[-12, "6τ±"]
[14, "7τ"]
[-15, "7τ~"]
[17, "6P"]
[-18, "9τ±"]
[-21, "8F±"]
[23, "8P"]
[25, "5²"]
[-25, "5²±"]
[29, "9P"]
[-30, "9P~"]
[32, "5╙"]
[-33, "5╙~"]
[-37, "6²~"]
[49, "7²"]
[64, "6╙"]
[-65, "6╙~"]
[-81, "9²±"]
[-100, "2╤±"]
[-101, "2╤~"]
[-102, "2╤⌐±"]
[102, "2ѩ"]
[113, "9PP"]
[-113, "9PP±"]
[-119, "5!D±"]
[120, "5!"]
[-121, "5!~"]
[122, "5!⌐"]
[-122, "5!⌐±"]
[127, "7╙D"]
[-127, "7╙D±"]
[-128, "7╙±"]
[-719, "6!D±"]
[-1002, "3╤⌐±"]
[-1683, "9P²τ~"]
[1792, "78╙*"]
[-1936, ":44²±"]

Nota: No se han probado los beans, ya que no tengo acceso a Actually.


Rápidamente noté que estás usando ~ y no lo estoy, lo que ahorra un par de bytes. Pasé 30 minutos descubriendo por qué su puntaje para los números pequeños fue mejor cuando encuentro un puñado que no. Finalmente me di cuenta de que estaba contando el caso trivial para 0-9 como 0-9, no: 0-: 9. Me costó 6 puntos en las tres soluciones. Gracias por hacerme investigar eso.
Sparr

@sparr Tenía la sensación de que esto solo te ayudaría a hacerlo mejor.
MegaTom

4

Python 3, 52 55 bytes guardados

Esta solución funciona al revés de las dos anteriores. En lugar de ensamblar programas de izquierda a derecha, empiezo al final y trabajo hacia atrás. Para que esto funcione, debo ejecutar mis programas, y no puedo eliminar las instrucciones basadas en sus parámetros porque sus parámetros aún no existen cuando se agregan. Mi solución para eso no está presente en esta respuesta; implica decirle a SeriouslyCommands.py que arroje un IOError cada vez que se invoquen las funciones que producen locura con argumentos grandes, y que provoque esa excepción para que pueda detectarlo.

Así es como funciona este programa:

Comienzo con una pila vacía y sé que quiero un solo número. ¿Qué instrucciones pueden lograr eso? 0-9 me da un número entero y no requiere nada en la pila, así que esos son programas completos. K, L, T, e un grupo de otros me consiguen un número y necesitan un número (no distingo entre flotantes e ints hasta que se verifique la salida). *, +, etc. convierten dos números en un número. Y así.

Ahora tengo algunos programas completos y una lista de sufijos de programa incompletos que pueden convertir algunos arreglos conocidos de tipos en la pila en el número único que quiero. Repita el proceso y anteponga a cada una de ellas todas las instrucciones que puedan cumplir con uno / algunos / todos sus requisitos de pila, guarde los que son programas completos y envíe los incompletos al siguiente paso.

En los últimos dos pasos elimino muchas posibilidades porque sé que no puedo tener ningún requisito de pila cuando termine (por lo que 0-9 son las únicas instrucciones válidas que se agregarán al programa en último lugar) y antes de eso Solo puedo tener un número único como requisito.

No es sorprendente que esta solución produzca exactamente el mismo puntaje que la mejor de mis otras dos soluciones. Encuentran casi exactamente el mismo conjunto de resultados.

Este programa probablemente puede tener hasta 6 caracteres en menos tiempo que el otro, pero aún así sería prohibitivo.

Creo que podría hacerse una gran solución combinando los dos, ensamblando prefijos y sufijos y uniéndolos en el medio si sus pilas son compatibles.

#!/usr/bin/env python3
# -*- coding: cp437 -*-

import os
import sys
import json
import math
import time
import random
import timeit

#!/usr/bin/env python3
# -*- coding: cp437 -*-

# instruction, pops, pushes, 
instructions = [
    [0x30, [], ['number']], #  (0): push 0
    [0x31, [], ['number']], #  (1): push 1
    [0x32, [], ['number']], #  (2): push 2
    [0x33, [], ['number']], #  (3): push 3
    [0x34, [], ['number']], #  (4): push 4
    [0x35, [], ['number']], #  (5): push 5
    [0x36, [], ['number']], #  (6): push 6
    [0x37, [], ['number']], #  (7): push 7
    [0x38, [], ['number']], #  (8): push 8
    [0x39, [], ['number']], #  (9): push 9

    [0x4B, ['number'], ['number']], #  (K): pop a: push ceil(a)
    [0x4C, ['number'], ['number']], #  (L): pop a: push floor(a)

    [0x54, ['number'], ['number']], #  (T): pop a: push tan(a); pop [a],b,c: set [a][b] to c, push [a]
    [0x65, ['number'], ['number']], #  (e): pop a: push exp(a)

    [0xAB, ['number'], ['number']], #  (½): pop a: push a/2 (float division)
    [0xAC, ['number'], ['number']], #  (¼): pop a: push a/4 (float division)

    [0x21, ['number'], ['number']], #  (!): pop a: push a! (factorial(a))
    [0x44, ['number'], ['number']], #  (D): pop a: push a-1; pop [a]: push stddev([a])
    [0x46, ['number'], ['number']], #  (F): pop a: push Fib(a) (Fib(0)=0, Fib(1)=Fib(2)=1); pop [a]: push a[0]
    [0x50, ['number'], ['number']], #  (P): pop a: push the a-th prime (zero-indexed)
    [0x75, ['number'], ['number']], #  (u): pop a: push a+1
    [0x7E, ['number'], ['number']], #  (~): pop a: push ~a (unary bitwise negate)
    [0xA9, ['number'], ['number']], #  (⌐): pop a: push a+2
    [0xAA, ['number'], ['number']], #  (¬): pop a: push a-2
    [0xD1, ['number'], ['number']], #  (╤): pop a: push 10**a
    [0xD3, ['number'], ['number']], #  (╙): pop a: push 2**a
    [0xE7, ['number'], ['number']], #  (τ): pop a: push 2*a
    [0xF1, ['number'], ['number']], #  (±): pop a: push -a (unary negate)
    [0xFD, ['number'], ['number']], #  (²): pop a: push a*a

