Compilador de compilación automática [cerrado]


36

Esto se basa en una charla sobre compiladores que escuché hace un tiempo, pero, desafortunadamente, no recuerdo cuándo ni dónde.

Cree el compilador más corto en cualquier idioma que pueda compilarse. Dirigirse a cualquier ISA razonable (68 K, X 86, MIPS, ARM, SPARC, IBM BAL, etc.) que no tiene una instrucción "de compilación del programa" (esto puede excluir algunas versiones de VAX). Leer los programas de código de stdine imprimir el código generado a stdout. Es posible usar la biblioteca C estándar para I / O y el procesamiento de cadenas (por ejemplo, _printf). No es necesario para compilar todo el lenguaje, cualquier subconjunto que contiene el compilador (es decir, justo la impresión de una quine lenguaje ensamblador, aunque impresionantes, no cuenta como una solución.)


1
Debe agregar algunos criterios para evitar que las personas ignoren la entrada y produzcan una salida constante codificada.
R. Martinho Fernandes

1
Wow ... esto es un desafío. (Especialmente para Perl.)
Nathan Osman

55
En realidad, esto me recuerda a un tipo que escribió un compilador C en aproximadamente 3000 bytes de código C como un envío al IOCCC.
FUZxxl

55
@FUZxxl: Eso se convirtió en tcc , que es un producto bastante bueno.
dmckee

3
@dmckee "Se admite el script C: simplemente agregue #!/usr/local/bin/tcc -runen la primera línea de su fuente C y ejecútelo directamente desde la línea de comandos". Eso es muy bonito.
Tobia

Respuestas:


33

Haskell subconjunto → C - 18926 caracteres

Esto compila un pequeño subconjunto de Haskell a C. Características que admite:

  • Patrones a juego y guardias
  • Declaraciones de datos
  • Seleccionar operadores infijos
  • Evaluación perezosa

Las principales características que faltan son las variables anidadas (es decir, no lambda / let / where / case), la verificación de tipos y las clases de tipos. Los programas resultantes pierden memoria y la autocompilación toma alrededor de 200 megabytes en mi sistema (el recolector de basura Boehm ayuda mucho, pero solo si el compilador optimiza bien la recursión de la cola).

Para iniciar, descomente las primeras tres líneas (no contadas en el puntaje) y compile con GHC. El compilador toma el código del subconjunto Haskell en stdin y produce código C en stdout.

Es largo no porque el lenguaje sea complejo, sino porque soy flojo. Sin embargo, actualmente es la solución más corta . Ya no. Supongo que no me aburriré este fin de semana.

