Encuentra la brecha más grande entre buenos primos


28

Siguiendo la excelente tradición de preguntas como Encontrar el primo más grande cuya longitud, suma y producto es primo , esta es una variante del mayor desafío primo.

Entrada

Su código no debe tomar ninguna entrada.

Definición

Decimos que un primo pes goodsi p-1tiene 2factores primos exactamente distintos.

Salida

Su código debe generar la diferencia absoluta entre primos buenos consecutivos qy, ppor lo tanto, |q-p|es lo más grande posible y qes el primo bueno más pequeño más grande que p. Puede generar cualquier número de pares buenos y su último resultado se tomará como puntaje.

Ejemplo

La secuencia de los primeros 55 primos buenos es https://oeis.org/A067466 .

Puntuación

Su puntaje es simplemente |q-p|por el par de buenos números primos que genera.

Idiomas y bibliotecas

Puede usar cualquier idioma o biblioteca que desee (que no fue diseñada para este desafío), excepto las funciones de biblioteca para pruebas de primalidad o factorización de enteros. Sin embargo, para fines de puntuación, ejecutaré su código en mi máquina, así que proporcione instrucciones claras sobre cómo ejecutarlo en Ubuntu.

Mi máquina Los tiempos se ejecutarán en mi máquina. Esta es una instalación estándar de Ubuntu en un procesador AMD FX-8350 de ocho núcleos de 8GB. Esto también significa que necesito poder ejecutar su código.

Detalles

  • Mataré tu código después de 2 minutos a menos que comience a quedarse sin memoria antes de eso. Por lo tanto, debe asegurarse de generar algo antes del corte.
  • No puede usar ninguna fuente externa de primos.
  • Puede usar métodos de prueba primarios probabilísticos, aunque Mego me dice que con buenas tablas, Miller-Rabin puede probar hasta 341,550,071,728,321 (o incluso más) de manera determinista. Ver también http://miller-rabin.appspot.com/ .

Las mejores entradas que verifican todos los enteros de 1

  • 756 por cat en Go
  • 756 por El'endia Starman en Python
  • 1932 por Adnan en C # (usando mono 3.2.8)
  • 2640 por yeti en Python (usando pypy 4.01)
  • 2754 por Reto Koradi en C ++
  • 3486 de Peter Taylor en Java
  • 3900 por primo en RPython (usando pypy 4.01)
  • 4176 por The Coder en Java

Las mejores entradas que pueden omitir una gran cantidad de enteros para encontrar una gran brecha

  • 14226 por Reto Koradi en C ++
  • 22596 por primo en RPython (usando pypy 4.01). ¡Registro alcanzado después de 5 segundos!

Esta definición es similar a la definición de cebado seguro , y aparte de 5 = 2 * 2 +1 cada cebado seguro es un "cebado bueno". (Aunque hay buenos números primos que no son números primos seguros, como 13 = 2 * 2 * 3 + 1, así que supongo que esto no ayuda con el desafío.)
Paŭlo Ebermann


@ PaŭloEbermann ¿Estoy en lo cierto al pensar que ni siquiera se sabe con certeza si hay un número infinito de primos seguros? ¿Significaría esto que no sabemos con certeza que hay un número infinito de primos buenos?

@Lembik No soy realmente un experto en primos seguros, me di cuenta de que las definiciones son bastante similares y busqué los primos seguros.
Paŭlo Ebermann

Lo hice en Labview hace un momento, lo que supongo que no podrás ejecutar. Estoy llegando a 1686 en este momento, ¿hay alguna forma de obtener el ranking? si es así, id y optimízalo un poco.
Eumel

Respuestas:


12

RPython (PyPy 4.0.1), 4032

RPython es un subconjunto restringido de Python, que puede traducirse a C y luego compilarse utilizando RPython Toolchain. Su propósito expreso es ayudar en la creación de intérpretes de lenguaje, pero también se puede usar para compilar programas simples.

Para compilar, descargue la fuente actual de PyPy (PyPy 4.0.1) y ejecute lo siguiente:

$ pypy /pypy-4.0.1-src/rpython/bin/rpython --opt=3 good-primes.py

El ejecutable resultante será nombrado good-primes-co similar en el directorio de trabajo actual.


Notas de implementacion

El generador de números primos primeses un Tamiz ilimitado de Eratóstenes, que usa una rueda para evitar cualquier múltiplo de 2 , 3 , 5 o 7 . También se llama a sí mismo de forma recursiva para generar el siguiente valor a utilizar para marcar. Estoy bastante satisfecho con este generador. El perfil de línea revela que las dos líneas más lentas son:

37>      n += o
38>      if n not in sieve:

así que no creo que haya mucho margen de mejora, aparte de quizás usar una rueda más grande.

Para la verificación de "bondad", primero se eliminan todos los factores de dos de n-1 , utilizando un truco de bit-twiddling para encontrar la mayor potencia de dos, que es un divisor (n-1 & 1-n). Debido a que p-1 es necesariamente par para cualquier primo p> 2 , se deduce que 2 debe ser uno de los factores primos distintos. Lo que queda se envía a la is_prime_powerfunción, que hace lo que su nombre implica. Verificar si un valor es una potencia primaria es "casi libre", ya que se realiza simultáneamente con la comprobación de primalidad, con a lo sumo operaciones O (log p n) , donde p es el factor primo más pequeño de n. La división de prueba puede parecer un poco ingenua, pero según mis pruebas, es el método más rápido para valores inferiores a 2 32 . Ahorro un poco reutilizando la rueda del tamiz. En particular:

59>      while p*p < n:
60>        for o in offsets:

iterando sobre una rueda de longitud 48, el p*p < ncheque se saltará miles de veces, al precio bajo y bajo de no más de 48 operaciones de módulo adicionales. También omite más del 77% de todos los candidatos, en lugar del 50% al tomar solo probabilidades.

Las últimas salidas son:

3588 (987417437 - 987413849) 60.469000s
3900 (1123404923 - 1123401023) 70.828000s
3942 (1196634239 - 1196630297) 76.594000s
4032 (1247118179 - 1247114147) 80.625000s
4176 (1964330609 - 1964326433) 143.047000s
4224 (2055062753 - 2055058529) 151.562000s

El código también es válido en Python, y debería alcanzar los 3588 ~ 3900 cuando se ejecuta con un intérprete reciente de PyPy.


# primes less than 212
small_primes = [
    2,  3,  5,  7, 11, 13, 17, 19, 23, 29, 31, 37,
   41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89,
   97,101,103,107,109,113,127,131,137,139,149,151,
  157,163,167,173,179,181,191,193,197,199,211]

# pre-calced sieve of eratosthenes for n = 2, 3, 5, 7
# distances between sieve values, starting from 211
offsets = [
  10, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6,
   6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4,
   2, 4, 8, 6, 4, 6, 2, 4, 6, 2, 6, 6,
   4, 2, 4, 6, 2, 6, 4, 2, 4, 2,10, 2]

# tabulated, mod 105
dindices =[
  0,10, 2, 0, 4, 0, 0, 0, 8, 0, 0, 2, 0, 4, 0,
  0, 6, 2, 0, 4, 0, 0, 4, 6, 0, 0, 6, 0, 0, 2,
  0, 6, 2, 0, 4, 0, 0, 4, 6, 0, 0, 2, 0, 4, 2,
  0, 6, 6, 0, 0, 0, 0, 6, 6, 0, 0, 0, 0, 4, 2,
  0, 6, 2, 0, 4, 0, 0, 4, 6, 0, 0, 2, 0, 6, 2,
  0, 6, 0, 0, 4, 0, 0, 4, 6, 0, 0, 2, 0, 4, 8,
  0, 0, 2, 0,10, 0, 0, 4, 0, 0, 0, 2, 0, 4, 2]

def primes(start = 0):
  for n in small_primes[start:]: yield n
  pg = primes(6)
  p = pg.next()
  q = p*p
  sieve = {221: 13, 253: 11}
  n = 211
  while True:
    for o in offsets:
      n += o
      stp = sieve.pop(n, 0)
      if stp:
        nxt = n/stp
        nxt += dindices[nxt%105]
        while nxt*stp in sieve: nxt += dindices[nxt%105]
        sieve[nxt*stp] = stp
      else:
        if n < q:
          yield n
        else:
          sieve[q + dindices[p%105]*p] = p
          p = pg.next()
          q = p*p

def is_prime_power(n):
  for p in small_primes:
    if n%p == 0:
      n /= p
      while n%p == 0: n /= p
      return n == 1
  p = 211
  while p*p < n:
    for o in offsets:
      p += o
      if n%p == 0:
        n /= p
        while n%p == 0: n /= p
        return n == 1
  return n > 1

def main(argv):
  from time import time
  t0 = time()
  m = 0
  p = q = 7
  pgen = primes(3)

  for n in pgen:
    d = (n-1 & 1-n)
    if is_prime_power(n/d):
      p, q = q, n
      if q-p > m:
        m = q-p
        print m, "(%d - %d) %fs"%(q, p, time()-t0)

  return 0

def target(*args):
  return main, None

if __name__ == '__main__':
  from sys import argv
  main(argv)

RPython (PyPy 4.0.1), 22596

Este envío es ligeramente diferente de los otros publicados hasta ahora, ya que no verifica todos los números primos buenos, sino que realiza saltos relativamente grandes. Una desventaja de hacer esto es que los tamices no se pueden usar [¿Estoy corregido?] , Por lo que uno tiene que confiar completamente en las pruebas de primalidad, que en la práctica son bastante más lentas. También se puede encontrar un medio feliz entre la tasa de crecimiento y la cantidad de valores verificados cada vez. Los valores más pequeños son mucho más rápidos de verificar, pero los valores más grandes tienen más probabilidades de tener brechas más grandes.

Para apaciguar a los dioses matemáticos, he decidido seguir una secuencia similar a Fibonacci, teniendo el siguiente punto de partida como la suma de los dos anteriores. Si no se encuentran nuevos registros después de verificar 10 pares, el script se mueve en el siguiente.

Las últimas salidas son:

6420 (12519586667324027 - 12519586667317607) 0.364000s
6720 (707871808582625903 - 707871808582619183) 0.721000s
8880 (626872872579606869 - 626872872579597989) 0.995000s
10146 (1206929709956703809 - 1206929709956693663) 4.858000s
22596 (918415168400717543 - 918415168400694947) 8.797000s

Cuando se compila, se usan enteros de 64 bits, aunque se supone que en algunos lugares se pueden agregar dos enteros sin desbordamiento, por lo que en la práctica solo 63 son utilizables. Al alcanzar 62 bits significativos, el valor actual se reduce a la mitad dos veces, para evitar el desbordamiento en el cálculo. El resultado es que el script baraja los valores en el rango 2 60 - 2 62 . No superar la precisión del entero nativo también hace que el script sea más rápido cuando se interpreta.