    [0x2A, ['number','number'], ['number']], #  (*): pop a,b: push a*b; pop a,[b] or [b],a: apply a* to each element in the array; pop [a],[b]: push dot product of [a] and [b] (sum([a[i]*b[i] for i in len(a)]) (shorter is padded with 0s)
    [0x2B, ['number','number'], ['number']], #  (+): pop a,b: push a+b; pop [a],[b]: push [a][b] (append [b] to [a]); pop a,[b] or [b],a: apply a+ to each element in the array
    [0x2D, ['number','number'], ['number']], #  (-): pop a,b: push a-b; pop [a],[b]: push [a]-[b] (all elements of [a] not in [b])
    [0x2F, ['number','number'], ['number']], #  (/): pop a,b: push a/b (float division); pop [a]: rotate [a] right by 1, push [a]
    [0x5C, ['number','number'], ['number']], #  (\): pop a,b: push a/b (integer division); pop [a]: rotate [a] left by 1, push [a]
    [0xFC, ['number','number'], ['number']], #  (ⁿ): pop a,b: push pow(a,b)

    [0xDB, ['number','number'], ['number']], #  (█): pop a,b: push C(a,b) (aCb)
    [0xDC, ['number','number'], ['number']], #  (▄): pop a,b: push P(a,b) (aPb)

    [0x3B, ['number'], ['number','number']], #  (;): pop a: push a,a (duplicates top element)

    [0xE3, ['list'], ['number']], #  (π): pop [a]: push product([a])
    [0xE4, ['list'], ['number']], #  (Σ): pop [a]: push sum([a])

    [0x69, ['list'], ['numbers']], #  (i): pop [a]: push each element from [a], starting from end (flatten)

    [0xC6, ['numbers'], ['numbers']], #  (╞): pop a: make a total copies of each element on stack (3 [a,b,c] -> [a,a,a,b,b,b,c,c,c])     

    [0xC7, ['numbers'], ['list']], #  (╟): pop a: pop a elements and push a list containing those elements in their original order

    [0x0B, ['list'], ['list']], #  (♂): take the next command and map it over the top of the stack (for example, ♂A is equivalent to `A`M)

    [0x61, ['numbers'], ['numbers']], #  (a): invert the stack ([a,b,c,d] -> [d,c,b,a])
    [0xB3, ['numbers'], ['numbers']], #  (│): duplicate stack ([a,b,c] => [a,b,c,a,b,c])
    [0xC5, ['numbers'], ['numbers']], #  (┼): duplicate each element on stack ([a,b,c] => [a,a,b,b,c,c])

    [0x72, ['number'], ['list']], #  (r): pop a: push [0,1,...,a-1] (range(0,a))
    [0xB9, ['number'], ['list']], #  (╣): pop a: push the ath row in Pascal's triangle

    [0x78, ['number','number'], ['list']], #  (x): pop a,b: push [a,b) (range(a,b)); pop [a]: push range(*a)
    [0x78, ['list'], ['list']], #  (x): pop a,b: push [a,b) (range(a,b)); pop [a]: push range(*a)

    [0x6B, ['numbers'], ['list']],#  (k): pop all elements from stack, convert to list (in the order they were on the stack, starting from the top) and push

    # 0x3A, #  (:): numeric literal delimiter: pushes the longest string of characters in '0123456789+-.ij' as a numeric
    # 0x4D, #  (M): pop f,[a], execute f for each element in [a], using the element as a temporary stack, push [a] (similar to map(f,[a])); pop [a]: push max([a])
    # 0x52, #  (R): pop f,[a]: call f, using [a] as a temporary stack, push [a] (similar to reduce(f,[a])); pop [a]: push [a][::-1] (reverse); pop a: push [1,2,...,a] (range(1,a+1))
    # 0x57, #  (W): loop delimiter: peek top of stack, repeat code in loop while a evaluates to true
    # 0x60, #  (`): function literal delimiter, pushes function whose body contains all of the commands until the next `. An implied ` is present at EOF if needed.
]

provides = {
    'number':[],
    'numbers':[],
    'list':[]
    }

wants = [[]]*256

for i in instructions:
    wants[i[0]] = i[1]
    provides[i[2][0]].append(i[0])

from seriously import Seriously,chr_cp437,ord_cp437

MAX=2**31

# returns ([finished programs],[new programs]), one of which will be empty
def extend_program(p):
    finished_programs=[]
    new_programs=[]
    # print(p)
    for i in provides[p[1][-1]]:
        new_p = chr_cp437(i)+p[0]
        new_wants = p[1][:-1]+wants[i]
        if new_wants==[]: # we've reached a complete program! run it
            # print(p[0])
            now = time.clock()
            # print(p[0])
            try:
                res = Seriously().eval(new_p)
            except:
                return ([],[])
            # print(res)
            elapsed = time.clock()-now
            if elapsed>0.001:
                try:
                    elapsed = timeit.timeit('Seriously().eval("'+str(new_p.encode('unicode_escape'))+'")','from seriously import Seriously',number=1000)
                except:
                    continue
                if elapsed>0.005:
                    print("SLOW:")
                    print(new_p)
                    print(res)
                    print(elapsed)
            # print(res)
            finished_programs.append([new_p,res])
            continue
        if len(new_p)==MAXLEN and new_wants!=[]: # no room left to fulfill any wants
            continue
        if len(new_p)==MAXLEN-1 and new_wants != ['number']: # no room left to fulfill complex wants
            continue
        new_programs.append([new_p,new_wants])
    if len(p[1])>1 and p[1][-1]=='number' and p[1][-2]=='number':
        for i in provides['numbers']:
            new_p = chr_cp437(i)+p[0]
            old_wants = p[1]
            while len(p[1]) and p[1][-1]=='number':
                p[1].pop()
            new_wants = old_wants+wants[i]
            if len(new_p)==MAXLEN and new_wants!=[]:
                continue
            if len(new_p)==MAXLEN-1 and \
                new_wants != ['list'] and \
                new_wants != ['number'] and \
                new_wants != ['numbers']:
                continue
            new_programs.append([new_p,new_wants])
    return (finished_programs,new_programs)