-- import Prelude hiding (fmap, lookup, snd, zip);import Data.Char
-- import Data.List hiding (lookup, zip);data P a b = P a b;data B = B
-- add=(+);sub=(-);showInt=show;append[]ys=ys;append(x:xs)ys=x:append xs ys
data Program = Program [[Constructor]] [Function]
data Toplevel = TD [Constructor] | TE Equation | TO
data Constructor = Constructor String Int
data Function = Function String Int [Equation]
data Equation = Equation String [Pattern] (Maybe Expression) Expression
data Pattern = PVar String | PCon String [Pattern]
data Expression = Var String | Con String | Int String | Char String | String String | Ap Expression Expression
data Environment = Environment [P String Int] [P String VarInfo]
data VarInfo = VBox String | VArg Int | VItem VarInfo Int
main = interact (compile . parse)
constructorName (Constructor name _) = name
functionName (Function name _ _) = name
equationName (Equation name _ _ _) = name
sortToplevels [] = (P [] [])
sortToplevels (TD x : xs) = applyFst ((:) x) (sortToplevels xs)
sortToplevels (TE x : xs) = applySnd ((:) x) (sortToplevels xs)
sortToplevels (TO : xs)   = sortToplevels xs
pcons x xs = PCon "Cons" [x, xs];pnil = PCon "Nil" []
ebinary op a b = Ap (Ap (Var op) a) b;ebinaryE op a b = Ap (Ap op a) b
econs x xs = Ap (Ap (Con "Cons") x) xs
enil = Con "Nil"
listEq eq [] [] = True
listEq eq (x:xs) (y:ys) | eq x y = listEq eq xs ys
listEq _ _ _ = False
snd (P a b) = b
zip = zipWith P
lookup q (P k v : _)  | listEq (==) q k = Just v
lookup q (_     : xs)                   = lookup q xs
lookup q _                              = Nothing
compose2 f g x y = f (g x y)
applyFst f (P x y) = P (f x) y
applySnd f (P x y) = P x (f y)
fMaybe f Nothing  = Nothing
fMaybe f (Just x) = Just (f x)
cond f t False = f
cond f t True = t
condList f t [] = f
condList f t xs = t xs
countFrom n = n : countFrom (add n 1)
range l h | l > h = []
range l h         = l : range (add l 1) h
parse = makeProgram . sortToplevels . concatMap parse_p . ((:) prelude) . preprocess
parse_p (P lineno line) = maybe (parse_err lineno line) snd (parseLine line)
parse_err lineno line = error (concat ["Parse error on line ", showInt lineno, ": `", line, "`"])
preprocess = filter (not . isCommentOrEmpty . snd) . zip (countFrom 1) . map (dropWhile isBlank) . lines
isCommentOrEmpty = parserSucceeds (pro (ignore (pro (parseS "--") (parseS "import "))) parseEof)
liftA2 f a b = ap (fmap f a) b
parserSucceeds p s = maybe False (const True) (p s)
fmap f p = fMaybe (applySnd f) . p
pure x s = Just (P s x)
ap1 b (P s x) = maybe Nothing (ap2 x) (b s)
ap2 x (P s y) = Just (P s (x y))
empty = (const Nothing)
pro a b s = maybe (b s) Just (a s)
ap a b = maybe Nothing (ap1 b) . a
prc = liftA2 (:)
pra = liftA2 append
prl = liftA2 const
prr = liftA2 (const id)
many p = pro (some p) (pure [])
some p = prc p (many p)
optional p = pro (fmap Just p) (pure Nothing)
choice = foldr pro (const Nothing)
parseEof = parseEof_1
parseEof_1 [] = Just (P "" B)
parseEof_1 _  = Nothing
parsePred pred = parsePred_1 pred
parsePred_1 pred (x:xs) | pred x = Just (P xs x)
parsePred_1 _    _               = Nothing
manyParsePred = justFlipSplit
justFlipSplit pred xs = Just (P (dropWhile pred xs) (takeWhile pred xs))
someParsePred pred = prc (parsePred pred) (manyParsePred pred)
parseC = parsePred . (==)
parseS = foldr (prc . parseC) (pure [])
wrapC = wrapSpace . parseC
wrapS = wrapSpace . parseS
skipPred pred = prr (parsePred pred) (pure B)
manySkipPred pred = prr (manyParsePred pred) (pure B)
preSep p sep = many (prr sep p)
sepBy1 p sep = prc p (many (prr sep p))
sepByChar p c = pro (sepByChar1 p c) (pure [])
sepByChar1 p c = sepBy1 p (wrapSpace (parseC c))
wrapSpace p = prl (prr skipSpace p) skipSpace
ignore = fmap (const B)
isBlank c | c == ' ' || c == '\t' = True
isBlank _                         = False
isDigit1 c = c >= '1' && c <= '9'
parseBetween l r p = prl (prr (parseC l) (wrapSpace p)) (parseC r)
skipSpace = manySkipPred isBlank
chainl1 f sep p = fmap (foldl1 f) (sepBy1 p sep)
chainr1 f sep p = fmap (foldr1 f) (sepBy1 p sep)
chainl f z sep p = pro (fmap (foldl f z) (sepBy1 p sep)) (pure z)
chainr f z sep p = pro (fmap (foldr f z) (sepBy1 p sep)) (pure z)
parseNonassoc ops term = liftA2 (flip ($)) term (pro (liftA2 flip (choice ops) term) (pure id))
parseVar = prc (parsePred (orUnderscore isLower)) (many (parsePred (orUnderscore isAlphaNum)))
orUnderscore p c | p c || c == '_' = True
orUnderscore _ _ = False
parseCon = prc (parsePred isUpper) (many (parsePred (orUnderscore isAlphaNum)))
parseInt = pro (parseS "0") (prc (parsePred isDigit1) (many (parsePred isDigit)))
parseEscape q (c:x:xs) | c == '\\' = Just (P xs (c:x:[]))
parseEscape q [c]      | c == '\\' = Just (P [] [c])
parseEscape q (c:xs)   | c /= q    = Just (P xs [c])
parseEscape q _                    = Nothing
parseStringLiteral q = pra (parseS [q]) (pra (fmap concat (many (parseEscape q))) (parseS [q]))
parsePattern = chainr1 pcons (wrapC ':') (pro (liftA2 PCon parseCon (preSep parsePatternPrimary skipSpace)) parsePatternPrimary)
parsePatternPrimary = choice [fmap PVar parseVar, fmap (flip PCon []) parseCon, parseBetween '(' ')' parsePattern, parseBetween '[' ']' (fmap (foldr pcons pnil) (sepByChar parsePattern ','))]
relops f = relops_1 (ops_c f)
otherops f = f ":" (Con "Cons") : otherops_1 (ops_c f)
ops_c f x y = f x (Var y)
relops_1 f   = [f "<=" "_le", f "<" "_lt", f "==" "_eq", f ">=" "_ge", f ">" "_gt", f "/=" "_ne"]
otherops_1 f = [f "$" "_apply", f "||" "_or", f "&&" "_and", f "." "_compose"]
parseRelops = parseNonassoc (relops parseRelops_f)
parseRelops_f op func = prr (wrapS op) (pure (ebinaryE func))
parseExpression = chainr1 (ebinary "_apply") (wrapC '$') $ chainr1 (ebinary "_or") (wrapS "||") $ chainr1 (ebinary "_and") (wrapS "&&") $ parseRelops $ chainr1 econs (wrapC ':') $ chainr1 (ebinary "_compose") (wrapC '.') $ chainl1 Ap skipSpace $ choice [fmap Var parseVar, fmap Con parseCon, fmap Int parseInt, fmap Char (parseStringLiteral '\''), fmap String (parseStringLiteral '"'), parseBetween '(' ')' (pro parseSection parseExpression), parseBetween '[' ']' (chainr econs enil (wrapC ',') parseExpression)]
parseSection = choice (append (relops parseSection_f) (otherops parseSection_f))
parseSection_f op func = prr (wrapS op) (pure func)
parseEquation = ap (ap (ap (fmap Equation parseVar) (many (prr skipSpace parsePatternPrimary))) (optional (prr (wrapC '|') parseExpression))) (prr (wrapC '=') parseExpression)
