Mathematica, 2535 bytes
Tomado de aquí (de ahí por qué es el wiki de la comunidad). Realmente no tan golfizado. Vea el enlace proporcionado para la explicación del autor de su código.
Además, no soy un experto en Mathematica, pero apuesto a que Martin podría hacer maravillas en la longitud del código. Ni siquiera entiendo las matemáticas detrás de esto.
Lo dejé legible, pero si la pregunta no se cierra, jugaré más allá de la legibilidad y moveré los otros 2 parámetros dentro de la función de llamada.
Actualmente inválido , siéntase libre de ayudar a mejorarlo:
HyperbolicLine[{{Px_, Py_}, {Qx_, Qy_}}] :=
If[N[Chop[Px Qy - Py Qx]] =!= 0.,
Circle[OrthoCentre[{{Px, Py}, {Qx, Qy}}],
OrthoRadius[{{Px, Py}, {Qx, Qy}}],
OrthoAngles[{{Px, Py}, {Qx, Qy}}]], Line[{{Px, Py}, {Qx, Qy}}]]
OrthoCentre[{{Px_, Py_}, {Qx_, Qy_}}] :=
With[{d = 2 Px Qy - 2 Py Qx, p = 1 + Px^2, q = 1 + Qx^2 + Qy^2},
If[N[d] =!= 0., {p Qy + Py^2 Qy - Py q, -p Qx - Py^2 Qx + Px q}/d,
ComplexInfinity]]
OrthoRadius[{{Px_, Py_}, {Qx_, Qy_}}] :=
If[N[Chop[Px Qy - Py Qx]] =!= 0.,
Sqrt[Total[OrthoCentre[{{Px, Py}, {Qx, Qy}}]^2] - 1], Infinity]
OrthoAngles[{{Px_, Py_}, {Qx_, Qy_}}] :=
Block[{a, b, c = OrthoCentre[{{Px, Py}, {Qx, Qy}}]},
If[(a = N[Apply[ArcTan, {Px, Py} - c]]) < 0., a = a + 2 \[Pi]];
If[(b = N[Apply[ArcTan, {Qx, Qy} - c]]) < 0.,
b = b + 2 \[Pi]]; {a, b} = Sort[{a, b}];
If[b - a > \[Pi], {b, a + 2 \[Pi]}, {a, b}]]
Inversion[Circle[{Cx_, Cy_}, r_], {Px_, Py_}] := {Cx, Cy} +
r^2 {Px - Cx, Py - Cy}/((Cx - Px)^2 + (Cy - Py)^2)
Inversion[Circle[{Cx_, Cy_}, r_, {a_, b_}], {Px_, Py_}] := {Cx, Cy} +
r^2 {Px - Cx, Py - Cy}/((Cx - Px)^2 + (Cy - Py)^2)
Inversion[Circle[{Cx_, Cy_}, r_, {a_, b_}], p_Line] :=
Map[Inversion[Circle[{Cx, Cy}, r], #] &, p, {2}]
Inversion[Circle[{Cx_, Cy_}, r_, {a_, b_}], p_Polygon] :=
Map[Inversion[Circle[{Cx, Cy}, r], #] &, p, {2}]
Inversion[Line[{{Px_, Py_}, {Qx_, Qy_}}], {Ux_, Uy_}] :=
With[{u = Px - Qx,
v = Qy - Py}, {-Ux (v^2 - u^2) - 2 u v Uy,
Uy (v^2 - u^2) - 2 u v Ux}/(u^2 + v^2)]
Inversion[Line[{{Px_, Py_}, {Qx_, Qy_}}], p_Polygon] :=
Map[Inversion[Line[{{Px, Py}, {Qx, Qy}}], #] &, p, {2}]
Inversion[Circle[{Cx_, Cy_}, r_], c_List] :=
Map[Inversion[Circle[{Cx, Cy}, r], #] &, c]
PolygonInvert[p_Polygon] :=
Map[Inversion[HyperbolicLine[#], p] &,
Partition[Join[p[[1]], {p[[1, 1]]}], 2, 1]]
PolygonInvert[p_List] := Flatten[Map[PolygonInvert[#] &, p]]
LineRule = Polygon[x_] :> Line[Join[x, {x[[1]]}]];
HyperbolicLineRule =
Polygon[x_] :>
Map[HyperbolicLine, Partition[Join[x, {x[[1]]}], 2, 1]];
CentralPolygon[p_Integer, q_Integer, \[Phi]_: 0] :=
With[{r = (Cot[\[Pi]/p] Cot[\[Pi]/q] - 1)/
Sqrt[Cot[\[Pi]/p]^2 Cot[\[Pi]/q]^2 - 1], \[Theta] = \[Pi] Range[
1, 2 p - 1, 2]/p},
r Map[{{Cos[\[Phi]], -Sin[\[Phi]]}, {Sin[\[Phi]], Cos[\[Phi]]}}.# &,
Transpose[{Cos[\[Theta]], Sin[\[Theta]]}]]]
PolygonUnion[p_Polygon, tol_: 10.^-10] := p
PolygonUnion[p_List, tol_: 10.^-10] :=
With[{q = p /. Polygon[x_] :> N[Polygon[Round[x, 10.^-10]]]},
DeleteDuplicates[q]]
HyperbolicTessellation[p_Integer, q_Integer, \[Phi]_, k_Integer,
t_: 10.^-10] :=
Map[PolygonUnion[#, t] &,
NestList[PolygonInvert, Polygon[CentralPolygon[p, q, \[Phi]]],
k][[{-2, -1}]]] /; k > 0
HyperbolicTessellation[p_Integer, q_Integer, \[Phi]_, k_Integer,
t_: 10.^-10] := Polygon[CentralPolygon[p, q, \[Phi]]] /; k == 0
HyperbolicTessellationGraphics[p_Integer, q_Integer, \[Phi]_,
k_Integer, rule_RuleDelayed, opts___] :=
Graphics[{Circle[{0, 0}, 1],
HyperbolicTessellation[p, q, \[Phi], k, 10.^-10] /. rule}, opts]
Llamado como:
HyperbolicTessellationGraphics[3, 7, 0., 7, HyperbolicLineRule, ImageSize -> 300, PlotLabel -> "{7,7}"]