El siguiente script PARI / GP se puede utilizar para confirmar este resultado:

isgoodprime(n) = isprime(n) && omega(n-1)==2

for(n = 918415168400694947, 918415168400717543, {
  if(isgoodprime(n), print(n" is a good prime"))
})

try:
  from rpython.rlib.rarithmetic import r_int64

  from rpython.rtyper.lltypesystem.lltype import SignedLongLongLong
  from rpython.translator.c.primitive import PrimitiveType

  # check if the compiler supports long long longs
  if SignedLongLongLong in PrimitiveType:

    from rpython.rlib.rarithmetic import r_longlonglong

    def mul_mod(a, b, m):
      return r_int64(r_longlonglong(a)*b%m)

  else:

    from rpython.rlib.rbigint import rbigint

    def mul_mod(a, b, m):
      biga = rbigint.fromrarith_int(a)
      bigb = rbigint.fromrarith_int(b)
      bigm = rbigint.fromrarith_int(m)

      return biga.mul(bigb).mod(bigm).tolonglong()


  # modular exponentiation b**e (mod m)
  def pow_mod(b, e, m):
    r = 1
    while e:
      if e&1: r = mul_mod(b, r, m)
      e >>= 1
      b = mul_mod(b, b, m)
    return r

except:

  import sys

  r_int64 = int
  if sys.maxint == 2147483647:
    mul_mod = lambda a, b, m: a*b%m
  else:
    mul_mod = lambda a, b, m: int(a*b%m)
  pow_mod = pow


# legendre symbol (a|m)
# note: returns m-1 if a is a non-residue, instead of -1
def legendre(a, m):
  return pow_mod(a, (m-1) >> 1, m)


# strong probable prime
def is_sprp(n, b=2):
  if n < 2: return False
  d = n-1
  s = 0
  while d&1 == 0:
    s += 1
    d >>= 1

  x = pow_mod(b, d, n)
  if x == 1 or x == n-1:
    return True

  for r in xrange(1, s):
    x = mul_mod(x, x, n)
    if x == 1:
      return False
    elif x == n-1:
      return True

  return False


# lucas probable prime
# assumes D = 1 (mod 4), (D|n) = -1
def is_lucas_prp(n, D):
  Q = (1-D) >> 2

  # n+1 = 2**r*s where s is odd
  s = n+1
  r = 0
  while s&1 == 0:
    r += 1
    s >>= 1

  # calculate the bit reversal of (odd) s
  # e.g. 19 (10011) <=> 25 (11001)
  t = r_int64(0)
  while s:
    if s&1:
      t += 1
      s -= 1
    else:
      t <<= 1
      s >>= 1

  # use the same bit reversal process to calculate the sth Lucas number
  # keep track of q = Q**n as we go
  U = 0
  V = 2
  q = 1
  # mod_inv(2, n)
  inv_2 = (n+1) >> 1
  while t:
    if t&1:
      # U, V of n+1
      U, V = mul_mod(inv_2, U + V, n), mul_mod(inv_2, V + mul_mod(D, U, n), n)
      q = mul_mod(q, Q, n)
      t -= 1
    else:
      # U, V of n*2
      U, V = mul_mod(U, V, n), (mul_mod(V, V, n) - 2 * q) % n
      q = mul_mod(q, q, n)
      t >>= 1

  # double s until we have the 2**r*sth Lucas number
  while r:
    U, V = mul_mod(U, V, n), (mul_mod(V, V, n) - 2 * q) % n
    q = mul_mod(q, q, n)
    r -= 1

  # primality check
  # if n is prime, n divides the n+1st Lucas number, given the assumptions
  return U == 0


# primes less than 212
small_primes = [
    2,  3,  5,  7, 11, 13, 17, 19, 23, 29, 31, 37,
   41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89,
   97,101,103,107,109,113,127,131,137,139,149,151,
  157,163,167,173,179,181,191,193,197,199,211]

# pre-calced sieve of eratosthenes for n = 2, 3, 5, 7
indices = [
    1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
   53, 59, 61, 67, 71, 73, 79, 83, 89, 97,101,103,
  107,109,113,121,127,131,137,139,143,149,151,157,
  163,167,169,173,179,181,187,191,193,197,199,209]

# distances between sieve values
offsets = [
  10, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6,
   6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4,
   2, 4, 8, 6, 4, 6, 2, 4, 6, 2, 6, 6,
   4, 2, 4, 6, 2, 6, 4, 2, 4, 2,10, 2]

bit_lengths = [
  0x00000000, 0x00000001, 0x00000003, 0x00000007,
  0x0000000F, 0x0000001F, 0x0000003F, 0x0000007F,
  0x000000FF, 0x000001FF, 0x000003FF, 0x000007FF,
  0x00000FFF, 0x00001FFF, 0x00003FFF, 0x00007FFF,
  0x0000FFFF, 0x0001FFFF, 0x0003FFFF, 0x0007FFFF,
  0x000FFFFF, 0x001FFFFF, 0x003FFFFF, 0x007FFFFF,
  0x00FFFFFF, 0x01FFFFFF, 0x03FFFFFF, 0x07FFFFFF,
  0x0FFFFFFF, 0x1FFFFFFF, 0x3FFFFFFF, 0x7FFFFFFF]

max_int = 2147483647


# returns the index of x in a sorted list a
# or the index of the next larger item if x is not present
# i.e. the proper insertion point for x in a
def binary_search(a, x):
  s = 0
  e = len(a)
  m = e >> 1
  while m != e:
    if a[m] < x:
      s = m
      m = (s + e + 1) >> 1
    else:
      e = m
      m = (s + e) >> 1
  return m


def log2(n):
  hi = n >> 32
  if hi:
    return binary_search(bit_lengths, hi) + 32
  return binary_search(bit_lengths, n)


# integer sqrt of n
def isqrt(n):
  c = n*4/3
  d = log2(c)

  a = d>>1
  if d&1:
    x = r_int64(1) << a
    y = (x + (n >> a)) >> 1
  else:
    x = (r_int64(3) << a) >> 2
    y = (x + (c >> a)) >> 1

  if x != y:
    x = y
    y = (x + n/x) >> 1
    while y < x:
      x = y
      y = (x + n/x) >> 1
  return x

# integer cbrt of n
def icbrt(n):
  d = log2(n)

  if d%3 == 2:
    x = r_int64(3) << d/3-1
  else:
    x = r_int64(1) << d/3

  y = (2*x + n/(x*x))/3
  if x != y:
    x = y
    y = (2*x + n/(x*x))/3
    while y < x:
      x = y
      y = (2*x + n/(x*x))/3
  return x


## Baillie-PSW ##
# this is technically a probabalistic test, but there are no known pseudoprimes
def is_bpsw(n):
  if not is_sprp(n, 2): return False

  # idea shamelessly stolen from Mathmatica's PrimeQ
  # if n is a 2-sprp and a 3-sprp, n is necessarily square-free
  if not is_sprp(n, 3): return False

  a = 5
  s = 2
  # if n is a perfect square, this will never terminate
  while legendre(a, n) != n-1:
    s = -s
    a = s-a
  return is_lucas_prp(n, a)


# an 'almost certain' primality check
def is_prime(n):
  if n < 212:
    m = binary_search(small_primes, n)
    return n == small_primes[m]

  for p in small_primes:
    if n%p == 0:
      return False

  # if n is a 32-bit integer, perform full trial division
  if n <= max_int:
    p = 211
    while p*p < n:
      for o in offsets:
        p += o
        if n%p == 0:
          return False
    return True

  return is_bpsw(n)


# next prime strictly larger than n
def next_prime(n):
  if n < 2:
    return 2

  # first odd larger than n
  n = (n + 1) | 1
  if n < 212:
    m = binary_search(small_primes, n)
    return small_primes[m]

  # find our position in the sieve rotation via binary search
  x = int(n%210)
  m = binary_search(indices, x)
  i = r_int64(n + (indices[m] - x))

  # adjust offsets
  offs = offsets[m:] + offsets[:m]
  while True:
    for o in offs:
      if is_prime(i):
        return i
      i += o


# true if n is a prime power > 0
def is_prime_power(n):
  if n > 1:
    for p in small_primes:
      if n%p == 0:
        n /= p
        while n%p == 0: n /= p
        return n == 1

    r = isqrt(n)
    if r*r == n:
      return is_prime_power(r)

    s = icbrt(n)
    if s*s*s == n:
      return is_prime_power(s)

    p = r_int64(211)
    while p*p < r:
      for o in offsets:
        p += o
        if n%p == 0:
          n /= p
          while n%p == 0: n /= p
          return n == 1

    if n <= max_int:
      while p*p < n:
        for o in offsets:
          p += o
          if n%p == 0:
            return False
      return True

    return is_bpsw(n)
  return False


def next_good_prime(n):
  n = next_prime(n)
  d = (n-1 & 1-n)
  while not is_prime_power(n/d):
    n = next_prime(n)
    d = (n-1 & 1-n)
  return n


def main(argv):
  from time import time
  t0 = time()

  if len(argv) > 1:
    n = r_int64(int(argv[1]))
  else:
    n = r_int64(7)

  if len(argv) > 2:
    limit = int(argv[2])
  else:
    limit = 10

  m = 0
  e = 1
  q = n
  try:
    while True:
      e += 1
      p, q = q, next_good_prime(q)
      if q-p > m:
        m = q-p
        print m, "(%d - %d) %fs"%(q, p, time()-t0)
        n, q = p, n+p
        if log2(q) > 61:
          q >>= 2
        e = 1
        q = next_good_prime(q)
      elif e > limit:
        n, q = p, n+p
        if log2(q) > 61:
          q >>= 2
        e = 1
        q = next_good_prime(q)
  except KeyboardInterrupt:
    pass
  return 0

def target(*args):
  return main, None

if __name__ == '__main__':
  from sys import argv
  main(argv)

Your welome;) Actualización menor, alcanza 3330 aproximadamente 15 segundos más rápido en mi máquina (y poco después se queda sin memoria ...).
primo

1
De hecho lo hace.

1
@Lembik Creo que puede haber un potencial inexplorado allí. Lo mejor que he podido localizar colocando "cargas de profundidad aleatorias" (secuencias que crecen como n ) es 8274 (85773786705365303 - 85773786705357029). Puedo agregarlo como una presentación de bonificación.
primo

1
Usando pypy (no compilado) obtengo 13386 (32770812521685383 - 32770812521671997) 21.64s. ¡Eso es bastante rápido!

1
22596 (918415168400717543 - 918415168400694947) 4.786576s :)

19

Probablemente 4032, tamiz mixto Atkin-Bernstein y Miller-Rabin "determinista"

Factorización de ruedas y buenos primos

Es muy obvio que con la excepción de 2, 3 y 5, cada primo es coprimo a 2 * 3 * 5 = 60. Hay 16 clases de equivalencia módulo 60 que son coprimo a 60, por lo que cualquier prueba de primalidad solo necesita verificar esos 16 casos.