skipType = ignore (sepBy1 (sepBy1 skipTypePrimary skipSpace) (wrapS "->"))
skipTypePrimary = choice [ignore parseVar, ignore parseCon, parseBetween '(' ')' skipType, parseBetween '[' ']' skipType]
parseDataDecl = prr (parseS "data") (prr skipSpace (prr parseCon (prr (preSep parseVar skipSpace) (prr (wrapC '=') (sepByChar1 (liftA2 Constructor parseCon (fmap length (preSep skipTypePrimary skipSpace))) '|')))))
skipTypeSignature = prr parseVar (prr (wrapS "::") skipType)
skipTypeAlias = prr (parseS "type") (prr skipSpace (prr parseCon (prr (preSep parseVar skipSpace) (prr (wrapC '=') skipType))))
parseToplevel = choice [fmap (const TO) (pro skipTypeSignature skipTypeAlias), fmap TD parseDataDecl, fmap TE parseEquation]
parseLine = prl (prl (sepByChar1 parseToplevel ';') skipSpace) parseEof
patternCount (Equation _ ps _ _) = length ps
makeProgram (P ds es) = Program ds (makeFunctions es)
makeFunctions = map makeFunctions_f . groupBy makeFunctions_g
makeFunctions_f []     = error "Internal error: No equations in binding group"
makeFunctions_f (x:xs) = cond (error (concat ["Equations for ", equationName x, " have different numbers of arguments"])) (Function (equationName x) (patternCount x) (x:xs)) (all (((==) (patternCount x)) . patternCount) xs)
makeFunctions_g (Equation name_a _ _ _) (Equation name_b _ _ _) = listEq (==) name_a name_b
lookupCon name (Environment c _) = lookup name c
lookupVar name (Environment _ v) = lookup name v
walkPatterns f = walkPatterns_items f VArg
walkPatterns_items f base = concat . zipWith (walkPatterns_f2 f) (map base (countFrom 0))
walkPatterns_f2 f v (PCon name ps) = append (f v (PCon name ps)) (walkPatterns_items f (VItem v) ps)
walkPatterns_f2 f v p              = f v p
compile (Program decls funcs) = concat [header, declareConstructors decls, declareFunctions funcs, boxConstructors decls, boxFunctions funcs, compileConstructors decls, compileFunctions (globalEnv decls funcs) funcs]
globalEnv decls funcs = Environment (append (globalEnv_constructorTags decls) (globalEnv_builtinConstructors)) (append (map (globalEnv_f . functionName) funcs) globalEnv_builtinFunctions)
globalEnv_f name = (P name (VBox name))
globalEnv_constructorTags = concatMap (flip zip (countFrom 0) . map constructorName)
globalEnv_builtinConstructors = [P "Nil" 0, P "Cons" 1, P "P" 0]
globalEnv_builtinFunctions = map globalEnv_f ["add", "sub", "_lt", "_le", "_eq", "_ge", "_gt", "_ne", "_and", "_or", "divMod", "negate", "not", "error"]
localEnv ps (Environment t v) = Environment t (append (walkPatterns localEnv_f ps) v)
localEnv_f v (PVar name) = [P name v]
localEnv_f _ (PCon _ _)  = []
declareFunctions_f [] = ""
declareFunctions_f xs = concat ["static Function ", intercalate ", " xs, ";\n"]
declareConstructors = declareFunctions_f . map ((append "f_") . constructorName) . concat
declareFunctions = declareFunctions_f . map ((append "f_") . functionName)
boxConstructors = concatMap boxConstructors_f . concat
boxConstructors_f (Constructor name n) = boxThing name n
boxFunctions = concatMap boxFunctions_f
boxFunctions_f (Function name n _) = boxThing name n
boxThing name n | n == 0 = concat ["static Box b_", name, " = {0, f_", name, ", NULL};\n"]
boxThing name n = concat ["static Partial p_", name, " = {", showInt n, ", 0, f_", name, "};\n", "static Box b_", name, " = {1, NULL, &p_", name, "};\n"]
compileConstructors = concatMap (concat . zipWith compileConstructors_f (countFrom 0))
compileConstructors_f tag (Constructor name n) = concat ["static void *f_", name, "(Box **args)\n", "{\n", allocate n, "\tv->tag = ", showInt tag, ";\n", concatMap initialize (range 0 (sub n 1)), "\treturn v;\n", "}\n"]
allocate n | n == 0 = "\tValue *v = malloc(sizeof(Value));\n\t(void) args;\n"
allocate n = concat ["\tValue *v = malloc(sizeof(Value) + ", showInt n, " * sizeof(Box*));\n"]
initialize i = concat ["\tv->items[", showInt i, "] = args[", showInt i, "];\n"]
compileFunctions env = concatMap (compileFunction env)
compileFunction env (Function name argc equations) =  concat ["static void *f_", name, "(Box **args)\n", "{\n", concatMap (compileEquation env) equations, "\tNO_MATCH(", name, ");\n", "}\n"]
compileEquation genv (Equation _ patterns guard expr) = compileEquation_a (localEnv patterns genv) patterns guard expr
compileEquation_a env patterns guard expr = compileEquation_b (concat ["\treturn ", compileExpressionStrict env expr, ";\n"]) (append (compilePatterns env patterns) (compileGuard env guard))
compileEquation_b returnExpr preds = condList returnExpr (compileEquation_f returnExpr) preds
compileEquation_f returnExpr xs = concat ["\tif (", intercalate " && " xs, ")\n\t", returnExpr]
compilePatterns env = walkPatterns (compilePatterns_f env)
compilePatterns_f _ _ (PVar name) = []
compilePatterns_f env v (PCon name ps) = compilePatterns_h v name (lookupCon name env)
compilePatterns_h v name (Just n) = [concat ["match(", compileVarInfo v, ",", showInt n, ")"]]
compilePatterns_h v name Nothing  = error (append "Not in scope: data constructor " name)
compileGuard env Nothing     = []
compileGuard env (Just expr) = [concat ["isTrue(", compileExpressionStrict env expr, ")"]]
compileExpressionStrict env (Var name) = concat ["force(", compileVar (lookupVar name env) name, ")"]
compileExpressionStrict _   (Con name) = concat ["force(&b_", name, ")"]
compileExpressionStrict _   (Int s)    = concat ["mkInt(", s, ")"]
compileExpressionStrict _   (Char s)   = concat ["mkInt(", s, ")"]
compileExpressionStrict _   (String s) = concat ["mkString(", s, ")"]
compileExpressionStrict env (Ap f x)   = concat ["apply(", compileExpressionStrict env f, ",", compileExpressionLazy env x, ")"]
compileExpressionLazy env (Var name) = compileVar (lookupVar name env) name
compileExpressionLazy _   (Con name) = concat ["&b_", name, ""]
compileExpressionLazy _   (Int s)    = concat ["box(mkInt(", s, "))"]
compileExpressionLazy _   (Char s)   = concat ["box(mkInt(", s, "))"]
compileExpressionLazy _   (String s) = concat ["box(mkString(", s, "))"]
compileExpressionLazy env (Ap f x)   = concat ["deferApply(", compileExpressionLazy env f, ",", compileExpressionLazy env x, ")"]
compileVar (Just v) _    = compileVarInfo v
compileVar Nothing  name = error (append "Not in scope: " name)
compileVarInfo (VBox name) = append "&b_" name