unfinished_programs = [['',['number']]]
best = {}

def l(n,force_colon=False):
    if force_colon:
        return ':'+str(n)
    if n>=0 and n<10:
        return str(n)
    elif n<0 and n>-10:
        return str(-n)+'±'
    return ':'+str(n)

def cand(n,rep):
    # print(n,rep,len(rep),l(n),len(l(n)),best[n] if n in best else "")
    if n<=MAX and n>=-MAX and (len(rep)==1 or len(rep)<len(l(n))) and (n not in best or len(rep)<len(best[n])):
        best[n] = rep
        # print("woot")
        return True
    return False

MAXLEN = 5

for i in range(MAXLEN):
    print(i+1,"/",MAXLEN)
    new_unfinished_programs = []
    c = ''
    for p in unfinished_programs:
        if len(p[0]) and p[0][-1]!= c:
            print(c)
            c=p[0][-1]
        (finished_programs,new_programs) = extend_program(p)
        for f in finished_programs:
            # print(f[0])
            # print(f[1][0])
            if len(f[1])==0:
                # print("TOO MANY RESULTS")
                continue
            if isinstance(f[1][0],int):
                cand(f[1][0],f[0])
            # if isinstance(f[1][0],list):
                # print("LIST RESULT")
        new_unfinished_programs = new_unfinished_programs + new_programs
    unfinished_programs = new_unfinished_programs

def best_or_l(n,force_colon=False):
    if n in best:
        return best[n]
    if n<0 and -n in best:
        return best[-n]+"±"
    return l(n,force_colon)

for key,value in sorted(best.items()):
    # if random.random()<0.01:
    print(key,value)

