MATLAB, 1960 pb
Aquí está mi intento actualizado:
fs = 44100; %44.1kHz audio rate
fc = 2450; %2.45kHz carrier - nice fraction of fs!
fsym = fc/5; %symbol rate
tmax = 4; %about 4 seconds worth
preamblesyms = 6;
t = 1/fs:1/fs:(tmax+preamblesyms/fsym);
symbols = preamblesyms+fsym*tmax;
symbollength = length(t)/symbols;
bits = symbols*3;
bitstream = [zeros(1,preamblesyms*3),rand(1,bits-preamblesyms*3)>0.5]; %Add a little preamble of 18 bits
data = bin2dec(char(reshape(bitstream,3,symbols)'+'0'))';
greycode = [0 1 3 2 6 7 5 4];
%Encode the symbols using QAM8 - we use effectively grey code so that
%adjacent symbols in the constellation have only one bit difference
%(minimises error rate)
encoded = zeros(2,symbols);
encoded(1,data==1) = 1/sqrt(2);
encoded(1,data==3) = 1;
encoded(1,data==2) = 1/sqrt(2);
encoded(1,data==7) = -1/sqrt(2);
encoded(1,data==5) = -1;
encoded(1,data==4) = -1/sqrt(2);
encoded(2,data==0) = 1;
encoded(2,data==1) = 1/sqrt(2);
encoded(2,data==2) = -1/sqrt(2);
encoded(2,data==6) = -1;
encoded(2,data==7) = -1/sqrt(2);
encoded(2,data==4) = 1/sqrt(2);
%Modulate onto carrier
carrier = [sin(2*pi*fc*t);cos(2*pi*fc*t)];
signal = reshape(repmat(encoded(1,:)',1,symbollength)',1,[]);
signal(2,:) = reshape(repmat(encoded(2,:)',1,symbollength)',1,[]);
modulated = sum(signal.*carrier)';
%Write out an audio file
audiowrite('audio.wav',modulated,fs);
%Wait for the user to run through the POTS simulator
input('');
%Read in the filtered data
filtered=audioread('audio.pots-filtered.wav')';
%Recover the two carrier signals
preamblecos = filtered(symbollength+1:symbollength*2);
preamblesin = filtered(symbollength+1+round(symbollength*3/4):symbollength*2+round(symbollength*3/4));
%Replicated the recovered carriers for all symbols
carrierfiltered = [repmat(preamblesin,1,symbols);repmat(preamblecos,1,symbols)];
%Generate a demodulation filter (pass up to 0.66*fc, stop at 1.33*fc
%(really we just need to kill everything around 2*fc where the alias ends up)
d=fdesign.lowpass('Fp,Fst,Ap,Ast',0.05,0.1,0.5,60);
Hd = design(d,'equiripple');
%Demodulate the incoming stream
demodulated = carrierfiltered .* [filtered;filtered];
demodulated(1,:)=filtfilt(Hd.Numerator,1,demodulated(1,:));
demodulated(2,:)=filtfilt(Hd.Numerator,1,demodulated(2,:));
%Split signal up into bit periods
recovereddemodulated=[];
recovereddemodulated(1,:,:) = reshape(demodulated(1,:),symbollength,symbols);
recovereddemodulated(2,:,:) = reshape(demodulated(2,:),symbollength,symbols);
%Extract the average level for each bit period. Only look at the second
%half to account for slow rise times in the signal due to filtering
recoveredsignal=mean(recovereddemodulated(1,round(symbollength/2):symbollength,:));
recoveredsignal(2,:)=mean(recovereddemodulated(2,round(symbollength/2):symbollength,:));
%Convert the recovered signal into a complex number.
recoveredsignal=recoveredsignal(2,:) + 1j*recoveredsignal(1,:);
%Determine the magnitude and angle of the symbol. The phase is normalised
%to pi/4 as that is the angle between the symbols. Rounding this to the
%nearest integer will tell us which of the 8 phases it is closest to
recoveredphase = round(angle(recoveredsignal)/(pi/4));
recoveredphase = mod(recoveredphase+8,8)+1; %Remap to an index in the grey code vector.
%Determine the symbol in the QAM8 constellation
recoveredencoded=greycode(recoveredphase);
recoveredencoded(1:preamblesyms)=0; %Assume the preamble is correct for comparison
%Turn it back in to a bit stream
bitstreamRecovered = reshape(dec2bin(recoveredencoded)'-'0',1,[]);
%And check if they are all correct...
if(all(bitstream==bitstreamRecovered))
disp(['Woop, ' num2str(fsym*4) 'bps']);
else
error('Its corrupt Jim.');
end
Desde mi primer intento, he jugado un poco. Ahora hay un pequeño preámbulo al principio (períodos de 18 bits, pero podría ser más corto) que contiene solo una onda cosenoidal. Extraigo esto y lo repliqué para crear portadores de seno y coseno en fase correcta para la demodulación, ya que es un preámbulo muy corto, no lo he contado en la tasa de bits según sus instrucciones.
Además, desde el primer intento, ahora estoy usando una constelación QAM8 para lograr 3 bits por símbolo en lugar de 2. Esto efectivamente duplica la velocidad de transferencia. Entonces, con una portadora de ~ 2.4kHz, ahora estoy alcanzando 1960bps.
También he mejorado la detección de símbolos para que el promedio no se vea afectado por los tiempos de aumento lentos causados por el filtrado; básicamente, solo se promedia la segunda mitad de cada período de bits para eliminar el impacto de los tiempos de aumento.
Todavía no está cerca del ancho de banda del canal teórico de 40 kbps de la teoría de Shannon-Hartley (suponiendo que la SNR de )
Solo para aquellos a quienes les gustan los sonidos horribles , esta es la nueva entrada:
Y en caso de que alguien esté interesado, esta es la entrada anterior de 960bps