compileVarInfo (VArg n)    = concat ["args[", showInt n, "]"]
compileVarInfo (VItem v n) = concat ["item(", compileVarInfo v, ",", showInt n, ")"]
header="#include <assert.h>\n#include <stdarg.h>\n#include <stdio.h>\n#include <stdlib.h>\n#include <string.h>\ntypedef struct Box Box;\ntypedef struct Value Value;\ntypedef struct Partial Partial;\ntypedef void *Function(Box**);\nstruct Box{int state;Function *func;void*vc;Box*fx[];};\nstruct Value{int tag;Box *items[];};\nstruct Partial{int remaining;int applied;Function *func;Box *args[];};\n#define copy(...)memdup(&(__VA_ARGS__), sizeof(__VA_ARGS__))\n#define countof(...)(sizeof(__VA_ARGS__) / sizeof(*(__VA_ARGS__)))\n#define match(box, expectedTag)(((Value*)force(box))->tag == (expectedTag))\n#define item(box, n)(((Value*)(box)->vc)->items[n])\n#define isTrue(value)(!!*(int*)(value))\n#define NO_MATCH(func)fatal(\"Non-exhaustive patterns in function \" #func)\nstatic void fatal(const char *str){fprintf(stderr,\"*** Exception: %s\\n\", str);exit(EXIT_FAILURE);}\nstatic void *memdup(void *ptr, size_t size){void*ret=malloc(size);memcpy(ret,ptr,size);return ret;}\nstatic void *force(Box *box){switch(box->state){\ncase 0:box->state=2;box->vc=box->func(box->vc);box->state=1;\ncase 1:return box->vc;\ndefault:fatal(\"infinite loop\");}}\nstatic void *apply(Partial*f,Box*x){Partial*f2=malloc(sizeof(Partial)+(f->applied+1)*sizeof(Box*));\nmemcpy(f2->args,f->args,f->applied*sizeof(Box*));f2->args[f->applied]=x;\nif(f->remaining>1){f2->remaining=f->remaining-1;f2->applied=f->applied+1;f2->func=f->func;return f2;\n}else return f->func(f2->args);}\nstatic void*deferApply_cb(Box**a){return apply(force(a[0]),a[1]);}\nstatic Box*deferApply(Box*f,Box*x){\nBox*ret=malloc(sizeof(Box)+2*sizeof(Box*));\nret->state=0;\nret->func=deferApply_cb;\nret->vc=ret->fx;\nret->fx[0]=f;\nret->fx[1]=x;\nreturn ret;}\n\nstatic Box*defer(Function*func,void*ctx){\nBox*ret=malloc(sizeof(Box));\nret->state=0;\nret->func=func;\nret->vc=ctx;\nreturn ret;}\n\nstatic Box *box(void *value)\n{\n\tBox *ret = malloc(sizeof(Box));\n\tret->state = 1;\n\tret->func = NULL;\n\tret->vc = value;\n\treturn ret;\n}\n\nstatic int *mkInt(int n)\n{\n\tint *ret = malloc(sizeof(*ret));\n\t*ret = n;\n\treturn ret;\n}\n\nstatic Function f_Nil, f_Cons, f_P;\nstatic Box b_Nil, b_Cons, b_P, b_main;\n\n#define FUNCTION(name, argc) \\\n\tstatic Function f_##name; \\\n\tstatic Partial p_##name = {argc, 0, f_##name}; \\\n\tstatic Box b_##name = {1, NULL, &p_##name}; \\\n\tstatic void *f_##name(Box **args)\n\n#define intop(name, expr) \\\n\tFUNCTION(name, 2) \\\n\t{ \\\n\t\tint a = *(int*)force(args[0]); \\\n\t\tint b = *(int*)force(args[1]); \\\n\t\treturn mkInt(expr); \\\n\t}\n\n#define intop1(name, expr) \\\n\tFUNCTION(name, 1) \\\n\t{ \\\n\t\tint a = *(int*)force(args[0]); \\\n\t\treturn mkInt(expr); \\\n\t}\n\nintop(add,  a + b)\nintop(sub,  a - b)\n\nintop(_lt,  a <  b)\nintop(_le,  a <= b)\nintop(_eq,  a == b)\nintop(_ge,  a >= b)\nintop(_gt,  a >  b)\nintop(_ne,  a != b)\nintop(_and, a && b)\nintop(_or,  a || b)\n\nintop1(negate, -a)\nintop1(not,    !a)\n\nFUNCTION(divMod, 2)\n{\n\tint n = *(int*)force(args[0]);\n\tint d = *(int*)force(args[1]);\n\tint div = n / d;\n\tint mod = n % d;\n\t\n\tif ((mod < 0 && d > 0) || (mod > 0 && d < 0)) {\n\t\tdiv--;\n\t\tmod += d;\n\t}\n\t\n\tBox *pair[2] = {box(mkInt(div)), box(mkInt(mod))};\n\treturn f_P(pair);\n}\n\nstatic void *mkString(const char *str)\n{\n\tif (*str != '\\0') {\n\t\tBox *cons[2] =\n\t\t\t{box(mkInt(*str)), defer((Function*) mkString, (void*)(str + 1))};\n\t\treturn f_Cons(cons);\n\t} else {\n\t\treturn force(&b_Nil);\n\t}\n}\n\nstatic void putStr(Value *v, FILE *f)\n{\n\tif (v->tag == 1) {\n\t\tint c = *(int*)force(v->items[0]);\n\t\tputc(c, f);\n\t\tputStr(force(v->items[1]), f);\n\t}\n}\n\nFUNCTION(error, 1)\n{\n\tfflush(stdout);\n\tfputs(\"*** Exception: \", stderr);\n\tputStr(force(args[0]), stderr);\n\tputc('\\n', stderr);\n\texit(EXIT_FAILURE);\n}\n\nstruct mkStringFromFile\n{\n\tFILE *f;\n\tconst char *name;\n};\n\nstatic void *mkStringFromFile(struct mkStringFromFile *ctx)\n{\n\tint c = fgetc(ctx->f);\n\t\n\tif (c == EOF) {\n\t\tif (ferror(ctx->f))\n\t\t\tperror(ctx->name);\n\t\treturn force(&b_Nil);\n\t}\n\t\n\tBox *cons[2] = {box(mkInt(c)), defer((Function*) mkStringFromFile, ctx)};\n\treturn f_Cons(cons);\n}\n\nint main(void)\n{\n\tstruct mkStringFromFile c_in = {stdin, \"<stdin>\"};\n\tBox *b_in = defer((Function*) mkStringFromFile, copy(c_in));\n\tputStr(apply(force(&b_main), b_in), stdout);\n\treturn 0;\n}\n"
prelude = P 0 "_apply f x=f x;_compose f g x=f(g x);data List a=Nil|Cons a(List a);data P a b=P a b;data B=B;data Maybe a=Nothing|Just a;data Bool=False|True;id x=x;const x _=x;flip f x y=f y x;foldl f z[]=z;foldl f z(x:xs)=foldl f(f z x)xs;foldl1 f(x:xs)=foldl f x xs;foldl1 _[]=error\"foldl1: empty list\";foldr f z[]=z;foldr f z(x:xs)=f x(foldr f z xs);foldr1 f[x]=x;foldr1 f(x:xs)=f x(foldr1 f xs);foldr1 _[]=error\"foldr1: empty list\";map f[]=[];map f(x:xs)=f x:map f xs;filter p[]=[];filter p(x:xs)|p x=x:filter p xs;filter p(x:xs)=filter p xs;zipWith f(x:xs)(y:ys)=f x y:zipWith f xs ys;zipWith f _ _=[];append[]ys=ys;append(x:xs)ys=x:append xs ys;concat=foldr append[];concatMap f=concat.map f;length[]=0;length(_:l)=add 1(length l);take n _|n<=0=[];take _[]=[];take n(x:xs)=x:take(sub n 1)xs;takeWhile p[]=[];takeWhile p(x:xs)|p x=x:takeWhile p xs;takeWhile _ _=[];dropWhile p[]=[];dropWhile p(x:xs)|p x=dropWhile p xs;dropWhile p xs=xs;span p[]=P[][];span p(x:xs)|p x=span_1 x(span p xs);span p xs=P[]xs;span_1 x(P ys zs)=P(x:ys)zs;break p=span(not.p);reverse=foldl(flip(:))[];groupBy _[]=[];groupBy eq(x:xs)=groupBy_1 x eq(span(eq x)xs);groupBy_1 x eq(P ys zs)=(x:ys):groupBy eq zs;maybe n f Nothing=n;maybe n f(Just x)=f x;all p=foldr(&&)True.map p;intersperse _[]=[];intersperse _[x]=[x];intersperse sep(x:xs)=x:sep:intersperse sep xs;intercalate xs xss=concat(intersperse xs xss);isDigit c=c>='0'&&c<='9';isAlphaNum c=c>='0'&&c<='9'||c>='A'&&c<='Z'||c>='a'&&c<='z';isUpper c=c>='A'&&c<='Z';isLower c=c>='a'&&c<='z';showInt n|n<0='-':showInt(negate n);showInt n|n==0=\"0\";showInt n|n>0=reverse(map(add 48)(showInt_1 n));showInt_1 n|n==0=[];showInt_1 n=showInt_2(divMod n 10);showInt_2(P div mod)=mod:showInt_1 div;lines []=[];lines s=lines_1(break((==)'\\n')s);lines_1(P l[])=[l];lines_1(P l(_:s))=l:lines s;interact=id"

