Complejidad entera


29

Su tarea es escribir un programa que, en la entrada n, genere la expresión mínima de cada número del 1 al n en orden. El programa más corto en bytes gana.

Una expresión mínima combina los 1 con la suma y la multiplicación para dar como resultado el número dado, utilizando la menor cantidad posible de 1. Por ejemplo, 23se expresa 23=((1+1+1)(1+1)+1)(1+1+1)+1+1con once, que es mínimo.

Requisitos:

  1. El programa debe tomar como entrada un número natural positivo n.
  2. La salida debe estar en este formato: 20 = ((1+1+1)(1+1+1)+1)(1+1)
  3. Su salida puede no tener paréntesis innecesarios, como 8 = ((1+1)(1+1))(1+1).
  4. El signo de multiplicación *es opcional.
  5. Los espacios son opcionales.
  6. No tiene que generar todas las ecuaciones posibles para un valor dado: por ejemplo, tiene la opción de generar 4=1+1+1+1o 4=(1+1)(1+1). No tiene que dar salida a ambos.
  7. El programa más corto (en bytes) en cada idioma gana.
1 = 1
2 = 1 + 1
3 = 1 + 1 + 1
4 = 1 + 1 + 1 + 1
5 = 1 + 1 + 1 + 1 + 1
6 = (1 + 1 + 1) (1 + 1)
7 = (1 + 1 + 1) (1 + 1) +1
8 = (1 + 1 + 1 + 1) (1 + 1)
9 = (1 + 1 + 1) (1 + 1 + 1)
10 = (1 + 1 + 1) (1 + 1 + 1) +1
11 = (1 + 1 + 1) (1 + 1 + 1) + 1 + 1
12 = (1 + 1 + 1) (1 + 1) (1 + 1)
13 = (1 + 1 + 1) (1 + 1) (1 + 1) +1
14 = ((1 + 1 + 1) (1 + 1) +1) (1 + 1)
15 = (1 + 1 + 1 + 1 + 1) (1 + 1 + 1)
16 = (1 + 1 + 1 + 1) (1 + 1) (1 + 1)
17 = (1 + 1 + 1 + 1) (1 + 1) (1 + 1) +1
18 = (1 + 1 + 1) (1 + 1 + 1) (1 + 1)
19 = (1 + 1 + 1) (1 + 1 + 1) (1 + 1) +1
20 = ((1 + 1 + 1) (1 + 1 + 1) +1) (1 + 1)

Aquí hay algunos casos de prueba más: (recuerde que también se permiten otras expresiones con el mismo número de 1)

157=((1+1+1)(1+1)(1+1)+1)(1+1+1)(1+1)(1+1)+1

444=((1+1+1)(1+1+1)(1+1)(1+1)+1)(1+1+1)(1+1)(1+1)

1223=((1+1+1)(1+1+1)(1+1+1)(1+1+1)(1+1+1)+1)(1+1+1+1+1)+1+1+1

15535=((((1+1+1)(1+1+1)(1+1+1)(1+1+1)+1)((1+1+1)(1+1)+1)+1)(1+1+1)+1)(1+1+1)(1+1+1)+1

45197=((((1+1+1)(1+1)(1+1)(1+1)+1)(1+1+1+1+1)(1+1)+1)(1+1+1)(1+1)(1+1)+1)(1+1+1+1+1)(1+1+1)+1+1

¡Buena suerte! - La tortuga 🐢


1
1) Su viñeta n. ° 6 no está terminada (le falta la salida de ejemplo para n=20) y 2) dice al principio que la complejidad del entero, que es distinta de la ecuación, tiene que salir, pero no incluye eso en cualquiera de los ejemplos excepto el primero.
El'endia Starman

Todavía no estoy claro. ¿Acabas de sacar la ecuación?
xnor

Sí. La complejidad del entero no se debe generar. También aclararé eso. Perdón por los errores. :(
The Turtle

Vaya, dije bala # 6 cuando debería haber dicho bala # 5, en tu lista de requisitos. En cuanto al otro problema, gracias por solucionarlo. :)
El'endia Starman

Respuestas:


10

Pyth, 60 bytes

LjWqeb\1b`()L?tbho/N\1++'tb"+1"m+y'/bdy'df!%bTr2b1VSQ++N\='N

Demostración

El compilador en línea puede llegar a 1223 antes del tiempo de espera, gracias a la memorización automática de funciones de Pyth.

1223=((1+1+1)(1+1+1)(1+1+1)(1+1+1)(1+1+1)+1)(1+1+1+1+1)+1+1+1

En nota abreviada,

1223=(3^5+1)*5+3

Utiliza una función recursiva ', que calcula todos los productos posibles y sumas que podrían dar el resultado deseado, encuentra la cadena más corta con cada operación final, luego las compara por 1conteo y devuelve la primera.

Utiliza una función auxiliar y, que paréntesis de una expresión solo si necesita ser entre paréntesis.

Fuera de línea, estoy ejecutando el programa con la entrada 15535, y está casi completo. Los resultados se imprimen de forma incremental, por lo que es fácil ver el progreso.

Líneas finales de la salida:

15535=((((1+1+1)(1+1+1)(1+1+1)(1+1+1)+1)((1+1+1)(1+1)+1)+1)(1+1+1)+1)(1+1+1)(1+1+1)+1

real    7m8.430s
user    7m7.158s
sys 0m0.945s

En notación abreviada,

15535=(((3^4+1)*(3*2+1)+1)*3+1)*3^2+1

7

CJAM, 105 102 98 96 bytes

q~{)'=1$2,{:I{I1$-'+}%3/1>Imf'*+aImp!*+{)\{j}%\+}:F%{e_"+*"-:+}$0=}j2,{F)_'*={;{'(\')}%1}&*}jN}/

Pruébelo en línea en el intérprete de CJam .

Prueba de funcionamiento

El intérprete en línea es demasiado lento para los casos de prueba más grandes. Incluso con el intérprete de Java, los casos de prueba más grandes tomarán mucho tiempo y requerirán una cantidad significativa de memoria.

$ time cjam integer-complexity.cjam <<< 157
1=1
2=1+1
3=1+1+1
4=1+1+1+1
5=1+1+1+1+1
6=(1+1)(1+1+1)
7=1+(1+1)(1+1+1)
8=(1+1)(1+1)(1+1)
9=(1+1+1)(1+1+1)
10=1+(1+1+1)(1+1+1)
11=1+1+(1+1+1)(1+1+1)
12=(1+1)(1+1)(1+1+1)
13=1+(1+1)(1+1)(1+1+1)
14=(1+1)(1+(1+1)(1+1+1))
15=(1+1+1)(1+1+1+1+1)
16=(1+1)(1+1)(1+1)(1+1)
17=1+(1+1)(1+1)(1+1)(1+1)
18=(1+1)(1+1+1)(1+1+1)
19=1+(1+1)(1+1+1)(1+1+1)
20=(1+1)(1+1)(1+1+1+1+1)
21=(1+1+1)(1+(1+1)(1+1+1))
22=1+(1+1+1)(1+(1+1)(1+1+1))
23=1+1+(1+1+1)(1+(1+1)(1+1+1))
24=(1+1)(1+1)(1+1)(1+1+1)
25=1+(1+1)(1+1)(1+1)(1+1+1)
26=(1+1)(1+(1+1)(1+1)(1+1+1))
27=(1+1+1)(1+1+1)(1+1+1)
28=1+(1+1+1)(1+1+1)(1+1+1)
29=1+1+(1+1+1)(1+1+1)(1+1+1)
30=(1+1)(1+1+1)(1+1+1+1+1)
31=1+(1+1)(1+1+1)(1+1+1+1+1)
32=(1+1)(1+1)(1+1)(1+1)(1+1)
33=1+(1+1)(1+1)(1+1)(1+1)(1+1)
34=(1+1)(1+(1+1)(1+1)(1+1)(1+1))
35=(1+1+1+1+1)(1+(1+1)(1+1+1))
36=(1+1)(1+1)(1+1+1)(1+1+1)
37=1+(1+1)(1+1)(1+1+1)(1+1+1)
38=(1+1)(1+(1+1)(1+1+1)(1+1+1))
39=(1+1+1)(1+(1+1)(1+1)(1+1+1))
40=(1+1)(1+1)(1+1)(1+1+1+1+1)
41=1+(1+1)(1+1)(1+1)(1+1+1+1+1)
42=(1+1)(1+1+1)(1+(1+1)(1+1+1))
43=1+(1+1)(1+1+1)(1+(1+1)(1+1+1))
44=(1+1)(1+1)(1+1+(1+1+1)(1+1+1))
45=(1+1+1)(1+1+1)(1+1+1+1+1)
46=1+(1+1+1)(1+1+1)(1+1+1+1+1)
47=1+1+(1+1+1)(1+1+1)(1+1+1+1+1)
48=(1+1)(1+1)(1+1)(1+1)(1+1+1)
49=1+(1+1)(1+1)(1+1)(1+1)(1+1+1)
50=(1+1)(1+1+1+1+1)(1+1+1+1+1)
51=(1+1+1)(1+(1+1)(1+1)(1+1)(1+1))
52=(1+1)(1+1)(1+(1+1)(1+1)(1+1+1))
53=1+(1+1)(1+1)(1+(1+1)(1+1)(1+1+1))
54=(1+1)(1+1+1)(1+1+1)(1+1+1)
55=1+(1+1)(1+1+1)(1+1+1)(1+1+1)
56=(1+1)(1+1)(1+1)(1+(1+1)(1+1+1))
57=(1+1+1)(1+(1+1)(1+1+1)(1+1+1))
58=1+(1+1+1)(1+(1+1)(1+1+1)(1+1+1))
59=1+1+(1+1+1)(1+(1+1)(1+1+1)(1+1+1))
60=(1+1)(1+1)(1+1+1)(1+1+1+1+1)
61=1+(1+1)(1+1)(1+1+1)(1+1+1+1+1)
62=(1+1)(1+(1+1)(1+1+1)(1+1+1+1+1))
63=(1+1+1)(1+1+1)(1+(1+1)(1+1+1))
64=(1+1)(1+1)(1+1)(1+1)(1+1)(1+1)
65=1+(1+1)(1+1)(1+1)(1+1)(1+1)(1+1)
66=(1+1)(1+1+1)(1+1+(1+1+1)(1+1+1))
67=1+(1+1)(1+1+1)(1+1+(1+1+1)(1+1+1))
68=(1+1)(1+1)(1+(1+1)(1+1)(1+1)(1+1))
69=1+(1+1)(1+1)(1+(1+1)(1+1)(1+1)(1+1))
70=(1+1)(1+1+1+1+1)(1+(1+1)(1+1+1))
71=1+(1+1)(1+1+1+1+1)(1+(1+1)(1+1+1))
72=(1+1)(1+1)(1+1)(1+1+1)(1+1+1)
73=1+(1+1)(1+1)(1+1)(1+1+1)(1+1+1)
74=(1+1)(1+(1+1)(1+1)(1+1+1)(1+1+1))
75=(1+1+1)(1+1+1+1+1)(1+1+1+1+1)
76=(1+1)(1+1)(1+(1+1)(1+1+1)(1+1+1))
77=1+(1+1)(1+1)(1+(1+1)(1+1+1)(1+1+1))
78=(1+1)(1+1+1)(1+(1+1)(1+1)(1+1+1))
79=1+(1+1)(1+1+1)(1+(1+1)(1+1)(1+1+1))
80=(1+1)(1+1)(1+1)(1+1)(1+1+1+1+1)
81=(1+1+1)(1+1+1)(1+1+1)(1+1+1)
82=1+(1+1+1)(1+1+1)(1+1+1)(1+1+1)
83=1+1+(1+1+1)(1+1+1)(1+1+1)(1+1+1)
84=(1+1)(1+1)(1+1+1)(1+(1+1)(1+1+1))
85=1+(1+1)(1+1)(1+1+1)(1+(1+1)(1+1+1))
86=(1+1)(1+(1+1)(1+1+1)(1+(1+1)(1+1+1)))
87=(1+1+1)(1+1+(1+1+1)(1+1+1)(1+1+1))
88=(1+1)(1+1)(1+1)(1+1+(1+1+1)(1+1+1))
89=1+(1+1)(1+1)(1+1)(1+1+(1+1+1)(1+1+1))
90=(1+1)(1+1+1)(1+1+1)(1+1+1+1+1)
91=1+(1+1)(1+1+1)(1+1+1)(1+1+1+1+1)
92=1+1+(1+1)(1+1+1)(1+1+1)(1+1+1+1+1)
93=(1+1+1)(1+(1+1)(1+1+1)(1+1+1+1+1))
94=1+(1+1+1)(1+(1+1)(1+1+1)(1+1+1+1+1))
95=(1+1+1+1+1)(1+(1+1)(1+1+1)(1+1+1))
96=(1+1)(1+1)(1+1)(1+1)(1+1)(1+1+1)
97=1+(1+1)(1+1)(1+1)(1+1)(1+1)(1+1+1)
98=(1+1)(1+(1+1)(1+1+1))(1+(1+1)(1+1+1))
99=(1+1+1)(1+1+1)(1+1+(1+1+1)(1+1+1))
100=(1+1)(1+1)(1+1+1+1+1)(1+1+1+1+1)
101=1+(1+1)(1+1)(1+1+1+1+1)(1+1+1+1+1)
102=(1+1)(1+1+1)(1+(1+1)(1+1)(1+1)(1+1))
103=1+(1+1)(1+1+1)(1+(1+1)(1+1)(1+1)(1+1))
104=(1+1)(1+1)(1+1)(1+(1+1)(1+1)(1+1+1))
105=(1+1+1)(1+1+1+1+1)(1+(1+1)(1+1+1))
106=1+(1+1+1)(1+1+1+1+1)(1+(1+1)(1+1+1))
107=1+1+(1+1+1)(1+1+1+1+1)(1+(1+1)(1+1+1))
108=(1+1)(1+1)(1+1+1)(1+1+1)(1+1+1)
109=1+(1+1)(1+1)(1+1+1)(1+1+1)(1+1+1)
110=1+1+(1+1)(1+1)(1+1+1)(1+1+1)(1+1+1)
111=(1+1+1)(1+(1+1)(1+1)(1+1+1)(1+1+1))
112=(1+1)(1+1)(1+1)(1+1)(1+(1+1)(1+1+1))
113=1+(1+1)(1+1)(1+1)(1+1)(1+(1+1)(1+1+1))
114=(1+1)(1+1+1)(1+(1+1)(1+1+1)(1+1+1))
115=1+(1+1)(1+1+1)(1+(1+1)(1+1+1)(1+1+1))
116=(1+1)(1+1)(1+1+(1+1+1)(1+1+1)(1+1+1))
117=(1+1+1)(1+1+1)(1+(1+1)(1+1)(1+1+1))
118=1+(1+1+1)(1+1+1)(1+(1+1)(1+1)(1+1+1))
119=(1+(1+1)(1+1+1))(1+(1+1)(1+1)(1+1)(1+1))
120=(1+1)(1+1)(1+1)(1+1+1)(1+1+1+1+1)
121=1+(1+1)(1+1)(1+1)(1+1+1)(1+1+1+1+1)
122=(1+1)(1+(1+1)(1+1)(1+1+1)(1+1+1+1+1))
123=(1+1+1)(1+(1+1)(1+1)(1+1)(1+1+1+1+1))
124=(1+1)(1+1)(1+(1+1)(1+1+1)(1+1+1+1+1))
125=(1+1+1+1+1)(1+1+1+1+1)(1+1+1+1+1)
126=(1+1)(1+1+1)(1+1+1)(1+(1+1)(1+1+1))
127=1+(1+1)(1+1+1)(1+1+1)(1+(1+1)(1+1+1))
128=(1+1)(1+1)(1+1)(1+1)(1+1)(1+1)(1+1)
129=1+(1+1)(1+1)(1+1)(1+1)(1+1)(1+1)(1+1)
130=(1+1)(1+1+1+1+1)(1+(1+1)(1+1)(1+1+1))
131=1+(1+1)(1+1+1+1+1)(1+(1+1)(1+1)(1+1+1))
132=(1+1)(1+1)(1+1+1)(1+1+(1+1+1)(1+1+1))
133=(1+(1+1)(1+1+1))(1+(1+1)(1+1+1)(1+1+1))
134=1+(1+(1+1)(1+1+1))(1+(1+1)(1+1+1)(1+1+1))
135=(1+1+1)(1+1+1)(1+1+1)(1+1+1+1+1)
136=1+(1+1+1)(1+1+1)(1+1+1)(1+1+1+1+1)
137=1+1+(1+1+1)(1+1+1)(1+1+1)(1+1+1+1+1)
138=(1+1)(1+1+1)(1+1+(1+1+1)(1+(1+1)(1+1+1)))
139=1+(1+1)(1+1+1)(1+1+(1+1+1)(1+(1+1)(1+1+1)))
140=(1+1)(1+1)(1+1+1+1+1)(1+(1+1)(1+1+1))
141=1+(1+1)(1+1)(1+1+1+1+1)(1+(1+1)(1+1+1))
142=(1+1)(1+(1+1)(1+1+1+1+1)(1+(1+1)(1+1+1)))
143=(1+1+(1+1+1)(1+1+1))(1+(1+1)(1+1)(1+1+1))
144=(1+1)(1+1)(1+1)(1+1)(1+1+1)(1+1+1)
145=1+(1+1)(1+1)(1+1)(1+1)(1+1+1)(1+1+1)
146=(1+1)(1+(1+1)(1+1)(1+1)(1+1+1)(1+1+1))
147=(1+1+1)(1+(1+1)(1+1+1))(1+(1+1)(1+1+1))
148=(1+1)(1+1)(1+(1+1)(1+1)(1+1+1)(1+1+1))
149=1+(1+1)(1+1)(1+(1+1)(1+1)(1+1+1)(1+1+1))
150=(1+1)(1+1+1)(1+1+1+1+1)(1+1+1+1+1)
151=1+(1+1)(1+1+1)(1+1+1+1+1)(1+1+1+1+1)
152=(1+1)(1+1)(1+1)(1+(1+1)(1+1+1)(1+1+1))
153=(1+1+1)(1+1+1)(1+(1+1)(1+1)(1+1)(1+1))
154=1+(1+1+1)(1+1+1)(1+(1+1)(1+1)(1+1)(1+1))
155=(1+1+1+1+1)(1+(1+1)(1+1+1)(1+1+1+1+1))
156=(1+1)(1+1)(1+1+1)(1+(1+1)(1+1)(1+1+1))
157=1+(1+1)(1+1)(1+1+1)(1+(1+1)(1+1)(1+1+1))

real    0m3.896s
user    0m4.892s
sys     0m0.066s

Con suficiente tiempo, produciría estas soluciones para los próximos casos de prueba:

444=(1+1)(1+1)(1+1+1)(1+(1+1)(1+1)(1+1+1)(1+1+1))
1223=1+1+(1+1+1)(1+1+(1+1+1)(1+1+1))(1+(1+1)(1+1)(1+1+1)(1+1+1))

¿Como funciona?
falla

@flawr Todavía espero jugar al golf un poco más. Agregaré una explicación cuando termine / me rinda.
Dennis

4

Julia, 229 bytes

n->(F=i->K[i]>0?E[i]:"("E[i]")";C=[1;3:n+1];K=0C;E=fill("1",n);for s=1:n for i=1:s÷2 (D=C[i]+C[s-i])<C[s]?(C[s]=D;E[s]=E[i]"+"E[s-i];K[s]=0):s%i>0||(D=C[i]+C[j=s÷i])<C[s]&&(C[s]=D;E[s]=F(i)F(j);K[s]=1)end;println("$s="E[s])end)

Esto es realmente bastante rápido. Asignar la función fy ejecutarla @time f(15535)proporciona la salida (solo las dos últimas líneas)

15535=1+(1+1+1)(1+1+1)(1+(1+1+1)(1+(1+(1+1)(1+1+1))(1+(1+1+1)(1+1+1)(1+1+1)(1+1+1))))
32.211583 seconds (263.30 M allocations: 4.839 GB, 4.81% gc time)

y para @time f(45197), da

45197=1+1+(1+1+1)(1+1+1+1+1)(1+(1+1)(1+1)(1+1+1)(1+(1+1)(1+1+1+1+1)(1+(1+1)(1+1)(1+1)(1+1+1))))
289.749564 seconds (2.42 G allocations: 43.660 GB, 4.91% gc time)

Entonces, ¿qué está haciendo el código? Simple: Ccontiene la cantidad actual Cpara el número, Kes una matriz de indicadores que realiza un seguimiento de si la expresión es, fundamentalmente, una suma o un producto, con el propósito de tratar con los corchetes, y Econtiene la Epropia expresión. Avanzando de s=1principio a fin n, el código busca la representación mínima del número sen términos de valores más bajos, buscando una suma o un producto. Si se trata de un producto, comprueba los dos componentes y pone corchetes alrededor de ellos si son sumas. Esa verificación se realiza en función F, para guardar bytes (porque tiene que hacerse dos veces, para los dos factores).

Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.