Sin embargo, cuando buscamos primos "buenos" podemos reducir aún más el rebaño. Si gcd(x, 60) = 1, encontramos que en la mayoría de los casos gcd(x-1, 60)es 6 o 10. Hay 6 valores xpara los cuales es 2:

17, 23, 29, 47, 53, 59

Por lo tanto podemos calcular previamente los "buenos" primos de la forma 2^a 3^b + 1y el 2^a 5^b + 1y los fundirse en el resultado de un generador de primera, que sólo tiene en cuenta el 10% de los números impares posibles primos.

Notas de implementación

Como ya tenía una implementación de Java del tamiz Atkin-Bernstein, y que ya usa una rueda como componente clave, parecía natural eliminar los radios innecesarios y adaptar el código. Originalmente intenté usar una arquitectura productor-consumidor para explotar los 8 núcleos, pero la administración de memoria era demasiado desordenada.

Para probar si un primo es un "buen" primo, estoy usando una prueba "determinista" de Miller-Rabin (lo que realmente significa una prueba de Miller-Rabin que otra persona ha verificado previamente en una lista generada de forma determinista). Ciertamente, esto puede reescribirse para usar también Atkin-Bernstein, con algo de almacenamiento en caché para cubrir los rangos correspondientes a sqrt, cbrt, etc., pero no estoy seguro de si sería una mejora (porque estaría probando muchos números que No necesito probar), así que ese es un experimento para otro día.

En mi computadora bastante vieja esto corre a

987417437 - 987413849 = 3588
1123404923 - 1123401023 = 3900
1196634239 - 1196630297 = 3942
1247118179 - 1247114147 = 4032

en casi exactamente 2 minutos, y luego

1964330609 - 1964326433 = 4176
2055062753 - 2055058529 = 4224
2160258917 - 2160254627 = 4290

a las 3:10, 3:20 y 3:30 respectivamente.

import java.util.*;

public class PPCG65876 {
    public static void main(String[] args) {
        long[] specials = genSpecials();
        int nextSpecialIdx = 0;
        long nextSpecial = specials[nextSpecialIdx];
        long p = 59;
        long bestGap = 2;

        for (long L = 1; true; L += B) {

            long[][] buf = new long[6][B >> 6];
            int[] Lmodqq = new int[qqtab.length];
            for (int i = 0; i < Lmodqq.length; i++) Lmodqq[i] = (int)(L % qqtab[i]);

            for (long[] arr : buf) Arrays.fill(arr, -1); // TODO Can probably get a minor optimisation by inverting this
            for (int[] parms : elliptic) traceElliptic(buf[parms[0]], parms[1], parms[2], parms[3] - L, parms[4], parms[5], Lmodqq, totients[parms[0]]);
            for (int[] parms : hyperbolic) traceHyperbolic(buf[parms[0]], parms[1], parms[2], parms[3] - L, Lmodqq, totients[parms[0]]);

            // We need to filter down to squarefree numbers.
            long pg_base = L * M;
            squarefreeMid(buf, invTotients, pg_base, 247, 1, 38);
            squarefreeMid(buf, invTotients, pg_base, 253, 1, 38);
            squarefreeMid(buf, invTotients, pg_base, 257, 1, 38);
            squarefreeMid(buf, invTotients, pg_base, 263, 1, 38);
            squarefreeMid(buf, invTotients, pg_base, 241, 0, 2);
            squarefreeMid(buf, invTotients, pg_base, 251, 0, 2);
            squarefreeMid(buf, invTotients, pg_base, 259, 0, 2);
            squarefreeMid(buf, invTotients, pg_base, 269, 0, 2);

            // Turn bitmasks into primes
            long[] page = new long[150000]; // TODO This can almost certainly be smaller
            long[] transpose = new long[6];
            for (int j = 0, off = 0; j < (B >> 6); j++) {
                // Reduce cache locality problems by transposing.
                for (int k = 0; k < 6; k++) transpose[k] = buf[k][j];
                for (long mask = 1L; mask != 0; mask <<= 1) {
                    for (int k = 0; k < 6; k++) {
                        if ((transpose[k] & mask) == 0) page[off++] = pg_base + totients[k];
                    }

                    pg_base += M;
                }
            }

            // Insert specials and look for gaps.
            for (long q : page) {
                if (q == 0) break;

                // Do we need to insert one or more specials?
                while (nextSpecial < q) {
                    if (nextSpecial - p > bestGap) {
                        bestGap = nextSpecial - p;
                        System.out.format("%d - %d = %d\n", nextSpecial, p, bestGap);
                    }

                    p = nextSpecial;
                    nextSpecial = specials[++nextSpecialIdx];
                }

                if (isGood(q)) {
                    if (q - p > bestGap) {
                        bestGap = q - p;
                        System.out.format("%d - %d = %d\n", q, p, bestGap);
                    }

                    p = q;
                }
            }

        }
    }

    static long[] genSpecials() {
        // 2^a 3^b + 1 or 2^a 5^b + 1
        List<Long> tmp = new LinkedList<Long>();
        for (long threes = 3; threes <= 4052555153018976267L; threes *= 3) {
            for (long t = threes; t > 0; t <<= 1) tmp.add(t + 1);
        }
        for (long fives = 5; fives <= 7450580596923828125L; fives *= 5) {
            for (long f = fives; f > 0; f <<= 1) tmp.add(f + 1);
        }

        // Filter down to primes
        Iterator<Long> it = tmp.iterator();
        while (it.hasNext()) {
            long next = it.next();
            if (next < 60 || next > 341550071728321L || !isPrime(next)) it.remove();
        }

        Collections.sort(tmp);
        long[] specials = new long[tmp.size()];
        for (int i = 0; i < tmp.size(); i++) specials[i] = tmp.get(i);

        return specials;
    }

    private static boolean isGood(long p) {
        long d = p - 1;
        while ((d & 1) == 0) d >>= 1;

        if (d == 1) return false;

        // Is d a prime power?
        if (d % 3 == 0 || d % 5 == 0) {
            // Because of the way the filters before this one work, nothing should reach here.
            throw new RuntimeException("Should be unreachable");
        }

        // TODO Is it preferable to reuse the Atkin-Bernstein code, caching pages which correspond
        // to the possible power candidates?
        if (isPrime(d)) return true;
        for (int a = (d % 60 == 1 || d % 60 == 49) ? 2 : 3; (1L << a) < d; a++) {
            long r = (long)(0.5 + Math.pow(d, 1. / a));
            if (d == (long)(0.5 + Math.pow(r, a)) && isPrime(r)) return true;
        }

        return false;
    }

    /*---------------------------------------------------
               Deterministic Miller-Rabin
    ---------------------------------------------------*/
    public static boolean isPrime(int x) {
        // See isPrime(long). We pick bases which are known to work for the entire range of int.
        // Special case for the bases.
        if (x == 2 || x == 7 || x == 61) return true;

        int d = x - 1;
        int s = 0;
        while ((d & 1) == 0) { s++; d >>= 1; } // TODO Can be optimised

        if (!isSPRP(2, d, s, x)) return false;
        if (!isSPRP(7, d, s, x)) return false;
        if (!isSPRP(61, d, s, x)) return false;
        return true;
    }

    private static boolean isSPRP(int b, int d, int s, int x /* == d << s */) {
        int l = modPow(b, d, x);
        if (l == 1 || l == x - 1) return true;
        for (int r = 1; r < s; r++) {
            l = modPow(l, 2, x);
            if (l == x - 1) return true;
            if (l == 1) return false;
        }

        return false;
    }

    public static int modPow(int a, int b, int c) {
        int accum = 1;
        while (b > 0) {
            if ((b & 1) == 1) accum = (int)(accum * (long)a % c);
            a = (int)(a * (long)a % c);
            b >>= 1;
        }
        return accum;
    }

    public static boolean isPrime(long x) {
        if (x < Integer.MAX_VALUE) return isPrime((int)x);

        long d = x - 1;
        int s = 0;
        while ((d & 1) == 0) { s++; d >>= 1; } // TODO Can be optimised

        // If b^d == 1 (mod x) or (b^d)^(2^r) == -1 (mod x) for some r < s then we pass for base b.
        // We select bases according to Jaeschke, Gerhard (1993), "On strong pseudoprimes to several bases", Mathematics of Computation 61 (204): 915–926, doi:10.2307/2153262
        // TODO Would it be better to use a set of 5 bases from http://miller-rabin.appspot.com/ ?
        if (!isSPRP(2, d, s, x)) return false;
        if (!isSPRP(3, d, s, x)) return false;
        if (!isSPRP(5, d, s, x)) return false;
        if (!isSPRP(7, d, s, x)) return false;
        if (x < 3215031751L) return true;
        if (!isSPRP(11, d, s, x)) return false;
        if (x < 2152302898747L) return true;
        if (!isSPRP(13, d, s, x)) return false;
        if (x < 3474749660383L) return true;
        if (!isSPRP(17, d, s, x)) return false;
        if (x < 341550071728321L) return true;

        throw new IllegalArgumentException("Overflow");
    }

    private static boolean isSPRP(long b, long d, int s, long x /* == d << s */) {
        if (b * (double)x > Long.MAX_VALUE) throw new IllegalArgumentException("Overflow"); // TODO Work out more precise page bounds

        long l = modPow(b, d, x);
        if (l == 1 || l == x - 1) return true;
        for (int r = 1; r < s; r++) {
            l = modPow(l, 2, x);
            if (l == x - 1) return true;
            if (l == 1) return false;
        }

        return false;
    }

    /**
     * Computes a^b (mod c). We assume c &lt; 2^62.
     */
    public static long modPow(long a, long b, long c) {
        long accum = 1;
        while (b > 0) {
            if ((b & 1) == 1) accum = prodMod(accum, a, c);
            a = prodMod(a, a, c);
            b >>= 1;
        }
        return accum;
    }

    /**
     * Computes a*b (mod c). We assume c &lt; 2^62.
     */
    private static long prodMod(long a, long b, long c) {
        // The naive product would require 128-bit integers.

        // Consider a = (A << 32) + B, b = (C << 31) + D. Different shifts chosen deliberately.
        // Then ab = (AC << 63) + (AD << 32) + (BC << 31) + BD with intermediate values remaining in 63 bits.
        long AC = (a >> 32) * (b >> 31) % c;
        long AD = (a >> 32) * (b & ((1L << 31) - 1)) % c;
        long BC = (a & ((1L << 32) - 1)) * (b >> 31) % c;
        long BD = (a & ((1L << 32) - 1)) * (b & ((1L << 31) - 1)) % c;

        long t = AC;
        for (int i = 0; i < 31; i++) {
            t = (t + t) % c;
        }
        // t = (AC << 31)
        t = (t + AD) % c;
        t = (t + t) % c;
        t = (t + BC) % c;
        // t = (AC << 32) + (AD << 1) + BC
        for (int i = 0; i < 31; i++) {
            t = (t + t) % c;
        }
        // t = (AC << 63) + (AD << 32) + (BC << 31)
        return (t + BD) % c;
    }

    /*---------------------------------------------------
                      Atkin-Bernstein
    ---------------------------------------------------*/
    // Page size.
    private static final int B = 1001 << 6;
    // Wheel modulus for sharding between binary quadratic forms.
    private static final int M = 60;

    // Squares of primes 5 < q < 240
    private static final int[] qqtab = new int[] {
        49, 121, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 2209, 2809,
        3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881,
        12769, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 26569, 27889, 29929, 32041, 32761,
        36481, 37249, 38809, 39601, 44521, 49729, 51529, 52441, 54289, 57121
    };
    // If a_i == q^{-2} (mod 60) is the reciprocal of qq[i], qq60tab[i] = qq[i] + (1 - a_i * qq[i]) / 60
    private static int[] qq60tab = new int[] {
        9, 119, 31, 53, 355, 97, 827, 945, 251, 1653, 339, 405, 515,
        3423, 3659, 823, 4957, 977, 6137, 1263, 7789, 1725, 10031, 1945, 2099, 11683,
        2341, 2957, 16875, 3441, 18999, 21831, 22421, 4519, 4871, 5113, 5487, 31507, 32215,
        35873, 6829, 7115, 38941, 43779, 9117, 9447, 51567, 9953, 56169
    };

    /**
     * Produces a set of parameters for traceElliptic to find solutions to ax^2 + cy^2 == d (mod M).
     * @param d The target residue.
     * @param a Binary quadratic form parameter.
     * @param c Binary quadratic form parameter.
     */
    private static List<int[]> initElliptic(final int[] invTotients, final int d, final int a, final int c) {
        List<int[]> rv = new ArrayList<int[]>();

        // The basic idea is that we maintain an invariant of the form
        //     M k = a x^2 + c y^2 - d
        // Therefore we increment x in steps F such that
        //     a((x + F)^2 - x^2) == 0 (mod M)
        // and similarly for y in steps G.
        int F = computeIncrement(a, M), G = computeIncrement(c, M);
        for (int f = 1; f <= F; f++) {
            for (int g = 1; g <= G; g++) {
                if ((a*f*f + c*g*g - d) % M == 0) {
                    rv.add(new int[] { invTotients[d], (2*f + F)*a*F/M, (2*g + G)*c*G/M, (a*f*f + c*g*g - d)/M, 2*a*F*F/M, 2*c*G*G/M });
                }
            }
        }

        return rv;
    }

    private static int computeIncrement(int a, int M) {
        // Find smallest F such that M | 2aF and M | aF^2
        int l = M / gcd(M, 2 * a);
        for (int F = l; true; F += l) {
            if (a*F*F % M == 0) return F;
        }
    }

    public static int gcd(int a, int b) {
        while (b != 0) {
            int t = b;
            b = a % b;
            a = t;
        }

        return a;
    }

    // NB This is generalised somewhat from primegen's implementation.
    private static void traceElliptic(final long[] buf, int x, int y, long start, final int cF2, final int cG2, final int[] Lmodqq, final int d) {
        // Bring the annular segment into the range of ints.
        start += 1000000000;
        while (start < 0) {
            start += x;
            x += cF2;
        }
        start -= 1000000000;
        int i = (int)start;

        while (i < B) {
            i += x;
            x += cF2;
        }

        while (true) {
            x -= cF2;
            if (x <= cF2 >> 1) {
                // It makes no sense that doing this in here should perform well, but empirically it does much better than
                // only eliminating the squares once.
                squarefreeTiny(buf, Lmodqq, d);
                return;
            }
            i -= x;

            while (i < 0) {
                i += y;
                y += cG2;
            }

            int i0 = i, y0 = y;
            while (i < B) {
                buf[i >> 6] ^= 1L << i;
                i += y;
                y += cG2;
            }
            i = i0;
            y = y0;
        }
    }

    // This only handles 3x^2 - y^2, and is closer to a direct port of primegen.
    private static void traceHyperbolic(final long[] a, int x, int y, long start, final int[] Lmodqq, final int d) {
        x += 5;
        y += 15;

        // Bring the segment into the range of ints.
        start += 1000000000;
        while (start < 0) {
            start += x;
            x += 10;
        }
        start -= 1000000000;
        int i = (int)start;

        while (i < 0) {
            i += x;
            x += 10;
        }

        while (true) {
            x += 10;
            while (i >= B) {
                if (x <= y) {
                    squarefreeTiny(a, Lmodqq, d);
                    return;
                }
                i -= y;
                y += 30;
            }

            int i0 = i, y0 = y;
            while (i >= 0 && y < x) {
                a[i >> 6] ^= 1L << i;
                i -= y;
                y += 30;
            }
            i = i0 + x - 10;
            y = y0;
        }
    }

    private static void squarefreeTiny(final long[] a, final int[] Lmodqq, final int d) {
        for (int j = 0; j < qqtab.length; ++j) {
            int qq = qqtab[j];
            int k = qq - 1 - ((Lmodqq[j] + qq60tab[j] * d - 1) % qq);
            while (k < B) {
                a[k >> 6] |= 1L << k;
                k += qq;
            }
        }
    }

    private static void squarefreeMid(long[][] buf, int[] invTotients, final long base, int q, int dqq, int di) {
        int qq = q * q;
        q = M * q + (M * M / 4);

        while (qq < M * B) {
            int i = qq - (int)(base % qq);
            if ((i & 1) == 0) i += qq;

            if (i < M * B) {
                int qqhigh = ((qq / M) << 1) + dqq;
                int ilow = i % M;
                int ihigh = i / M;
                while (ihigh < B) {
                    int n = invTotients[ilow];
                    if (n >= 0) buf[n][ihigh >> 6] |= 1L << ihigh;

                    ilow += di;
                    ihigh += qqhigh;
                    if (ilow >= M) {
                        ilow -= M;
                        ihigh += 1;
                    }
                }
            }

            qq += q;
            q += M * M / 2;
        }

        squarefreebig(buf, invTotients, base, q, qq);
    }

    private static void squarefreebig(long[][] buf, int[] invTotients, final long base, int q, long qq) {
        long bound = base + M * B;
        while (qq < bound) {
            long i = qq - (base % qq);
            if ((i & 1) == 0) i += qq;

            if (i < M * B) {
                int pos = (int)i;
                int n = invTotients[pos % M];
                if (n >= 0) {
                    int ihigh = pos / M;
                    buf[n][ihigh >> 6] |= 1L << ihigh;
                }
            }

            qq += q;
            q += M * M / 2;
        }
    }

    // The relevant totients of M - those which only have one forced prime factor.
    static final int[] totients = new int[] { 17, 23, 29, 47, 53, 59 };
    private static final int[] invTotients;
    // Parameters for tracing the hyperbolic BQF used for 59+60Z.
    private static final int[][] hyperbolic = new int[][] {
        {5, 1, 2, -1}, {5, 1, 8, -2}, {5, 1, 22, -9}, {5, 1, 28, -14}, {5, 4, 7, -1}, {5, 4, 13, -3}, {5, 4, 17, -5}, {5, 4, 23, -9},
        {5, 5, 4, 0}, {5, 5, 14, -3}, {5, 5, 16, -4}, {5, 5, 26, -11}, {5, 6, 7, 0}, {5, 6, 13, -2}, {5, 6, 17, -4}, {5, 6, 23, -8},
        {5, 9, 2, 3}, {5, 9, 8, 2}, {5, 9, 22, -5}, {5, 9, 28, -10}, {5, 10, 1, 4}, {5, 10, 11, 2}, {5, 10, 19, -2}, {5, 10, 29, -10}
    };

    // Parameters for tracing the elliptic BQFs used for all totients except 11 and 59.
    private static final int[][] elliptic;
    static {
        invTotients = new int[M];
        Arrays.fill(invTotients, -1);
        for (int i = 0; i < totients.length; i++) invTotients[totients[i]] = i;

        // Calculate the parameters for tracing the elliptic BQFs from a table of the BQF used for each totient.
        // E.g. for 17+60Z we use 5x^2 + 3y^2.
        int[][] bqfs = new int[][] {
            {17, 5, 3}, {23, 5, 3}, {29, 4, 1}, {47, 5, 3}, {53, 5, 3}
        };
        List<int[]> parmSets = new ArrayList<int[]>();
        for (int[] bqf : bqfs) parmSets.addAll(initElliptic(invTotients, bqf[0], bqf[1], bqf[2]));
        elliptic = parmSets.toArray(new int[0][]);
    }
}

Guardar como PPCG65876.java, compilar como javac PPCG65876.javay ejecutar como java -Xmx1G PPCG65876.


Pensé que probablemente harías algo que está muy por encima de mi cabeza. ;) Sin embargo, las reglas de Lembik excluyen las funciones de biblioteca para las pruebas principales, por lo que creo que tendrá que usar las suyas propias.
Reto Koradi

@RetoKoradi, sí, en la relectura, estoy de acuerdo en que los métodos en " Puede usar métodos de prueba primarios probabilísticos " significa técnicas en lugar de funciones. Reemplazarlo también proporciona una aceleración notable, así que gracias adicionales por señalarlo.
Peter Taylor

¡Gracias por esto! Sorprendentemente, solo llega a 3486 en mi PC. En la línea de comando tampoco parece que necesite -Xmx1G.