score = 0
for i in [-2124910654, -2117700574, -2098186988, -2095671996, -2083075613, -2058271687, -2052250777, -2024215903, -2019485642, -2016095616, -2009838326, -2009173317, -2007673992, -2000014444, -1999825668, -1992515610, -1989566707, -1975506037, -1955473208, -1950731112, -1949886423, -1920624450, -1918465596, -1916287469, -1905036556, -1903956118, -1888944417, -1865221863, -1856600057, -1842797147, -1835637734, -1812631357, -1805740096, -1798015647, -1726688233, -1723609647, -1713776890, -1700307138, -1687644479, -1645515069, -1617635994, -1610444000, -1579053372, -1556891649, -1549652116, -1537732956, -1535180388, -1527162056, -1524851611, -1524658412, -1523244369, -1521379172, -1520191198, -1519035741, -1516978241, -1508892332, -1489938422, -1482102944, -1481823232, -1470621147, -1469145091, -1446844485, -1441790509, -1437843276, -1435359182, -1434186947, -1429816311, -1429393781, -1419752032, -1400387846, -1385152926, -1372620863, -1369257355, -1361933674, -1360480816, -1334846204, -1323741718, -1323660173, -1312800992, -1308824840, -1304658551, -1287829999, -1283767920, -1276288210, -1264275838, -1263965596, -1262866901, -1255421887, -1251428680, -1244825786, -1243200329, -1235305532, -1233977691, -1220537074, -1214100716, -1199414474, -1190725823, -1190401800, -1178717689, -1172378149, -1147869245, -1142875190, -1138538768, -1137864183, -1124917489, -1102987222, -1095920186, -1083001017, -1080902655, -1047122002, -1031842676, -1029877334, -1020849489, -1001684838, -998419619, -990915088, -985235989, -982515261, -979074894, -974195629, -973832940, -965324937, -944246431, -938387588, -933873331, -932692878, -928039285, -927947459, -914008773, -907981688, -906376330, -903502449, -898112547, -887444438, -862658502, -843628573, -822463032, -786051095, -776932426, -776033951, -752042328, -746532472, -743149468, -740225710, -734414418, -725435852, -708101516, -699674783, -694869277, -693246525, -690571518, -689249770, -688581912, -686864294, -681445866, -647992869, -641101583, -631409299, -624686189, -613079884, -593711206, -591688546, -591331185, -574790069, -573024823, -565387051, -565137163, -556338668, -556291492, -541411509, -538932064, -500479857, -482419890, -468050561, -424532545, -420534171, -408741873, -406973874, -387664799, -382084509, -367095703, -352332569, -352195997, -346430007, -324596389, -320119776, -306594578, -305952425, -283718911, -267302378, -243302738, -242955859, -232180029, -225394407, -217418127, -212286453, -208344820, -191300139, -186177744, -175765723, -161763935, -157025501, -140389149, -132298608, -126175769, -70566352, -68748576, -53985905, -52674668, -50228620, -39678495, -19825663, -8349922, -8186722, -8125700, -8073135, -8043230, -7994382, -7874433, -7863624, -7784916, -7782477, -7696343, -7607278, -7531250, -7388060, -7368780, -7367625, -7353084, -7334489, -7281141, -7267149, -7140057, -7119066, -7010389, -6992089, -6975258, -6863360, -6784772, -6741079, -6585985, -6550401, -6520011, -6495144, -6459702, -6294273, -6178342, -6169344, -6139663, -6090928, -6022637, -5992707, -5971334, -5925304, -5880940, -5873707, -5807953, -5703992, -5692895, -5535131, -5488812, -5468330, -5404148, -5290247, -5274221, -5264144, -5234715, -5224048, -5179837, -5084014, -5043990, -5028537, -5011679, -4998333, -4922901, -4880159, -4874060, -4787390, -4749096, -4736217, -4502308, -4480611, -4424319, -4363262, -4349743, -4290050, -4240069, -4239657, -4174072, -4093051, -4045363, -4037689, -4033352, -3839265, -3766343, -3716899, -3680075, -3679053, -3581776, -3539227, -3461158, -3282526, -3205947, -3183427, -3169708, -3166430, -3089822, -3061531, -2947574, -2930733, -2919246, -2872882, -2830770, -2739228, -2713826, -2634018, -2613990, -2525529, -2439507, -2432921, -2376201, -2335005, -2307524, -2265548, -2176176, -2123133, -2108773, -2105934, -2075032, -2073940, -2045837, -2045648, -1978182, -1945769, -1935486, -1881608, -1654650, -1602520, -1506746, -1505294, -1475309, -1457605, -1327259, -1312217, -1178723, -1027439, -880781, -833776, -666675, -643098, -593446, -468772, -450369, -443225, -418164, -402004, -319964, -307400, -279414, -190199, -176644, -66862, -32745, -32686, -32352, -32261, -32035, -31928, -31414, -31308, -30925, -30411, -29503, -29182, -28573, -28500, -28093, -27743, -27716, -27351, -27201, -26834, -25946, -25019, -24469, -24341, -24292, -24151, -23732, -22769, -22242, -22002, -20863, -20762, -20644, -20189, -20009, -19142, -19036, -18980, -18616, -18196, -18123, -17942, -17915, -17601, -17494, -16669, -16417, -16317, -15051, -14796, -14742, -14600, -14443, -14159, -14046, -13860, -13804, -13745, -13634, -13498, -13497, -12688, -12471, -12222, -11993, -11467, -11332, -10783, -10250, -10114, -10089, -9930, -9434, -9336, -9128, -9109, -8508, -8460, -8198, -8045, -7850, -7342, -7229, -6762, -6302, -6245, -6171, -5957, -5842, -4906, -4904, -4630, -4613, -4567, -4427, -4091, -4084, -3756, -3665, -3367, -3186, -2922, -2372, -2331, -1936, -1683, -1350, -1002, -719, -152, -128, -127, -124, -122, -121, -119, -116, -113, -112, -111, -107, -104, -102, -101, -100, -95, -94, -91, -90, -87, -81, -80, -79, -78, -73, -72, -69, -68, -66, -65, -63, -57, -54, -52, -51, -48, -47, -46, -45, -43, -41, -37, -33, -31, -30, -27, -25, -21, -18, -15, -12, -8, -1, 0, 1, 3, 4, 5, 6, 11, 14, 17, 23, 25, 26, 27, 28, 29, 31, 32, 39, 41, 46, 49, 51, 52, 56, 58, 61, 64, 66, 67, 70, 74, 79, 80, 86, 88, 89, 92, 93, 99, 102, 104, 109, 113, 117, 120, 122, 123, 127, 695, 912, 1792, 2857, 3150, 3184, 4060, 4626, 5671, 6412, 6827, 7999, 8017, 8646, 8798, 9703, 9837, 10049, 10442, 10912, 11400, 11430, 11436, 11551, 11937, 12480, 13258, 13469, 13689, 13963, 13982, 14019, 14152, 14259, 14346, 15416, 15613, 15954, 16241, 16814, 16844, 17564, 17702, 17751, 18537, 18763, 19890, 21216, 22238, 22548, 23243, 23383, 23386, 23407, 23940, 24076, 24796, 24870, 24898, 24967, 25139, 25176, 25699, 26167, 26536, 26614, 27008, 27087, 27142, 27356, 27458, 27800, 27827, 27924, 28595, 29053, 29229, 29884, 29900, 30460, 30556, 30701, 30815, 30995, 31613, 31761, 31772, 32099, 32308, 32674, 75627, 80472, 103073, 110477, 115718, 172418, 212268, 242652, 396135, 442591, 467087, 496849, 675960, 759343, 846297, 881562, 1003458, 1153900, 1156733, 1164679, 1208265, 1318372, 1363958, 1411655, 1522329, 1559609, 1677118, 1693658, 1703597, 1811223, 1831642, 1838628, 1884144, 1931545, 2085504, 2168156, 2170263, 2239585, 2308894, 2329235, 2364957, 2432335, 2435551, 2596936, 2684907, 2691011, 2705195, 2738057, 2851897, 2925289, 2995414, 3051534, 3216094, 3267022, 3271559, 3338856, 3440797, 3638325, 3651369, 3718696, 3724814, 3811069, 3854697, 3866969, 3893228, 3963455, 3984546, 4098376, 4100957, 4128113, 4200719, 4256344, 4286332, 4306356, 4316314, 4438803, 4458063, 4461638, 4552228, 4563790, 4584831, 4607992, 4884455, 4907501, 5045419, 5066844, 5150624, 5157161, 5190669, 5314703, 5337397, 5434807, 5440092, 5502665, 5523089, 5547122, 5566200, 5582936, 5634068, 5690330, 5776984, 5778441, 5818505, 5826687, 5827184, 5885735, 6010506, 6084254, 6131498, 6138324, 6250773, 6292801, 6306275, 6315242, 6331640, 6484374, 6502969, 6545970, 6666951, 6690905, 6763576, 6766086, 6895048, 6912227, 6929081, 6941390, 6978168, 7045672, 7085246, 7193307, 7197398, 7270237, 7276767, 7295790, 7375488, 7472098, 7687424, 7840758, 7880957, 7904499, 7948678, 7974126, 8015691, 8037685, 8112955, 8131380, 8140556, 8142384, 8220436, 8308817, 8331317, 22581970, 45809129, 48103779, 78212045, 79674901, 97299830, 110308649, 131744428, 136663461, 138485719, 139842794, 152061792, 152685704, 153070991, 156228213, 164884737, 174776199, 189346581, 193148547, 208582124, 223891881, 227308187, 237373798, 241214067, 242476929, 245495851, 260606593, 275202667, 285717038, 317009689, 322759532, 325369206, 339724742, 340122632, 345010859, 352375176, 355826263, 359695034, 366118516, 370008270, 382712922, 386379440, 401153345, 404986391, 426084981, 442843409, 473909474, 475192613, 492302667, 494747879, 506279889, 509813998, 537558350, 548423414, 548467404, 566383324, 574188786, 574792333, 591678147, 596558084, 597423476, 602432742, 603067874, 629552047, 630893263, 635249783, 644959276, 650710927, 664859367, 669433203, 684329599, 699991513, 714451929, 723556530, 739294558, 750895264, 757618344, 781123405, 796973385, 801637715, 804776709, 829003666, 829219068, 840167037, 854882202, 860066192, 864304878, 864808449, 867107161, 871871263, 880591851, 883020336, 883178082, 920223781, 936008673, 939417822, 956776353, 958281059, 962183717, 964059257, 967860573, 974322643, 974999286, 980009921, 1032949015, 1044249483, 1064892676, 1075628270, 1080848022, 1085571657, 1173635593, 1174809080, 1176744978, 1209783795, 1212074975, 1252323507, 1254757790, 1301450562, 1302240953, 1314501797, 1315121266, 1339304157, 1364304289, 1376260506, 1383883477, 1395158643, 1411117754, 1440755058, 1448365702, 1466814914, 1468433821, 1490105126, 1493912601, 1495600372, 1509536621, 1511014977, 1545693948, 1548924199, 1566583103, 1569747154, 1574097219, 1597784674, 1610710480, 1618324005, 1646105187, 1649417465, 1655649169, 1660619384, 1668826887, 1671093718, 1672456990, 1673477565, 1678638502, 1682302139, 1682515769, 1687920300, 1690062315, 1706031388, 1713660819, 1772170709, 1778416812, 1833443690, 1861312062, 1876004501, 1876358085, 1882435551, 1916050713, 1944906037, 1950207172, 1951593247, 1973638546, 1976288281, 1994977271, 2020053060, 2025281195, 2029716419, 2033980539, 2052482076, 2058251762, 2069273004, 2073978021, 2111013213, 2119886932, 2134609957, 2140349794, 2143934987]:
    # print(i,best_or_l(i,True))
    score = score + (len(l(i))-len(best_or_l(i,True)))
print("Score:",score)

with open("brute_serious_reverse.json","w") as outfile:
    outfile.write(json.dumps(best,sort_keys=True,indent=2))

3

Python 3, 34 39 bytes guardados

Este programa simplemente calcula cada número que puede alcanzar usando combinaciones simples de los operadores binarios y unarios, que cubre 366k de enteros 4B, para un total de un par de docenas de casos de prueba. Luego saco esos resultados o la solución trivial. Esto es técnicamente contrario a las reglas, porque es seguro que hay una mejor solución para algunos de los casos, pero estoy seguro de que nadie va a encontrar una solución que ciertamente pase esa regla.

Además, solo estoy produciendo toda la salida a la vez, porque 30 segundos de tiempo de configuración son soportables una vez, no 1000 veces. Las secciones comentadas aumentan significativamente el tiempo de ejecución y apenas reducen la puntuación.

#!/usr/bin/env python3
# -*- coding: cp437 -*-

import math
import gmpy
import json
import random

from seriously import chr_cp437

# MAX=2**31
MAX = 2**31

best = {}

def l(n,force_colon=False):
    if force_colon:
        return ':'+str(n)
    if n>=0 and n<10:
        return str(n)
    elif n<0 and n>-10:
        return str(-n)+chr_cp437(0xF1)
    return ':'+str(n)

def l2(n,m):
    if n<10 or best_or_l(n)[-1] in "0123456789":
        rep = l(n)+best_or_l(m)
    else:
        rep = best_or_l(n)+best_or_l(m,True)
    return rep

def cand(n,rep):
    # print(n,rep,len(rep),best[n] if n in best else "")
    if n!=int(n):
        return False
    n=int(n)
    if n<=MAX and len(rep)<len(l(n)) and (n not in best or len(rep)<len(best[n])):
        best[n] = rep
        return True
    return False

def best_or_l(n,force_colon=False):
    if n in best:
        return best[n]
    if -n in best and n>0:
        return best[-n]+chr_cp437(0xF1)
    return l(n,force_colon)

# digits
for i in range(0,10):
    best[i]=str(i)

# factorials
for i in range(4,13):
    cand(math.factorial(i),l(i)+'!')

# 10**i
for i in range(2,12):
    cand(10**i,l(i)+chr_cp437(0xD1))

# 2**i
for i in range(2,32):
    cand(2**i,best_or_l(i)+chr_cp437(0xD3))

# a choose b
for a in range(2,1000): # 466 is the highest a for MAX=2**24
    for b in range(2,int(a/2+1)):
        n = math.factorial(a)/(math.factorial(b)*math.factorial(a-b))
        if n>MAX:
            break
        cand(n,l2(b,a)+chr_cp437(0xDB))

# a P b
for a in range(2,1000): # 257 is the highest a for MAX=2**24
    for b in range(2,int(a/2+1)):
        n = math.factorial(a)/math.factorial(a-b)
        if n>MAX:
            break
        cand(n,l2(b,a)+chr_cp437(0xDC))

# fibonacci
def fib_formula(n):
    golden_ratio = (1 + math.sqrt(5)) / 2
    val = (golden_ratio**n - (1 - golden_ratio)**n) / math.sqrt(5)
    return int(round(val))
for i in range(3,47):
    cand(fib_formula(i),best_or_l(i)+'F')