16

Lenguaje personalizado → C - (7979)

Como la pregunta no impide crear mi propio idioma, pensé en intentarlo.

El entorno

El idioma tiene acceso a dos pilas, The Call Stack y The Data Stack. La pila de llamadas se usa para las instrucciones de salto {y }, mientras que la pila de datos se usa en la mayoría de las otras instrucciones. Call Stack es opaco a las aplicaciones.

La pila de datos puede contener tres tipos diferentes de valores: entero, texto y vacío. Los enteros son de tipo intptr_t, mientras que el texto se almacena como cadenas de estilo C.

La ^instrucción tiene acceso a The Array. La matriz es una matriz constante de longitud 17 de elementos de texto. Probablemente debería ver la fuente del esquema de indexación, ya que es un poco inestable.

El idioma

#   -   Begin number    - Marks the beginning of a number, for example: #42.
.   -   End number      - Marks the end of a number and pushes it to the data stack.
^   -   Translate       - Pops a number, and pushes the corresponding text from The Array.
<   -   Write           - Pops a value, and prints it to stdout.
>   -   Read            - Reads a character from stdin and pushes it as a number. If EOF,
                          exit.
{   -   Start Loop      - Pushes the current location in the program to the call stack.
}   -   End Loop        - Go to the position specified by the top of the call stack.
+   -   Add             - Pop two numbers from the data stack, add them, push the result.
-   -   Subtract        - Pop into A, pop into B, push B - A. Both B & A must be numbers.
!   -   Duplicate       - Pop from The Data Stack, push that value twice.
_   -   Discard         - Pop from The Data Stack.
=   -   Skip if Equal   - Pop two values, if they are equal skip the next instruction
                          and pop one item from the call stack.
?   -   Loop            - Pop one number, subtract one, if it's less than one, pop one
                          item from the call stack and skip the next instruction.
@   -   Array Separator - Marks the end of an array item.
$   -   Program End     - Marks the end of the program.

El compilador

Este es el compilador. No se juega al golf, y espero que pueda reducirse considerablemente. Debería ser posible usar el código de máquina directamente y generar un archivo COM dos, pero aún no lo he logrado. Sé que esto parece un programa en C, pero la implementación real del compilador está inactiva al final.

Actualmente, el compilador genera mucha información de depuración en stderr.

#include <string.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <setjmp.h>
#include <stdbool.h>

const char* position;
const char* array[] = {"@"};

void die(const char* reason)
{
    fprintf(stderr, "%s\n", reason);
    exit(1);
}

//
// Stack Functions
//

#define T_EMPTY     (0)
#define T_NUMBER    (1)
#define T_TEXT      (2)

typedef struct {
    unsigned char type;
    union {
        const char* text;
        intptr_t number;
    };
} stack_entry;

#define STACK_MAX   (1024)
stack_entry stack[STACK_MAX];
size_t stack_position = 0;

stack_entry* _push()
{
    if (stack_position >= STACK_MAX) {
        die("out of stack space");
    }
    return &stack[stack_position++];
}

void push(stack_entry v)
{
    if (v.type == T_EMPTY) {
        fprintf(stderr, "\tpushed: None\n");
    } else if (v.type == T_TEXT) {
        fprintf(stderr, "\tpushed: %s\n", v.text);
    } else {
        fprintf(stderr, "\tpushed: %d\n", v.number);
    }
    stack_entry* entry = _push();
    *entry = v;
}

void push_empty()
{
    fprintf(stderr, "\tpushed: None\n");
    stack_entry* entry = _push();
    entry->type = T_EMPTY;
    entry->number = 0;
}

void push_number(intptr_t number)
{
    fprintf(stderr, "\tpushed: %d\n", number);
    stack_entry* entry = _push();
    entry->type = T_NUMBER;
    entry->number = number;
}

void push_text(const char* text)
{
    fprintf(stderr, "\tpushed: %s\n", text);
    stack_entry* entry = _push();
    entry->type = T_TEXT;
    entry->text = text;
}

// Polymorphic Push (for literals)
#define PUSH0()     do { fprintf(stderr, "literal:\n"); push_empty(); } while (0)
#define PUSH1(a)    do { fprintf(stderr, "literal:\n"); push_number(a); } while (0)

#define GET_MACRO(_0, _1, NAME, ...) NAME
#define PUSH(...) GET_MACRO(_0, ##__VA_ARGS__, PUSH1, PUSH0)(__VA_ARGS__)

stack_entry pop()
{
    if (stack_position <= 0) {
        fprintf(stderr, "\tpopped: None\n");
        return (stack_entry) {.type = T_EMPTY, .number = 0};
    }

    stack_entry v = stack[--stack_position];
    if (v.type == T_EMPTY) {
        fprintf(stderr, "\tpopped: None\n");
    } else if (v.type == T_TEXT) {
        fprintf(stderr, "\tpopped: %s\n", v.text);
    } else {
        fprintf(stderr, "\tpopped: %d\n", v.number);
    }
    return v;
}

stack_entry peek()
{
    if (stack_position <= 0) {
        return (stack_entry) {.type = T_EMPTY, .number = 0};
    }

    return stack[stack_position-1];
}

//
// Jump Functions
//

#define JUMP_MAX    (1024)
jmp_buf jump[JUMP_MAX];
size_t jump_position = 0;

#define start()                                     \
    do {                                            \
    if (jump_position >= JUMP_MAX) {                \
        die("out of jump space");                   \
    }                                               \
    fprintf(stderr, "start: %d\n", jump_position);  \
    setjmp(jump[jump_position++]);                  \
    } while (0)

void pop_jump() {
    if (jump_position <= 0) {
        die("empty jump stack");
    }
    jump_position -= 1;
}

#define end()                                       \
    do {                                            \
    if (jump_position <= 0) {                       \
        die("empty jump stack");                    \
    }                                               \
    fprintf(stderr, "end: %d\n", jump_position-1);  \
    longjmp(jump[jump_position-1],1);               \
    } while (0)

//
// Program functions
//

void translate()
{
    fprintf(stderr, "translate:\n");
    stack_entry entry = pop();
    if (entry.type == T_TEXT) {
        die("translating text");
    } else if (entry.type == T_EMPTY) {
        push_empty();
    } else {
        switch (entry.number) {
            case 0:
            case 1:
                push_text(array[entry.number]);
                break;
            case 64:
                push_text(array[2]);
                break;
            case 94:
                push_text(array[3]);
                break;
            case 45:
                push_text(array[4]);
                break;
            case 43:
                push_text(array[5]);
                break;
            case 62:
                push_text(array[6]);
                break;
            case 60:
                push_text(array[7]);
                break;
            case 33:
                push_text(array[8]);
                break;
            case 95:
                push_text(array[9]);
                break;
            case 61:
                push_text(array[10]);
                break;
            case 63:
                push_text(array[11]);
                break;
            case 123:
                push_text(array[12]);
                break;
            case 125:
                push_text(array[13]);
                break;
            case 35:
                push_text(array[14]);
                break;
            case 46:
                push_text(array[15]);
                break;
            case 36:
                push_text(array[16]);
                break;
            default:
                push_empty();
                break;
        }
    }
}

void subtract()
{
    fprintf(stderr, "subtract:\n");
    stack_entry v1 = pop();
    stack_entry v2 = pop();

    if (v1.type != T_NUMBER || v2.type != T_NUMBER) {
        die("not a number");
    }

    push_number(v2.number - v1.number);
}

void add()
{
    fprintf(stderr, "add:\n");
    stack_entry v1 = pop();
    stack_entry v2 = pop();

    if (v1.type != T_NUMBER || v2.type != T_NUMBER) {
        die("not a number");
    }

    push_number(v2.number + v1.number);
}

void read()
{
    fprintf(stderr, "read:\n");
    int in = getchar();

    if (in >= 0) {
        push_number(in);
    } else {
        die("end of input");
    }
}

void write()
{
    fprintf(stderr, "write:\n");
    stack_entry v = pop();

    if (v.type == T_NUMBER) {
        putchar(v.number);
    } else if (v.type == T_TEXT) {
        const char* x = v.text;
        char y;
        while (0 != (y=*(x++))) {
            y -= 128;
            putchar(y);
        }
    }
}

void duplicate()
{
    fprintf(stderr, "duplicate:\n");
    stack_entry v = pop();
    push(v);
    push(v);
}

void discard()
{
    fprintf(stderr, "discard:\n");
    pop();
}

bool equals()
{
    fprintf(stderr, "equals:\n");
    stack_entry x = pop();
    stack_entry y = pop();

    bool skip;

    if (x.type != y.type) {
        skip = false;
    } else if (x.type == T_EMPTY) {
        skip = true;
    } else if (x.type == T_NUMBER) {
        skip = x.number == y.number;
    } else {
        skip = strcmp(x.text, y.text) == 0;
    }

    if (skip) {
        pop_jump();
    }

    return !skip;
}

bool question()
{
    fprintf(stderr, "question:\n");
    stack_entry x = pop();

    intptr_t value;

    if (x.type == T_EMPTY) {
        value = 0;
    } else if (x.type == T_NUMBER) {
        value = x.number;
    } else {
        die("it is bad form to question text");
    }

    value -= 1;

    if (value < 1) {
        pop_jump();
        return false;
    } else {
        push_number(value);
        return true;
    }
}

int main()
{
@","@translate();@subtract();@add();@read();@write();@duplicate();@discard();@if(equals())@if(question())@start();@end();@PUSH(@);@return 0;}@

#0.^<                           Emit the preface

#17.{                           Loop for as many array slots exist
    #.{<>#128.+!#192.=}         Copy characters, adding 128 until reaching an at sign
    #128.-
    ^<                          Emit the code between array items
?}                              Return to start

#1.^<                           Emit the prologue


{{
>!^<                            Read character, translate it, and print it
!#35.=}                         Check if we have a literal
#.{<>!#46.=}^<                  If so, verbatim copy characters until a period
}                               Continue executing
$

Para compilar el código C generado:

gcc -finput-charset=CP437 -fexec-charset=CP437 -std=gnu11

El conjunto de caracteres es necesario porque el compilador escapa de caracteres especiales al agregar 128.

El Bootstrap

Para compilar el primer compilador, escribí un intérprete de Python para el lenguaje.

import sys
from collections import defaultdict
KEYS = [0,1] + map(ord, ['@','^','-','+','>','<','!','_','=','?','{','}','#','.','$'])

# Read the source file
with file(sys.argv[1]) as f:
    data = f.read()
pos = 0

# Initialize the environment
array = defaultdict(str)
jmp = []
stk = []

def log(x):
    sys.stderr.write(x + '\n')

def read():
    global pos,data
    pos += 1
    return data[pos-1]

def pop():
    global stk
    try:
        x = stk.pop()
    except IndexError:
        x = None
    log('\tpopped ' + repr(x))
    return x

def push(value):
    global stk
    log('\tpushing ' + repr(value))
    stk.append(value)

# Read the array initialization section
for key in KEYS:
    while True:
        c = read()
        if c == '@':
            break
        array[key] += c

# Execute the program
while pos < len(data):
    c = read()
    if c == '^':
        log('translate:')
        push(array.get(pop(), None))
    elif c == '-':
        log('subtract:')
        x = pop()
        y = pop()
        push(y - x)
    elif c == '+':
        log('add:')
        x = pop()
        y = pop()
        push(y + x)
    elif c == '>':
        log('read:')
        push(ord(sys.stdin.read(1)))
    elif c == '<':
        log('write:')
        v = pop()
        if isinstance(v, int):
            sys.stdout.write(chr(v))
        elif v is not None:
            sys.stdout.write(v)
    elif c == '!':
        log('duplicate:')
        x = pop()
        push(x)
        push(x)
    elif c == '_':
        log('discard:')
        pop()
    elif c == '=':
        log('skip if equal:')
        x,y = pop(),pop()
        if x == y:
            pos += 1
            jmp.pop()
    elif c == '?':
        log('loop:')
        x = pop()
        x -= 1
        if x < 1:
            pos += 1
            jmp.pop()
        else:
            push(x)
    elif c == '{':
        log('start: ' + repr(pos))
        jmp.append(pos)
    elif c == '}':
        log('end:')
        pos = jmp[-1]
    elif c == '#':
        literal = ''
        while True:
            c = read()
            if c == '.':
                log('literal: ' + repr(literal))
                if literal == '':
                    push(None)
                else:
                    push(int(literal))
                break
            else:
                literal += c

Poniendolo todo junto

Suponiendo que ha guardado el compilador como compiler.cmpy el bootstrap como bootstrap.py, aquí le mostramos cómo construir el compilador y luego usarlo para compilarse:

$ cat compiler.cmp |
  python bootstrap.py compiler.cmp 2> trace-bootstrap |
  gcc -finput-charset=CP437 -fexec-charset=CP437 -std=gnu11 -o result -xc -
$ cat compiler.cmp | ./result 2> trace-final

Por lo tanto, no soy un gran programador en C, ni tampoco soy un gran diseñador de lenguaje, por lo que cualquier sugerencia para mejorar esto es muy bienvenida.

Programas de ejemplo

¡Hola Mundo!

Hello, World!@@@@@@@@@@@@@@@@@#0.^<$

1
Si bien es impresionante, esto viola las reglas del código de golf definidas en el Centro de ayuda.
Iszi

1
Corrección, la regla se encuentra en la wiki de la etiqueta de código de golf aquí , así como en Meta .
Iszi

77
@Iszi No había encontrado esa página antes, y tienes toda la razón ... Sin embargo, me gustaría proporcionar algunos hechos atenuantes antes de considerar la sentencia: este lenguaje es de propósito general y no proporciona un "carácter único". solución ", y en segundo lugar, si incluye la implementación del lenguaje en la solución, mi puntaje no cambia, ya que se implementa solo (concedido, no podría afirmar que mi solución compila C, por lo que no resolvería el problema original .)
tecywiz121

¿Cómo se llama tu idioma?
Beta Decay

44
Debe agregar su idioma a esolangs.org
mbomb007

14

Brainfuck extendido v0.9: 618 bytes (sin contar los avances de línea innecesarios)

:c:n:z:g:i:t:w:a:p++++++++[->++++++++<]>[->>>>>>>[>>>>>>>>]+[<<<<<<<<]>]>>>>>>>[->>>>>>>>]@i
$i,[[-$t+$w+$i]$t[-$i+$t]+$a+++[-$w-----------$a]$w---[$a++[-$w-----------$a]$w[--[--[--[$i.
$t+++++++[-$w++++++++$t]$w[-]]$t[-$p[-]$i.$n,.[-<[<<]+[>>]<]@n$c[<<]>[-<<<+>>>>[>>]@z$p+$c[<
<]>]<<<[->>>+<<<]>>>>[->>]@z$t]$w]$t[-$i.$p+$t]$w]$t[-$i.$p-$t]$w]$t[$i.$n,.[-<[<<]+[>>]<]@n
$g[-$t+$c[<<]>+>[>>]@z>]$c[<<]>>[->>]@z$t[-$g+$t]$t]$w]$t[-$i.[-]$n,.[-<[<<]+[>>]<]@n$c[<<]>
[-<<<+>>>>[>>]@z$i+$a+$c[<<]>]<<<[->>>+<<<]>>>>[->>]@z<++++++[->++++++++++<]$w+$p[$a[-$w-]<[
@w-$p[-$z.$p]+$t]$w+$p-]$z++$w-$a[-$z.$a]$z[-]$i[-$p+$i]$t]$w$i,]

Esta es una versión de golf de mi primera versión de EBF con soporte eliminado para comentarios y código muerto para admitir la eliminación de variables.

Entonces, básicamente es BrainFuck con variables. :xcrea variables x. El compilador sabe dónde está, por $ylo que producirá <'sy>' para llegar a esa posición. A veces necesitas bucles asimétricos y luego debes decirle al compilador dónde estás @x. Como EBF actual se compila a Brainfuck.

Esta primera versión tenía solo un nombre de variable char, pero he usado esta versión para compilar la siguiente versión y así sucesivamente hasta la versión actual que tiene un conjunto de características impresionante. Al compilar desde la fuente de github, en realidad descarga el binario compilado a mano en bootstrap 6 versiones intermedias de ebf para crear la versión actual.

Para iniciarlo, puede usar este primer y único binario en el repositorio git de EBF que se compiló a mano con éxito después de un par de intentos.

wget -nv https://raw.githubusercontent.com/westerp/ebf-compiler/34c378c8347aafa5dbf37f4973461d42c8120ea4/ebf-handcompiled.bf
beef ebf-handcompiled.bf < ebf09.ebf > ebf09a.bf
beef ebf09a.bf < ebf09.ebf > ebf09b.bf
diff -s ebf09a.bf ebf09b.bf # Files ebf09a.bf and ebf09b.bf are identical

Brainfuck tiene algunas implementaciones de hardware, por ejemplo. esto , esto y esto por mencionar algunos. Pero sobre todo es tan fácil de implementar que prácticamente puede implementar un intérprete en cualquier sistema. Bromeo diciendo que Zozotez LISP , que está escrito en EBF, es probablemente el LISP más portátil que existe.


8

Hex, 550 bytes

Esto apunta específicamente a sistemas x86_64 que ejecutan Linux.

7f454c4602010100000000000000000002003e0001000000780040000000000040000000000000000000000000000000000000004000380001004000000000000100000005000000000000000000000000004000000000000000400000000000130100000000000013010000000000000000200000000000e81700000085c07c0b31ff01c7e879000000ebec31c089c7b03c0f05e84c0000004885c07c203c2178f2741b89c7e825000000c0e00450e83100000089c7e8150000005900c8c3e8210000003c0d7ff774ca3c0a75f1ebc489f831c93c400f9cc148ffc980e12780c13028c8c36a004889e631c089c2fec289c70f0531c985c0580f95c148ffc94809c8c3574889e631c0fec089c289c70f0558c3

En este lenguaje, código fuente consta de bytes representados como dos dígitos hexadecimales en minúscula, [0-9a-f][0-9a-f]. Estos bytes pueden tener cualquier cantidad de espacio en blanco circundante, pero no puede ocurrir nada entre los dígitos que forman un solo byte. Además, '!'es un carácter de comentario de línea: se ignora, así como todo lo que hay entre él y el siguiente '\n'carácter.

Si comprende el ensamblado x86, aquí hay una versión mucho más legible del código fuente:

! ELF Header !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
7f 45 4c 46                !e_ident[EI_MAG0] (0x7F "ELF")
02                         !e_ident[EI_CLASS] (64-bit)
01                         !e_ident[EI_DATA] (little-endian)
01                         !e_ident[EI_VERSION] (ELF v1)
00                         !e_ident[EI_OSABI] (System V ABI)
00                         !e_ident[EI_ABIVERSION] (version 0)
00 00 00 00 00 00 00       !e_ident [EI_PAD]
02 00                      !e_type (executable)
3e 00                      !e_machine (x86_64)
01 00 00 00                !e_version (ELF v1)
78 00 40 00 00 00 00 00    !e_entry (0x40078)
40 00 00 00 00 00 00 00    !e_phoff (0x   40)
00 00 00 00 00 00 00 00    !e_shoff (0x    0)
00 00 00 00                !e_flags
40 00                      !e_ehsize (ELF header size = 64 bytes)
38 00                      !e_phentsize (Program headers = 56 bytes)
01 00                      !e_phnum (1 program header)
40 00                      !e_shentsize (Section headers = 64 bytes)
00 00                      !e_shnum (no section headers)
00 00                      !e_shstrndx (section names, not useful here)

! Program Headers !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
01 00 00 00                !p_type (LOAD)
05 00 00 00                !p_flags (R+E)
00 00 00 00 00 00 00 00    !p_offset (file-loc 0)
00 00 40 00 00 00 00 00    !p_vaddr (vmem-loc 0x40000)
00 00 40 00 00 00 00 00    !p_paddr (pmem-loc 0x40000)
13 01 00 00 00 00 00 00    !p_filesz (length 0x113 bytes)
13 01 00 00 00 00 00 00    !p_memsz (allocate 0x113 bytes)
00 00 20 00 00 00 00 00    !p_align (align pages in 0x20000 increments)


! