Lisp común, 560 bytes
"Finalmente, encontré un uso para PROGV
".
(macrolet((w(S Z G #1=&optional(J Z))`(if(symbolp,S),Z(destructuring-bind(a b #1#c),S(if(eq a'L),G,J)))))(labels((r(S #1#(N 97))(w S(symbol-value s)(let((v(make-symbol(coerce`(,(code-char N))'string))))(progv`(,b,v)`(,v,v)`(L,v,(r c(1+ n)))))(let((F(r a N))(U(r b N)))(w F`(,F,U)(progv`(,b)`(,U)(r c N))))))(p()(do((c()(read-char()()#\)))q u)((eql c #\))u)(setf q(case c(#\S'(L x(L y(L z((x z)(y z))))))(#\K'(L x(L u x)))(#\I'(L a a))(#\((p)))u(if u`(,u,q)q))))(o(S)(w S(symbol-name S)(#2=format()"~A.~A"b(o c))(#2#()"~A(~A)"(o a)(o b)))))(lambda()(o(r(p))))))
Sin golf
;; Bind S, K and I symbols to their lambda-calculus equivalent.
;;
;; L means lambda, and thus:
;;
;; - (L x S) is variable binding, i.e. "x.S"
;; - (F x) is function application
(define-symbol-macro S '(L x (L y (L z ((x z) (y z))))))
(define-symbol-macro K '(L x (L u x)))
(define-symbol-macro I '(L x x))
;; helper macro: used twice in R and once in O
(defmacro w (S sf lf &optional(af sf))
`(if (symbolp ,S) ,sf
(destructuring-bind(a b &optional c) ,S
(if (eq a 'L)
,lf
,af))))
;; R : beta-reduction
(defun r (S &optional (N 97))
(w S
(symbol-value s)
(let ((v(make-symbol(make-string 1 :initial-element(code-char N)))))
(progv`(,b,v)`(,v,v)
`(L ,v ,(r c (1+ n)))))
(let ((F (r a N))
(U (r b N)))
(w F`(,F,U)(progv`(,b)`(,U)(r c N))))))
;; P : parse from stream to lambda tree
(defun p (&optional (stream *standard-output*))
(loop for c = (read-char stream nil #\))
until (eql c #\))
for q = (case c (#\S S) (#\K K) (#\I I) (#\( (p stream)))
for u = q then `(,u ,q)
finally (return u)))
;; O : output lambda forms as strings
(defun o (S)
(w S
(princ-to-string S)
(format nil "~A.~A" b (o c))
(format nil (w b "(~A~A)" "(~A(~A))") (o a) (o b))))
Beta-reducción
Las variables se enlazan dinámicamente durante la reducción con los PROGV
nuevos símbolos Common Lisp, usando MAKE-SYMBOL
. Esto permite evitar muy bien las colisiones de nombres (por ejemplo, sombreado no deseado de variables enlazadas). Podría haberlo usado GENSYM
, pero queremos tener nombres fáciles de usar para los símbolos. Es por eso que los símbolos se nombran con letras de aa z(según lo permitido por la pregunta). N
representa el código de caracteres de la siguiente letra disponible en el alcance actual y comienza con 97, también conocido comoa .
Aquí hay una versión más legible de R
(sin la W
macro):
(defun beta-reduce (S &optional (N 97))
(if (symbolp s)
(symbol-value s)
(if (eq (car s) 'L)
;; lambda
(let ((v (make-symbol (make-string 1 :initial-element (code-char N)))))
(progv (list (second s) v)(list v v)
`(L ,v ,(beta-reduce (third s) (1+ n)))))
(let ((fn (beta-reduce (first s) N))
(arg (beta-reduce (second s) N)))
(if (and(consp fn)(eq'L(car fn)))
(progv (list (second fn)) (list arg)
(beta-reduce (third fn) N))
`(,fn ,arg))))))
Resultados intermedios
Analizar desde la cuerda:
CL-USER> (p (make-string-input-stream "K(K(K(KK)))"))
((L X (L U X)) ((L X (L U X)) ((L X (L U X)) ((L X (L U X)) (L X (L U X))))))
Reducir:
CL-USER> (r *)
(L #:|a| (L #:|a| (L #:|a| (L #:|a| (L #:|a| (L #:|b| #:|a|))))))
(Ver rastro de ejecución)
Bonito estampado:
CL-USER> (o *)
"a.a.a.a.a.b.a"
Pruebas
Reutilizo el mismo conjunto de pruebas que la respuesta de Python:
Input Output Python output (for comparison)
1. KSK a.b.c.a(c)(b(c)) a.b.c.a(c)(b(c))
2. SII a.a(a) a.a(a)
3. S(K(SI))K a.b.b(a) a.b.b(a)
4. S(S(KS)K)I a.b.a(a(b)) a.b.a(a(b))
5. S(S(KS)K)(S(S(KS)K)I) a.b.a(a(a(b))) a.b.a(a(a(b)))
6. K(K(K(KK))) a.a.a.a.a.b.a a.b.c.d.e.f.e
7. SII(SII) ERROR ERROR
El octavo ejemplo de prueba es demasiado grande para la tabla anterior:
8. SS(SS)(SS)
CL a.b.a(b)(c.b(c)(a(b)(c)))(a(b.a(b)(c.b(c)(a(b)(c))))(b))
Python a.b.a(b)(c.b(c)(a(b)(c)))(a(d.a(d)(e.d(e)(a(d)(e))))(b))
- EDITAR He actualizado mi respuesta para tener el mismo comportamiento de agrupación que en la respuesta de aditsu , porque cuesta menos bytes escribir.
- La diferencia restante se puede ver por los tests 6 y 8. El resultado
a.a.a.a.a.b.a
es correcto y no utiliza tanto las letras como la respuesta Python, donde a las consolidaciones a
, b
, c
y d
no se hace referencia.
Actuación
Recorrer las 7 pruebas de aprobación anteriores y recopilar los resultados es inmediato (salida SBCL):
Evaluation took:
0.000 seconds of real time
0.000000 seconds of total run time (0.000000 user, 0.000000 system)
100.00% CPU
310,837 processor cycles
129,792 bytes consed
Hacer la misma prueba cientos de veces conduce a ... "Almacenamiento local de subprocesos agotado" en SBCL, debido a una limitación conocida con respecto a variables especiales. Con CCL, llamar al mismo conjunto de pruebas 10000 veces lleva 3,33 segundos.