¿Obtiene valores mucho más altos si lo deja correr más tiempo? Acabo de detener el mío después de unas 40 horas. Encontró 6216 como la mayor diferencia (con valores primos alrededor de 16 mil millones) en algún lugar alrededor de 12-24 horas, y nada más después de eso antes de detenerlo. Las nuevas "puntuaciones altas" definitivamente se vuelven cada vez más raras después de un tiempo.
Reto Koradi

1
@RetoKoradi, no lo dejé correr por más de 15 minutos. Estoy trabajando en enfoques para acelerar el isGoodcontrol.
Peter Taylor

10

C ++, 2754 (todos los valores, prueba de primalidad de fuerza bruta)

Esta es la fuerza bruta, pero es un comienzo antes de que nuestros matemáticos residentes puedan trabajar con algo más eficiente.

Puedo agregar más explicaciones si es necesario, pero probablemente sea muy obvio por el código. Como si pes un primo distinto de 2, sabemos que p - 1es par, y uno de los dos factores es siempre 2. Así que enumeramos los primos, reducimos p - 1en todos los factores 2 y verificamos que el valor restante sea primo o que Todos sus factores son el mismo primo.

Código:

#include <stdint.h>
#include <vector>
#include <iostream>

int main()
{
    std::vector<uint64_t> primes;
    uint64_t prevGoodVal = 0;
    uint64_t maxDiff = 0;

    for (uint64_t val = 3; ; val += 2)
    {
        bool isPrime = true;
        std::vector<uint64_t>::const_iterator itFact = primes.begin();
        while (itFact != primes.end())
        {
            uint64_t fact = *itFact;
            if (fact * fact > val)
            {
                break;
            }

            if (!(val % fact))
            {
                isPrime = false;
                break;
            }

            ++itFact;
        }

        if (!isPrime)
        {
            continue;
        }

        primes.push_back(val);

        uint64_t rem = val;
        --rem;
        while (!(rem & 1))
        {
            rem >>= 1;
        }

        if (rem == 1)
        {
            continue;
        }

        bool isGood = true;
        itFact = primes.begin();
        while (itFact != primes.end())
        {
            uint64_t fact = *itFact;
            if (fact * fact > rem)
            {
                break;
            }

            if (!(rem % fact))
            {
                while (rem > fact)
                {
                    rem /= fact;
                    if (rem % fact)
                    {
                        break;
                    }
                }

                isGood = (rem == fact);
                break;
            }

            ++itFact;
        }

        if (isGood)
        {
            if (prevGoodVal)
            {
                uint64_t diff = val - prevGoodVal;
                if (diff > maxDiff)
                {
                    maxDiff = diff;
                    std::cout << maxDiff
                              << " (" << val << " - " << prevGoodVal << ")"
                              << std::endl;
                }
            }

            prevGoodVal = val;
        }
    }

    return 0;
}

El programa imprime la diferencia así como los dos primos válidos correspondientes cada vez que se encuentra una nueva diferencia máxima. Ejemplo de salida de la prueba ejecutada en mi máquina, donde el valor reportado de 2754 se encuentra después de aproximadamente 1:20 minutos:

4 (11 - 7)
6 (19 - 13)
8 (37 - 29)
14 (73 - 59)
24 (137 - 113)
30 (227 - 197)
32 (433 - 401)
48 (557 - 509)
50 (769 - 719)
54 (1283 - 1229)
60 (1697 - 1637)
90 (1823 - 1733)
108 (2417 - 2309)
120 (3329 - 3209)
126 (4673 - 4547)
132 (5639 - 5507)
186 (7433 - 7247)
222 (8369 - 8147)
258 (16487 - 16229)
270 (32507 - 32237)
294 (34157 - 33863)
306 (35879 - 35573)
324 (59393 - 59069)
546 (60293 - 59747)
570 (145823 - 145253)
588 (181157 - 180569)
756 (222059 - 221303)
780 (282617 - 281837)
930 (509513 - 508583)
1044 (1046807 - 1045763)
1050 (1713599 - 1712549)
1080 (1949639 - 1948559)
1140 (2338823 - 2337683)
1596 (3800999 - 3799403)
1686 (6249743 - 6248057)
1932 (12464909 - 12462977)
2040 (30291749 - 30289709)
2160 (31641773 - 31639613)
2190 (34808447 - 34806257)
2610 (78199097 - 78196487)
2640 (105072497 - 105069857)
2754 (114949007 - 114946253)
^C

real    1m20.233s
user    1m20.153s
sys 0m0.048s

7

C ++, 14226 (solo valores altos, prueba de Miller-Rabin)

Publicar esto por separado porque es completamente diferente de mi solución inicial, y no quería reemplazar por completo una publicación que había recibido una cantidad de votos a favor.

Gracias a @primo por señalar un problema con la versión original. Hubo un desbordamiento de grandes números en la prueba de números primos.

Esto aprovecha algunas ideas que se han obtenido durante la evolución de otras soluciones. Las principales observaciones son:

  • Dado que los resultados muestran claramente que las brechas se hacen más grandes a medida que los primos se hacen más grandes, no tiene sentido molestarse con los primos pequeños. Explorar grandes valores primos es mucho más efectivo.
  • Se requieren pruebas probabilísticas de primos para primos de este tamaño.

En base a esto, el método empleado aquí es bastante simple:

  • Para la prueba de primalidad, se usa la prueba de Miller-Rabin. La implementación se basa en el pseudocódigo de la página de wikpedia . Con las bases utilizadas, entregará valores correctos hasta 3825123056546413051 (ver OEIS A014233 ), lo cual es suficiente para el rango de valores utilizados aquí.
  • Para determinar si los primos son buenos primos, se despojan las potencias de 2. Factorizar el valor restante sería muy costoso, pero es innecesario. En cambio, calculo la menor cantidad posible de raíces usando matemática doble, y veo si alguna de ellas produce un número entero que de hecho es la raíz correcta.
  • Math utiliza principalmente valores sin signo de 64 bits, con valores sin signo de 128 bits necesarios para algunos valores temporales en la prueba de primalidad.
  • Como utilizo matemática doble para las raíces, y un doble puede representar exactamente enteros de 53 bits como máximo, el tamaño máximo que este código puede manejar de manera segura es 54 bits (el número convertido a doble es como máximo la mitad del tamaño de principal).
  • Dado que 54 bits era el tamaño máximo para el número que estaba seguro de usar, empiezo con un número que es algo más pequeño que el número máximo de 54 bits. El código informa brechas más grandes para valores de inicio aún mayores, y probablemente sean correctos, pero no puedo estar tan seguro.

Resultados:

1266 (16888498602640739 - 16888498602639473)
1470 (16888498602645563 - 16888498602644093)
2772 (16888498602651629 - 16888498602648857)
2862 (16888498602655829 - 16888498602652967)
3120 (16888498602675053 - 16888498602671933)
3756 (16888498602685769 - 16888498602682013)
4374 (16888498602696257 - 16888498602691883)
5220 (16888498602745493 - 16888498602740273)
5382 (16888498603424039 - 16888498603418657)
5592 (16888498603511279 - 16888498603505687)
5940 (16888498603720697 - 16888498603714757)
6204 (16888498605020837 - 16888498605014633)
6594 (16888498605999017 - 16888498605992423)
14226 (16888498608108539 - 16888498608094313)
^C

real    0m26.335s
user    0m26.312s
sys 0m0.008s

Código:

#include <stdint.h>
#include <cmath>
#include <iostream>

uint64_t intRoot(uint64_t a, int p)
{
    double e = 1.0 / static_cast<double>(p);
    double dRoot = pow(a, e);

    return static_cast<uint64_t>(dRoot + 0.5);
}

uint64_t intPow(uint64_t a, int e)
{
    uint64_t r = 1;

    while (e)
    {
        if (e & 1)
        {
            r *= a;
        }

        e >>= 1;
        a *= a;
    }

    return r;
}

uint64_t modPow(uint64_t a, uint64_t e, uint64_t m)
{
    uint64_t r = 1;
    a %= m;

    while (e)
    {
        if (e & 1)
        {
            __uint128_t t = r;
            t *= a;
            t %= m;
            r = t;
        }

        e >>= 1;
        __uint128_t t = a;
        t *= a;
        t %= m;
        a = t;
    }

    return r;
}

bool isPrime(uint64_t n)
{
    const uint64_t a[] = {2, 3, 5, 7, 11, 13, 17, 19, 23};

    if (n < 2)
    {
        return false;
    }

    for (int k = 0; k < 9; ++k)
    {
        if (n == a[k])
        {
            return true;
        }

        if (n % a[k] == 0)
        {
            return false;
        }
    }

    int r = __builtin_ctzll(n - 1);
    uint64_t d = (n - 1) >> r;

    for (int k = 0; k < 9; ++k)
    {
        uint64_t x = modPow(a[k], d, n);

        if (x == 1 || x == n - 1)
        {
            continue;
        }

        bool comp = true;
        for (int i = 0; i < r - 1; ++i)
        {
            x = modPow(x, 2, n);
            if (x == 1)
            {
                return false;
            }
            if (x == n - 1)
            {
                comp = false;
                break;
            }
        }

        if (comp)
        {
            return false;
        }
    }

    return true;
}

int main()
{
    uint64_t prevGoodVal = 0;
    uint64_t maxDiff = 0;

    for (uint64_t val = (1ull << 54) - (1ull << 50) + 1; ; val += 2)
    {
        if (isPrime(val))
        {
            uint64_t d = static_cast<double>((val - 1) >> __builtin_ctzll(val - 1));
            bool isGood = false;

            if (isPrime(d))
            {
                isGood = true;
            }
            else
            {
                for (int e = 2; ; ++e)
                {
                    uint64_t r = intRoot(d, e);
                    if (r < 3)
                    {
                        break;
                    }

                    if (intPow(r, e) == d && isPrime(r))
                    {
                        isGood = true;
                        break;
                    }
                }
            }

            if (isGood)
            {
                if (prevGoodVal)
                {
                    uint64_t diff = val - prevGoodVal;
                    if (diff > maxDiff)
                    {
                        maxDiff = diff;
                        std::cout << maxDiff
                                  << " (" << val << " - " << prevGoodVal << ")"
                                  << std::endl;
                    }
                }

                prevGoodVal = val;
            }
        }
    }

    return 0;
}

@primo Debería ser correcto ahora. Hubo un desbordamiento donde multipliqué dos números de 64 bits en la prueba de primalidad, causando que informara "compuesto" para algunos números primos grandes. Gracias por mencionarlo. Avísame si todavía ves un problema.
Reto Koradi

Esa es buena. ¿La carrera está en marcha? ;)
primo

@primo Tenía algunos valores considerablemente más grandes, pero usarían números primos que no pueden representarse completamente por un doble. Creo que todavía daría una aproximación lo suficientemente precisa de la raíz para producir resultados correctos. O podría implementar un algoritmo de búsqueda de raíz que no use dobles. Pero no podré pasar más tiempo en esto antes de que expire la recompensa ...
Reto Koradi

¡Tu respuesta también alcanza su máximo en 4 segundos! (Al igual que Primo.)

6

PyPy-2.4.0

Python-2

El xarchivo s ...

Episodio: "¡Mira mamá! ¡Ni una sola división!"

;-)

M = g = 0
B = L = {}
n = 2
while 1:
        if n in L:
                B = P = L[n]
                del L[n]
        else:
                if len(B) == 2:
                        if g:
                                m = n - g
                                if M < m:
                                        M = m
                                        print n, g, m
                        g = n
                P = [n]
        for p in P:
                npp = n + p
                if npp in L:
                        if p not in L[npp]:
                                L[npp] += [p]
                else:
                        L[npp] = [p]
        n += 1

Lo probé en Debian8 con PyPy-2.4.0 y Python2 comenzó como:

timeout 2m pypy -O x
timeout 2m python2 -O x

Si realmente hay mucha RAM, la del L[n]línea puede ser eliminada.


El generador de números primos básico es este:

L = {}
n = 2

while 1:

        if n in L:
                P = L[n]
                del L[n]
        else:
                print n
                P = [n]

        for p in P:
                npp = n + p
                if npp in L:
                        if p not in L[npp]:
                                L[npp] += [p]
                else:
                        L[npp] = [p]

        n += 1

Básicamente hace exactamente lo que hace el tamiz de Eratóstenes pero en un orden diferente.

Les un diccionario pero puede verse como una lista (cinta) de listas de números. Las celdas inexistentes L[n]se interpretan como nno tiene divisores primos conocidos hasta ahora.

El whilebucle toma una decisión principal o no principal en cada turno L[n].

  • Si L[n]existe (igual que n in L), P = L[n]es una lista de distintos divisores primos de n. Entonces nno es un primo.

  • Si L[n]no existe, no se encontró ningún divisor principal. Entonces ndebe ser primo entonces con P = [n]ser el divisor conocido.

Ahora Pes la lista de divisores primos conocidos para ambos casos.

El for p in Pbucle mueve cada entrada de Pavance por la distancia de su valor en la cinta de números.

Así es como los divisores saltan sobre la cinta y esta es la razón por la cual estos números de salto tienen que ser primos. Los nuevos números solo elseaparecen en la cinta por la decisión anterior y esos son números sin divisores conocidos aparte de ellos mismos. Los no primos nunca entran en estas listas L[n].

Los números primos que saltan en la lista son distintos porque cada número nse mira solo una vez y solo se agrega como divisor (si no es primo :) 0o (si es primo :) 1veces. Los divisores primos conocidos solo avanzarán pero nunca se duplicarán. Asi queL[n] lo siempre tendrá divisores primos distintos o estará vacío.


De vuelta al programa superior para las brechas de primos buenos:

    if n in L:
            B = P = L[n]

... mantiene los divisores primos de nen Bcuandon se sabe que no es primordial.

Si nse reconoce que es primo, Bcontiene la lista de divisores primos del pase de bucle anterior mirando n-1:

    else:
            if len(B) == 2:

... entonces len(B) == 2significa n - 1tiene dos divisores primos distintos.

                        if g:
                                m = n - g
                                if M < m:
                                        M = m
                                        print n, g, m
                        g = n

gsolo recuerda el último buen primo visto antes del nuevo, Mes la longitud del espacio máximo bueno primo anterior y mla longitud del espacio recién encontrado.


Final feliz.


Buena solución Para mí, esto llega a 2640 en aproximadamente 117s.
primo

1
¿Podría agregar una pequeña explicación por favor?

1
@Lembik: Hecho ...

4

C #, probablemente 1932

Descubrí que, cuanto más rápido sea tu algoritmo para encontrar números primos, mejor será tu puntaje. También estoy bastante seguro de que mi algoritmo no es el método más óptimo para la búsqueda principal.

using System;
using System.Collections.Generic;

namespace GoodPrimes
{
    class Program
    {
        static void Main(string[] args)
        {
            int[] list_of_primes = new int[168]{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997};
            bool is_last_prime = false;
            int last_prime = 0;
            int max_value = 0;
            int old_max_value = 1000000;
            int old_min_value = 3;
            HashSet<int> primeSet = new HashSet<int>();
            primeSet.Add(2);
            int X = 0;
            Console.WriteLine("Initialize primes until " + old_max_value);
            for (int i = old_min_value; i < old_max_value; i++)
            {
                if (IsPrime(i, primeSet))
                    primeSet.Add(i);
            }
            old_min_value = old_max_value;
            for (int i = 3; ; i += 2)
            {
                if (i > old_max_value)
                {
                    old_max_value += 500000;
                    Console.WriteLine("Initialize primes until " + old_max_value);
                    for (int j = old_min_value; j < old_max_value; j++)
                    {
                        for(int k = 0; k < list_of_primes.Length; k++)
                            if(j % list_of_primes[k] == 0 && j > list_of_primes[k])
                                continue;
                        if (IsPrime(j, primeSet))
                            primeSet.Add(j);
                    }
                    old_min_value = old_max_value;
                }
                if (primeSet.Contains(i))
                {
                    is_last_prime = false;
                    X = (i - 1) / 2;
                    while (X % 2 == 0)
                        X = X / 2;
                    if (IsPrime(X, primeSet))
                        is_last_prime = true;
                    for (int j = 3; j < i; j++)
                    {
                        if (j % 2 == 0 && j > 2)
                            continue;
                        if (j % 3 == 0 && j > 3)
                            continue;
                        if (j % 5 == 0 && j > 5)
                            continue;
                        if (j % 7 == 0 && j > 7)
                            continue;
                        if (j % 11 == 0 && j > 11)
                            continue;
                        if (j % 13 == 0 && j > 13)
                            continue;
                        if (j % 17 == 0 && j > 17)
                            continue;

                        if (X % j == 0 || is_last_prime)
                        {
                            while (X % j == 0)
                                X = X / j;
                            if ((primeSet.Contains(j) && X == 1) || is_last_prime)
                            {
                                while (X % j == 0)
                                    X = X / j;
                                if (X == 1 || is_last_prime)
                                {
                                    if (i - last_prime > max_value)
                                    {
                                        max_value = i - last_prime;
                                        Console.WriteLine("New max value: " + max_value.ToString() + " (" + i.ToString() + "-" + last_prime.ToString() + ")");
                                    }
                                    last_prime = i;
                                }
                            }
                            break;
                        }
                    }
                }
            }
            Console.ReadLine();
        }

        private static bool IsPrime(int i, HashSet<int> j)
        {
            if (i == 2)
                return true;
            for (int m = 2; m < Math.Sqrt(System.Convert.ToDouble(i)) + 1; m++)
            {
                if (j.Contains(m))
                {
                    if (m % 2 == 0 && m > 2)
                        continue;
                    if (m % 3 == 0 && m > 3)
                        continue;
                    if (m % 5 == 0 && m > 5)
                        continue;
                    if (m % 7 == 0 && m > 7)
                        continue;
                    if (m % 11 == 0 && m > 11)
                        continue;
                    if (m % 13 == 0 && m > 13)
                        continue;
                    if (m % 17 == 0 && m > 17)
                        continue;
                    if (i % m == 0)
                        return false;
                }
            }
            return true;
        }
    }
}

4

Pitón 3, 546

... en dos minutos en mi máquina, que creo que es significativamente menos potente que la tuya.

def getPrimes_parallelized(): #uses sieve of Sundaram
        yield 2
        yield 3
        P = [[4,1]]
        i = 2
        while 1:
            if P[0][0] <= i:
                while P[0][0] <= i:
                    P[0][0] += 2*P[0][1]+1
                    P.sort()
            elif P[0][0] > i:
                yield 2*i+1
                P.append([2*(i+i*i), i])
                P.sort()
            i += 1

def goodPrimes(x):
    P = getPrimes_parallelized()
    primes = []

    for p in P:
        primes.append(p)
        n = p-1
        factors = []

        for p2 in primes:
            if n%p2 == 0:
                factors.append(p2)
                while n%p2 == 0: n //= p2

            if len(factors) > x: break

        if len(factors) <= x: yield p

maxdiff = 0
GP = goodPrimes(2)
p1 = next(GP)
gp = next(GP)
gps = [(p1,gp)]

while 1:
    if gp-p1 > maxdiff:
        maxdiff = gp-p1
        print("p: %d, q: %d, |q-p|: %d" % (p1,gp,gp-p1))
    p1,gp = gp,next(GP)

Probablemente podría hacer esto más eficiente optimizando para el x=2caso, pero eh. Suficientemente bueno. :PAGS


Tu código acaba de salir p: 2, q: 3, |q-p|: 1para mí.

1
@Lembik: Ah, whoops. Disminuí esto de la versión que tenía tramas, y omití una línea crucial. Fijo.
El'endia Starman

4

Ve, probablemente 756

¡Para vergüenza! Soy tan novato que solo reutilicé ingenuamente un código antiguo y esperé que funcionara y fuera rápido. Si volviera a implementar esto y realmente lo construyera en torno a buenos números primos, sería mucho más rápido, pero, por desgracia, estoy aprendiendo. (Probablemente responderé nuevamente mañana con una solución totalmente reconstruida que está especialmente diseñada).

package main

import "fmt"

func mkPrime(ch chan<- int) {
    for i := 2; ; i++ {
        ch <- i // Send 'i' to channel 'ch'.
    }
}

// Copy the values from channel 'in' to channel 'out',
// removing those divisible by 'prime'.
func filterPrm(in <-chan int, out chan<- int, prime int) {
    for {
        i := <-in // Receive value from 'in'.
        if i%prime != 0 {
            out <- i // Send 'i' to 'out'.
        }
    }
}

func mkPFac(max int, ch chan<- int) {
    ch <- 2
    for i := 3; i <= max; i += 2 {
        ch <- i
    }
    ch <- -1 // signal that the limit is reached
}

// Copy the values from channel 'in' to channel 'out',
// removing those divisible by 'prime'.
func filterPFac(in <-chan int, out chan<- int, prime int) {
    for i := <-in; i != -1; i = <-in {
        if i%prime != 0 {
            out <- i
        }
    }
    out <- -1
}

func calcPFactors(numToFac int) []int {
    rv := []int{}
    ch := make(chan int)
    go mkPFac(numToFac, ch)
    for prime := <-ch; (prime != -1) && (numToFac > 1); prime = <-ch {
        for numToFac%prime == 0 {
            numToFac = numToFac / prime
            rv = append(rv, prime)
        }
        ch1 := make(chan int)
        go filterPFac(ch, ch1, prime)
        ch = ch1
    }
    return rv
}

func rmDup(list []int) []int {
    var nlist []int
    for _, e := range list {
        if !isIn(e, nlist) {
            nlist = append(nlist, e)
        }
    }
    return nlist
}

func isIn(a int, list []int) bool {
    for _, b := range list {
        if b == a {
            return true
        }
    }
    return false
}

// The prime sieve: Daisy-chain Filter processes.
func main() {
    var diff, prev, high int
    ch := make(chan int) // Create a new channel.
    go mkPrime(ch)       // Launch Generate goroutine.
    for i := 0; i < 10000000000; i++ {
        prime := <-ch
        list := rmDup(calcPFactors(prime - 1))
        if len(list) == 2 {
            //fmt.Println(list, prime)
            diff = prime - prev
            //fmt.Println(diff)
            prev = prime
            if diff > high {
                high = diff
                fmt.Println(high)
            }
        }
        ch1 := make(chan int)
        go filterPrm(ch, ch1, prime)
        ch = ch1
    }
}

Utiliza concurrencia, obviamente.


1
Ir siempre es bienvenido :)

4

Java, 4224 (99,29 s)

Tamiz muy personalizado de Eratóstenes con la ventaja de BitSet

import java.util.BitSet;

public class LargeGoodPrimeGap {

    // Use this to find upto Large Gap of 4032 - Max 4032 found in 55.17 s
    // static int    limit         = 125_00_00_000;

    // Use this to find upto Large Gap of 4224 - Max 4224 found in 99.29 s
    static int    limit         = Integer.MAX_VALUE - 1;

    // BitSet is highly efficient against boolean[] when Billion numbers were involved
    // BitSet uses only 1 bit for each number
    // boolean[] uses 8 bits aka 1 byte for each number which will produce memory issues for large numbers
    static BitSet primes        = new BitSet(limit + 1);
    static int    limitSqrt     = (int) Math.ceil(Math.sqrt(limit));

    static int    maxAllowLimit = Integer.MAX_VALUE - 1;

    static long   start         = System.nanoTime();

    public static void main(String[] args) {

        genPrimes();

        findGoodPrimesLargeGap();

    }

    // Generate Primes by Sieve of Eratosthenes
    // Sieve of Eratosthenes is much efficient than Sieve of Atkins as
    // Sieve of Atkins involes Division, Modulus, Multiplication, Subtraction, Addition but
    // Sieve of Eratosthenes involves only addition and multiplication
    static void genPrimes() {

        // Check if the Given limit exceeds the Permitted Limit 2147483646 (Integer.MAX_VALUE - 1)
        // If the limit exceeded, Out the Error Message and Exit the Program
        if ( limit > maxAllowLimit ) {
            System.err.printf(String.format("Limit %d should not be Greater than Max Limit %d", limit, maxAllowLimit));
            System.exit(0);
        }

        // Mark numbers from 2 to limit + 1 as Prime
        primes.set(2, limit + 1);

        // Now all Values in primes will be true except 0 and 1,
        // True  represents     prime number 
        // False represents not prime number

        // Set the First Prime number
        int prime = 2;
        // Set the First multiple of prime
        int multiple = prime;
        // Reduce the limit by 1 if limit == Interger.MAX_VALUE - 1 to prevent
        // Integer overflow on multiple variable
        int evenLimit = limit == Integer.MAX_VALUE - 1 ? limit - 1 : limit;

        // Mark all Even Numbers as Not Prime except 2
        while ( (multiple += prime) <= evenLimit ) {
            primes.clear(multiple);
        }

        // If evenLimit != limit, set last even number as Not Prime
        if ( evenLimit != limit ) {
            primes.clear(limit);
        }

        int primeAdd;

        // Set odd multiples of each Prime as not Prime;
        // prime <= limitSqrt -> Check Current Prime <= SQRT(limit)
        // prime = primes.nextSetBit(prime + 1) -> Assign the next True (aka Prime) value as Current Prime
        //  ^ - Above initialisation is highly efficient as Next True check is only based on bits
        // prime > 0 -> To handle -ve values returned by above True check if no more True is to be found
        for ( prime = 3; prime > 0 && prime <= limitSqrt; prime = primes.nextSetBit(prime + 1) ) {
            // All Prime Numbers except 2 were odd numbers
            // Adding a Prime number with itself will result in an Even number,
            // but all the Even numbers were already marked as not Prime.
            // So every odd multiple (3rd, 5th, 7th, ...) of Current Prime will only be marked as not Prime
            // and skipping all the even multiples (2nd, 4th, 6th, ...)
            // This reduces the time for prime calculation by ~50% when comparing with all multiples marking
            primeAdd = prime + prime;
            // multiple = prime * prime -> Unmarked Prime will appear only from this number as previous values
            // are already marked as Non Prime by previous prime multiples
            // multiple += primeAdd -> Increases the multiple by multiple + (CurrentPrime x 2) which will
            // always be a odd multiple (5th, 7th, 9th, ...)
            for ( multiple = prime * prime; multiple <= limit && multiple > 0; multiple += primeAdd ) {
                // Clear or False the multiple if it True
                primes.clear(multiple);
            }
        }

        double end = (System.nanoTime() - start) / 1000000000.0;
        System.out.printf("Total Primes upto %d = %d in %.2f s", limit, primes.cardinality(), end);

    }

    static void findGoodPrimesLargeGap() {

        int prevGP = 7;
        int prevDiff = 0;

        for ( int i = 11; i <= limit && i > 0; i = primes.nextSetBit(i + 1) ) {
            int gp = i - 1;
            int distPrimes = 0;
            for ( int j = 2; j <= limitSqrt && distPrimes < 3 && j > 0; j = primes.nextSetBit(j + 1) ) {
                if ( gp % j == 0 ) {
                    ++distPrimes;
                    while ( gp % j == 0 ) {
                        gp = gp / j;
                    }
                    if ( gp <= 1 ) {
                        break;
                    }
                }
                if ( primes.get(gp) ) {
                    ++distPrimes;
                    break;
                }
            }
            if ( distPrimes == 2 ) {
                int currDiff = i - prevGP;
                if ( currDiff > prevDiff ) {
                    System.out.println(
                            String.format("(%d - %d) %d (%.2f s)", i, prevGP, prevDiff = currDiff, (System.nanoTime() - start) / 1000000000.0));
                }
                prevGP = i;
            }
        }

    }

}

El tiempo necesario depende del límite máximo de los números primos que se calcularán.

por

static int    limit         = Integer.MAX_VALUE - 1;

Total Primes upto 2147483646 = 105097564 in 17.65 s
(11 - 7) 4 (17.71 s)
(19 - 13) 6 (17.71 s)
(37 - 29) 8 (17.71 s)
(73 - 59) 14 (17.71 s)
(137 - 113) 24 (17.71 s)
(227 - 197) 30 (17.71 s)
(433 - 401) 32 (17.71 s)
(557 - 509) 48 (17.71 s)
(769 - 719) 50 (17.71 s)
(1283 - 1229) 54 (17.71 s)
(1697 - 1637) 60 (17.71 s)
(1823 - 1733) 90 (17.71 s)
(2417 - 2309) 108 (17.71 s)
(3329 - 3209) 120 (17.71 s)
(4673 - 4547) 126 (17.71 s)
(5639 - 5507) 132 (17.71 s)
(7433 - 7247) 186 (17.71 s)
(8369 - 8147) 222 (17.71 s)
(16487 - 16229) 258 (17.71 s)
(32507 - 32237) 270 (17.72 s)
(34157 - 33863) 294 (17.72 s)
(35879 - 35573) 306 (17.72 s)
(59393 - 59069) 324 (17.72 s)
(60293 - 59747) 546 (17.72 s)
(145823 - 145253) 570 (17.73 s)
(181157 - 180569) 588 (17.73 s)
(222059 - 221303) 756 (17.73 s)
(282617 - 281837) 780 (17.73 s)
(509513 - 508583) 930 (17.74 s)
(1046807 - 1045763) 1044 (17.75 s)
(1713599 - 1712549) 1050 (17.77 s)
(1949639 - 1948559) 1080 (17.77 s)
(2338823 - 2337683) 1140 (17.78 s)
(3800999 - 3799403) 1596 (17.80 s)
(6249743 - 6248057) 1686 (17.85 s)
(12464909 - 12462977) 1932 (17.96 s)
(30291749 - 30289709) 2040 (18.31 s)
(31641773 - 31639613) 2160 (18.34 s)
(34808447 - 34806257) 2190 (18.41 s)
(78199097 - 78196487) 2610 (19.40 s)
(105072497 - 105069857) 2640 (20.07 s)
(114949007 - 114946253) 2754 (20.32 s)
(246225989 - 246223127) 2862 (24.01 s)
(255910223 - 255907313) 2910 (24.31 s)
(371348513 - 371345567) 2946 (27.97 s)
(447523757 - 447520673) 3084 (30.50 s)
(466558553 - 466555373) 3180 (31.15 s)
(575713847 - 575710649) 3198 (35.00 s)
(606802529 - 606799289) 3240 (36.13 s)
(784554983 - 784551653) 3330 (42.89 s)
(873632213 - 873628727) 3486 (46.39 s)
(987417437 - 987413849) 3588 (50.97 s)
(1123404923 - 1123401023) 3900 (56.60 s)
(1196634239 - 1196630297) 3942 (59.70 s)
(1247118179 - 1247114147) 4032 (61.88 s)
(1964330609 - 1964326433) 4176 (94.89 s)
(2055062753 - 2055058529) 4224 (99.29 s)

¡Esto es sorprendentemente más rápido que la otra presentación de Java!

@Lembik, agregaré una explicación más detallada más tarde hoy ..
The Coder

@Lembik, altamente personalizado la lógica del tamiz. Ahora el tiempo necesario para generar todos los números primos se reduce en ~ 50%. Entonces, dentro de los 100 segundos, se puede encontrar la diferencia máxima máxima dentro de Integer.MAX_VALUE
The Coder

3

Pitón 3, 1464

Con la ayuda de Lembik , cuya idea era simplemente verificar los dos primeros números primos buenos después de un poder de dos y, cuando se encuentre, pasar inmediatamente al siguiente poder de dos. Si alguien puede usar esto como un punto de salto, siéntase libre. Una parte de mis resultados están a continuación después de ejecutar esto en IDLE. El código sigue.

Gracias a primo cuando agarré su lista de pequeños números primos para este código.

Editar: he editado el código para que se ajuste a las especificaciones reales del problema (dos divisores primos distintos, no exactamente dos divisores primos distintos), e implementé no pasar a la siguiente potencia de dos hasta que los primos buenos que el programa ha encontrado tienen un brecha mayor que la de los dos últimos números primos que encontró. También debería darle crédito a Peter Taylor , ya que usé su idea de que los buenos números primos solo podrían ser unos pocos valores mod 60.

Una vez más, he ejecutado esto en una computadora lenta en IDLE, por lo que los resultados pueden ser más rápidos en algo como PyPy, pero no he podido verificarlo.

Una muestra de mis resultados (p, q, qp, tiempo):

8392997 8393999 1002 2.6750288009643555
16814663 16815713 1050 7.312098026275635
33560573 33561653 1080 8.546097755432129
67118027 67119323 1296 10.886202335357666
134245373 134246753 1380 20.37420392036438
268522349 268523813 1464 59.23987054824829
536929187 536931047 1860 95.36681914329529

Mi código:

from time import time

small_primes = [
    2,  3,  5,  7, 11, 13, 17, 19, 23, 29, 31, 37,
   41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89,
   97,101,103,107,109,113,127,131,137,139,149,151,
  157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239]

def good(n=0):
    end = n or 100
    time0 = time()
    x,y = 0,0
    recent_max = 0
    for i in range(2,end):
        two = 2**i
        for j in range(two+3,2*two,2):
            m=j%60
            if not(m==17or m==23or m==29or m==47or m==53or m==59): continue
            comp = 0
            for p in small_primes:
                if j % p == 0 and j != p:
                    comp = 1
                    break
            for p in range(241,int(pow(j,.5))+1,2):
                if j % p == 0 and j != p:
                    comp = 1
                    break
            if comp: continue
            d = j-1 & 1-j
            if is_prime_power((j-1)/d):
                x,y = y,j
                if x and y and y-x > recent_max:
                    print(x,y,y-x,time()-time0)
                    recent_max = y-x
                    x,y=0,0
                    break

def is_prime_power(n):
    for p in small_primes:
        if n%p == 0:
            n //= p
            while n % p == 0: n //= p
            return n == 1
    for p in range(241,int(pow(n,.5))+1,2):
        if n%p == 0:
            n //= p
            while n % p == 0: n //= p
            return n == 1
    return n > 1

good()

No creo que tu código sea correcto. ¿Tiene alguna justificación para incrementar jen 4lugar de hacerlo 2? Y parece rechazar sin condiciones si j-1no es una principales veces una potencia de dos, donde usted debe comprobar que es que es de un primo de energía veces una potencia de dos.
Peter Taylor

@PeterTaylor Oh, dulce Jesús, gracias. Sabía que me faltaba algo. Dos factores primos distintos, no exactamente dos factores primos distintos. Corregiré esto en la mañana.
Sherlock9

En efecto. El próximo buen primo después de 549755815199 es 549755816417 (2 ^ 5 x 17179869263), una brecha de solo 1218.
primo

2

Ir: todos los enteros: 5112

max |q-p| 5112 q 4278566879 p 4278561767

good.go:

// Find the largest gap between good primes
// /codegolf/65876/
//
// We say a prime p is good if p-1 has exactly 2 distinct prime factors.
//
// Your code should output the absolute difference between consecutive
// good primes q and p so that |q-p| is as large as possible and
// q is the smallest good prime larger than p. You may output any number of
// good pairs and your last output will be taken as the score.
//
// The timings will be run on a standard Ubuntu install on
// an 8GB AMD FX-8350 eight-core processor.
// http://products.amd.com/en-us/search/CPU/AMD-FX-Series/AMD-FX-8-Core-Black-Edition/FX-8350/92
//
// I will kill your code after 2 minutes unless it starts to
// run out of memory before that. It should therefore make sure to
// output something before the cut off.
//
// A067466 Primes p such there are 2 distinct prime factors in p-1.
// https://oeis.org/A067466
//
// 7, 11, 13, 19, 23, 29, 37, 41, 47, 53, 59, 73, 83, 89, 97, 101, 107, ...
//
// peterSO: max |q-p| 5112 q 4278566879 p 4278561767
// /codegolf//a/73770/51537
//
// p is a good prime number, if
//
//   p-1 = x**a * y**b
//
// Where p is a prime number, x and y are are distinct prime numbers,
// and a and b are positive integers.
//
// For p > 2, p is odd and (p-1) is even. Therefore, either x or y = 2.

package main

import (
    "fmt"
    "math"
    "runtime"
    "time"
)

var start = time.Now()

const (
    primality = 0x80
    prime     = 0x00
    notprime  = 0x80
    distinct  = 0x7F
)

func oddPrimes(n uint64) (sieve []uint8) {
    // odd prime numbers
    sieve = make([]uint8, (n+1)/2)
    sieve[0] = notprime
    p := uint64(3)
    for i := p * p; i <= n; i = p * p {
        for j := i; j <= n; j += 2 * p {
            sieve[j/2] = notprime
        }
        for p += 2; sieve[p/2] == notprime; p += 2 {
        }
    }
    return sieve
}

func maxGoodGap(n uint64) {
    // odd prime numbers
    sieve := oddPrimes(n)
    // good prime numbers
    fmt.Println("|q-p|", " = ", "q", "-", "p", ":", "t")
    m := ((n + 1) + 1) / 2
    var max, px, qx uint64
    for i, s := range sieve {
        if s == prime {
            p := 2*uint64(i) + 1
            if p < m {
                // distinct odd prime number factors
                for j := p + 2*p; j <= m; j += 2 * p {
                    sieve[j/2]++
                }
            }
            // Remove factors of 2 from p-1.
            p1 := p - 1
            for ; p1&1 == 0; p1 >>= 1 {
            }
            // Does p-1 have exactly 2 distinct prime factors?
            // That is, one distinct prime factor other than 2.
            if sieve[p1/2]&distinct <= 1 {
                // maximum consecutive good prime gap
                px, qx = qx, p
                if max < qx-px {
                    max = qx - px
                    if px != 0 {
                        fmt.Println(max, " = ", qx, "-", px, " : ", time.Since(start))
                    }
                }
            }
        }
    }
}

func init() {
    runtime.GOMAXPROCS(1)
}

func main() {
    // Two minutes: max |q-p| 5112 q 4278566879 p 4278561767
    var n uint64 = math.MaxUint32 // 4294967295
    fmt.Println("n =", n)
    maxGoodGap(n)
    fmt.Println("n =", n, "real =", time.Since(start))
}

Salida:

$ go build good.go && ./good
n = 4294967295
|q-p|  =  q - p : t
4  =  11 - 7  :  18.997478838s
6  =  29 - 23  :  19.425839298s
8  =  37 - 29  :  19.5924487s
14  =  73 - 59  :  20.351329953s
24  =  137 - 113  :  21.339752269s
30  =  227 - 197  :  22.310449147s
32  =  433 - 401  :  23.511560468s
48  =  557 - 509  :  23.904677275s
50  =  769 - 719  :  24.518310365s
54  =  1283 - 1229  :  25.350700584s
60  =  1697 - 1637  :  25.782520338s
90  =  1823 - 1733  :  25.883049102s
108  =  2417 - 2309  :  26.300049556s
120  =  3329 - 3209  :  26.735575056s
126  =  4673 - 4547  :  27.190597227s
132  =  5639 - 5507  :  27.420936586s
186  =  7433 - 7247  :  27.761805597s
222  =  8369 - 8147  :  27.909656781s
258  =  16487 - 16229  :  28.710626512s
270  =  32507 - 32237  :  29.469193619s
294  =  34157 - 33863  :  29.525197303s
306  =  35879 - 35573  :  29.578355515s
324  =  59393 - 59069  :  30.11620771s
546  =  60293 - 59747  :  30.131928104s
570  =  145823 - 145253  :  31.014864294s
588  =  181157 - 180569  :  31.223246627s
756  =  222059 - 221303  :  31.415507367s
780  =  282617 - 281837  :  31.640006297s
930  =  509513 - 508583  :  32.169485481s
1044  =  1046807 - 1045763  :  32.783669616s
1050  =  1713599 - 1712549  :  33.186784964s
1080  =  1949639 - 1948559  :  33.290533456s
1140  =  2338823 - 2337683  :  33.434568615s
1596  =  3800999 - 3799403  :  33.810580195s
1686  =  6249743 - 6248057  :  34.183678793s
1932  =  12464909 - 12462977  :  34.683651976s
2040  =  30291749 - 30289709  :  35.296022077s
2160  =  31641773 - 31639613  :  35.325773748s
2190  =  34808447 - 34806257  :  35.390646164s
2610  =  78199097 - 78196487  :  35.878632519s
2640  =  105072497 - 105069857  :  36.018381898s
2754  =  114949007 - 114946253  :  36.058571726s
2862  =  246225989 - 246223127  :  36.337844257s
2910  =  255910223 - 255907313  :  36.351442541s
2946  =  371348513 - 371345567  :  36.504506082s
3084  =  447523757 - 447520673  :  36.60250012s
3180  =  466558553 - 466555373  :  36.626346413s
3198  =  575713847 - 575710649  :  36.761306175s
3240  =  606802529 - 606799289  :  36.799984807s
3330  =  784554983 - 784551653  :  37.014430956s
3486  =  873632213 - 873628727  :  37.121270926s
3588  =  987417437 - 987413849  :  37.25618423s
3900  =  1123404923 - 1123401023  :  37.417362803s
3942  =  1196634239 - 1196630297  :  37.504784859s
4032  =  1247118179 - 1247114147  :  37.565187304s
4176  =  1964330609 - 1964326433  :  38.39652816s
4224  =  2055062753 - 2055058529  :  38.502515034s
4290  =  2160258917 - 2160254627  :  38.625633674s
4626  =  2773400633 - 2773396007  :  39.324109323s
5112  =  4278566879 - 4278561767  :  41.022658954s
n = 4294967295 real = 41.041491885s
$

A modo de comparación: peterSO max 5112 en 41.04s versus The Coder max 4176 en 51.97s.

Codificador: max | qp | 4176 q 1964330609 p 1964326433

Salida:

$ javac coder.java && java -Xmx1G coder
Total Primes upto 2147483646 = 105097564 in 11.61 s
(11 - 7) 4 (11.64 s)
<< SNIP >>
(1247118179 - 1247114147) 4032 (34.86 s)
(1964330609 - 1964326433) 4176 (51.97 s)
$

Esto se ve muy impresionante.
Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.