# i^2 and ^4
for i in range(5,int(math.sqrt(MAX)+1)):
    cand(i*i,best_or_l(i)+chr_cp437(0xFD))

# a^b
for a in range(2,int(math.pow(MAX,1.0/3))+1):
    for b in range(3,int(math.log(MAX)/math.log(3))+1):
        n = a**b
        cand(n,l2(b,a)+chr_cp437(0xFC))

# exp(i)
for i in range(3,22):
    cand(int(math.ceil(math.exp(i))),best_or_l(i)+'eK')
    cand(int(math.floor(math.exp(i))),best_or_l(i)+'eL')

# primes
def primes():
    n = 2
    while True:
        yield n
        n = gmpy.next_prime(n)
n = 0
for p in primes():
    # print(p)
    if p>MAX/1000:
        break
    rep = best_or_l(n)+'P'
    cand(p,rep)
    n=n+1

# +1 +2 -1 -2 *2 /2 /4 
for key,value in sorted(best.items()):
    cand(key+1,value+'u')
    cand(key+2,value+chr_cp437(0xA9))
    cand(key-1,value+'D')
    cand(key-2,value+chr_cp437(0xAA))
    cand(key*2,value+chr_cp437(0xE7))
    if float(key)/2 == int(float(key)/2):
        cand(int((float(key)/2)),value+chr_cp437(0xAB))
    cand(int(math.floor(float(key)/2)),value+chr_cp437(0xAB)+'L')
    cand(int(math.ceil(float(key)/2)),value+chr_cp437(0xAB)+'K')
    if float(key)/4 == int(float(key)/4):
        cand(int((float(key)/4)),value+chr_cp437(0xAC))
    cand(int(math.floor(float(key)/4)),value+chr_cp437(0xAC)+'L')
    cand(int(math.ceil(float(key)/4)),value+chr_cp437(0xAC)+'L')

# bitwise invert
for key,value in sorted(best.items()):
    cand(~key,value+'~')

# arithmetic with small second operands
for key,value in sorted(best.items()):
    for op in ["+","-","/","/K","\\","*"]:
        for i in range(3,10):
            if op == "+":
                n = key+i
            elif op == "-":
                n = key-i
            elif op == "/":
                if i==4:
                    continue
                n = float(key)/i
                if int(n)!=n:
                    continue
                n = int(n)
            elif op == "/K":
                if i==4:
                    continue
                n = int(math.ceil(float(key)/i))
                if n == float(key)/i:
                    continue
            elif op == "\\":
                if i==4:
                    continue
                n = int(math.floor(float(key)/i))
                if n == float(key)/i:
                    continue
            elif op == "*":
                n = key*i
            rep = value+best_or_l(i)+op
            cand(n,rep)

# for key,value in sorted(best.items()):
#     print(key,value)

# def maybe(n,rep):
#     if len(rep)<len(best_or_l(n)):
#         return True
#     return False

# b=[]
# for k in sorted(best.keys()):
#     b.append(k)
#     if k>100000000:
#         break

# def search_for_better(n):
#     if n in best:
#         return best[n]
#     for i in b:
#         if n+i in best:
#             rep = best[n+i]+best[i]+'-'
#             if maybe(n,rep):
#                 return rep
#     for i in b:
#         if n-i in best:
#             rep = best[n-i]+best[i]+'+'
#             if maybe(n,rep):
#                 return rep
#     return l(n)

for key,value in sorted(best.items()):
    if random.random()<0.001:
        print(key,value)

score = 0
for i in [-2124910654, -2117700574, -2098186988, -2095671996, -2083075613, -2058271687, -2052250777, -2024215903, -2019485642, -2016095616, -2009838326, -2009173317, -2007673992, -2000014444, -1999825668, -1992515610, -1989566707, -1975506037, -1955473208, -1950731112, -1949886423, -1920624450, -1918465596, -1916287469, -1905036556, -1903956118, -1888944417, -1865221863, -1856600057, -1842797147, -1835637734, -1812631357, -1805740096, -1798015647, -1726688233, -1723609647, -1713776890, -1700307138, -1687644479, -1645515069, -1617635994, -1610444000, -1579053372, -1556891649, -1549652116, -1537732956, -1535180388, -1527162056, -1524851611, -1524658412, -1523244369, -1521379172, -1520191198, -1519035741, -1516978241, -1508892332, -1489938422, -1482102944, -1481823232, -1470621147, -1469145091, -1446844485, -1441790509, -1437843276, -1435359182, -1434186947, -1429816311, -1429393781, -1419752032, -1400387846, -1385152926, -1372620863, -1369257355, -1361933674, -1360480816, -1334846204, -1323741718, -1323660173, -1312800992, -1308824840, -1304658551, -1287829999, -1283767920, -1276288210, -1264275838, -1263965596, -1262866901, -1255421887, -1251428680, -1244825786, -1243200329, -1235305532, -1233977691, -1220537074, -1214100716, -1199414474, -1190725823, -1190401800, -1178717689, -1172378149, -1147869245, -1142875190, -1138538768, -1137864183, -1124917489, -1102987222, -1095920186, -1083001017, -1080902655, -1047122002, -1031842676, -1029877334, -1020849489, -1001684838, -998419619, -990915088, -985235989, -982515261, -979074894, -974195629, -973832940, -965324937, -944246431, -938387588, -933873331, -932692878, -928039285, -927947459, -914008773, -907981688, -906376330, -903502449, -898112547, -887444438, -862658502, -843628573, -822463032, -786051095, -776932426, -776033951, -752042328, -746532472, -743149468, -740225710, -734414418, -725435852, -708101516, -699674783, -694869277, -693246525, -690571518, -689249770, -688581912, -686864294, -681445866, -647992869, -641101583, -631409299, -624686189, -613079884, -593711206, -591688546, -591331185, -574790069, -573024823, -565387051, -565137163, -556338668, -556291492, -541411509, -538932064, -500479857, -482419890, -468050561, -424532545, -420534171, -408741873, -406973874, -387664799, -382084509, -367095703, -352332569, -352195997, -346430007, -324596389, -320119776, -306594578, -305952425, -283718911, -267302378, -243302738, -242955859, -232180029, -225394407, -217418127, -212286453, -208344820, -191300139, -186177744, -175765723, -161763935, -157025501, -140389149, -132298608, -126175769, -70566352, -68748576, -53985905, -52674668, -50228620, -39678495, -19825663, -8349922, -8186722, -8125700, -8073135, -8043230, -7994382, -7874433, -7863624, -7784916, -7782477, -7696343, -7607278, -7531250, -7388060, -7368780, -7367625, -7353084, -7334489, -7281141, -7267149, -7140057, -7119066, -7010389, -6992089, -6975258, -6863360, -6784772, -6741079, -6585985, -6550401, -6520011, -6495144, -6459702, -6294273, -6178342, -6169344, -6139663, -6090928, -6022637, -5992707, -5971334, -5925304, -5880940, -5873707, -5807953, -5703992, -5692895, -5535131, -5488812, -5468330, -5404148, -5290247, -5274221, -5264144, -5234715, -5224048, -5179837, -5084014, -5043990, -5028537, -5011679, -4998333, -4922901, -4880159, -4874060, -4787390, -4749096, -4736217, -4502308, -4480611, -4424319, -4363262, -4349743, -4290050, -4240069, -4239657, -4174072, -4093051, -4045363, -4037689, -4033352, -3839265, -3766343, -3716899, -3680075, -3679053, -3581776, -3539227, -3461158, -3282526, -3205947, -3183427, -3169708, -3166430, -3089822, -3061531, -2947574, -2930733, -2919246, -2872882, -2830770, -2739228, -2713826, -2634018, -2613990, -2525529, -2439507, -2432921, -2376201, -2335005, -2307524, -2265548, -2176176, -2123133, -2108773, -2105934, -2075032, -2073940, -2045837, -2045648, -1978182, -1945769, -1935486, -1881608, -1654650, -1602520, -1506746, -1505294, -1475309, -1457605, -1327259, -1312217, -1178723, -1027439, -880781, -833776, -666675, -643098, -593446, -468772, -450369, -443225, -418164, -402004, -319964, -307400, -279414, -190199, -176644, -66862, -32745, -32686, -32352, -32261, -32035, -31928, -31414, -31308, -30925, -30411, -29503, -29182, -28573, -28500, -28093, -27743, -27716, -27351, -27201, -26834, -25946, -25019, -24469, -24341, -24292, -24151, -23732, -22769, -22242, -22002, -20863, -20762, -20644, -20189, -20009, -19142, -19036, -18980, -18616, -18196, -18123, -17942, -17915, -17601, -17494, -16669, -16417, -16317, -15051, -14796, -14742, -14600, -14443, -14159, -14046, -13860, -13804, -13745, -13634, -13498, -13497, -12688, -12471, -12222, -11993, -11467, -11332, -10783, -10250, -10114, -10089, -9930, -9434, -9336, -9128, -9109, -8508, -8460, -8198, -8045, -7850, -7342, -7229, -6762, -6302, -6245, -6171, -5957, -5842, -4906, -4904, -4630, -4613, -4567, -4427, -4091, -4084, -3756, -3665, -3367, -3186, -2922, -2372, -2331, -1936, -1683, -1350, -1002, -719, -152, -128, -127, -124, -122, -121, -119, -116, -113, -112, -111, -107, -104, -102, -101, -100, -95, -94, -91, -90, -87, -81, -80, -79, -78, -73, -72, -69, -68, -66, -65, -63, -57, -54, -52, -51, -48, -47, -46, -45, -43, -41, -37, -33, -31, -30, -27, -25, -21, -18, -15, -12, -8, -1, 0, 1, 3, 4, 5, 6, 11, 14, 17, 23, 25, 26, 27, 28, 29, 31, 32, 39, 41, 46, 49, 51, 52, 56, 58, 61, 64, 66, 67, 70, 74, 79, 80, 86, 88, 89, 92, 93, 99, 102, 104, 109, 113, 117, 120, 122, 123, 127, 695, 912, 1792, 2857, 3150, 3184, 4060, 4626, 5671, 6412, 6827, 7999, 8017, 8646, 8798, 9703, 9837, 10049, 10442, 10912, 11400, 11430, 11436, 11551, 11937, 12480, 13258, 13469, 13689, 13963, 13982, 14019, 14152, 14259, 14346, 15416, 15613, 15954, 16241, 16814, 16844, 17564, 17702, 17751, 18537, 18763, 19890, 21216, 22238, 22548, 23243, 23383, 23386, 23407, 23940, 24076, 24796, 24870, 24898, 24967, 25139, 25176, 25699, 26167, 26536, 26614, 27008, 27087, 27142, 27356, 27458, 27800, 27827, 27924, 28595, 29053, 29229, 29884, 29900, 30460, 30556, 30701, 30815, 30995, 31613, 31761, 31772, 32099, 32308, 32674, 75627, 80472, 103073, 110477, 115718, 172418, 212268, 242652, 396135, 442591, 467087, 496849, 675960, 759343, 846297, 881562, 1003458, 1153900, 1156733, 1164679, 1208265, 1318372, 1363958, 1411655, 1522329, 1559609, 1677118, 1693658, 1703597, 1811223, 1831642, 1838628, 1884144, 1931545, 2085504, 2168156, 2170263, 2239585, 2308894, 2329235, 2364957, 2432335, 2435551, 2596936, 2684907, 2691011, 2705195, 2738057, 2851897, 2925289, 2995414, 3051534, 3216094, 3267022, 3271559, 3338856, 3440797, 3638325, 3651369, 3718696, 3724814, 3811069, 3854697, 3866969, 3893228, 3963455, 3984546, 4098376, 4100957, 4128113, 4200719, 4256344, 4286332, 4306356, 4316314, 4438803, 4458063, 4461638, 4552228, 4563790, 4584831, 4607992, 4884455, 4907501, 5045419, 5066844, 5150624, 5157161, 5190669, 5314703, 5337397, 5434807, 5440092, 5502665, 5523089, 5547122, 5566200, 5582936, 5634068, 5690330, 5776984, 5778441, 5818505, 5826687, 5827184, 5885735, 6010506, 6084254, 6131498, 6138324, 6250773, 6292801, 6306275, 6315242, 6331640, 6484374, 6502969, 6545970, 6666951, 6690905, 6763576, 6766086, 6895048, 6912227, 6929081, 6941390, 6978168, 7045672, 7085246, 7193307, 7197398, 7270237, 7276767, 7295790, 7375488, 7472098, 7687424, 7840758, 7880957, 7904499, 7948678, 7974126, 8015691, 8037685, 8112955, 8131380, 8140556, 8142384, 8220436, 8308817, 8331317, 22581970, 45809129, 48103779, 78212045, 79674901, 97299830, 110308649, 131744428, 136663461, 138485719, 139842794, 152061792, 152685704, 153070991, 156228213, 164884737, 174776199, 189346581, 193148547, 208582124, 223891881, 227308187, 237373798, 241214067, 242476929, 245495851, 260606593, 275202667, 285717038, 317009689, 322759532, 325369206, 339724742, 340122632, 345010859, 352375176, 355826263, 359695034, 366118516, 370008270, 382712922, 386379440, 401153345, 404986391, 426084981, 442843409, 473909474, 475192613, 492302667, 494747879, 506279889, 509813998, 537558350, 548423414, 548467404, 566383324, 574188786, 574792333, 591678147, 596558084, 597423476, 602432742, 603067874, 629552047, 630893263, 635249783, 644959276, 650710927, 664859367, 669433203, 684329599, 699991513, 714451929, 723556530, 739294558, 750895264, 757618344, 781123405, 796973385, 801637715, 804776709, 829003666, 829219068, 840167037, 854882202, 860066192, 864304878, 864808449, 867107161, 871871263, 880591851, 883020336, 883178082, 920223781, 936008673, 939417822, 956776353, 958281059, 962183717, 964059257, 967860573, 974322643, 974999286, 980009921, 1032949015, 1044249483, 1064892676, 1075628270, 1080848022, 1085571657, 1173635593, 1174809080, 1176744978, 1209783795, 1212074975, 1252323507, 1254757790, 1301450562, 1302240953, 1314501797, 1315121266, 1339304157, 1364304289, 1376260506, 1383883477, 1395158643, 1411117754, 1440755058, 1448365702, 1466814914, 1468433821, 1490105126, 1493912601, 1495600372, 1509536621, 1511014977, 1545693948, 1548924199, 1566583103, 1569747154, 1574097219, 1597784674, 1610710480, 1618324005, 1646105187, 1649417465, 1655649169, 1660619384, 1668826887, 1671093718, 1672456990, 1673477565, 1678638502, 1682302139, 1682515769, 1687920300, 1690062315, 1706031388, 1713660819, 1772170709, 1778416812, 1833443690, 1861312062, 1876004501, 1876358085, 1882435551, 1916050713, 1944906037, 1950207172, 1951593247, 1973638546, 1976288281, 1994977271, 2020053060, 2025281195, 2029716419, 2033980539, 2052482076, 2058251762, 2069273004, 2073978021, 2111013213, 2119886932, 2134609957, 2140349794, 2143934987]:
    print(i)
    print(best_or_l(i,True))
    score = score + (len(l(i))-len(best_or_l(i,True)))
print("Score:",score)

# print(len(best))

with open("aim.json","w") as outfile:
    outfile.write(json.dumps(best,sort_keys=True,indent=2))

Aquí hay una muestra aleatoria de los tipos de programas que actualmente encuentran este algoritmo:

15875 49█²D
178085 :422²u
6195119 :2489²¬
11276166 :3358²⌐
14516098 :3810²¬
32924643 :5738²D
35003345 :8367²½K
66438802 :8151²u
95664294 3:363ⁿτ
100915813 3:847۪
111894084 :10578²
219662043 :14821²⌐
220849321 :14861²
236390625 :15375²
282710596 :16814²
296511180 :34439²¼L
375584401 :19380²u
460188303 :21452²D
465157056 :43135²¼L
509991890 :22583²u
510963420 :45209²¼L
606981768 :24637²D
659407868 8FeK½K
697212482 :18671²τ
805764994 :28386²¬
852225612 :41285²½L
941078331 :30677²⌐
1034715540 :45491²½L
1193771602 :34551²u
1326125054 :36416²¬
2030403600 :45060²
2078904023 :45595²¬

1
@ KevinLau-notKenny el puntaje en este desafío es el tamaño total de la salida, los mil programas en realidad, no el tamaño del programa Python
Sparr

Me gusta este enfoque. Estoy dispuesto a ser un poco más flexible con la restricción de tiempo y la regla de hacer algo mejor que trivial si permite soluciones más interesantes. Principalmente quería evitar soluciones de fuerza bruta no comprobables que se ejecutan durante siglos y solución trivial de "anteponer un:", que no tiene imaginación y va en contra del espíritu del desafío.
Mego

Modifiqué los requisitos para que las soluciones solo tengan que funcionar al menos tan bien como la solución trivial, en lugar de mejorar si es posible, y aumenté el límite de tiempo a 30 segundos por entrada. Su solución ahora es válida y es posible que pueda realizar algunas mejoras adicionales con los requisitos relajados.
Mego
Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.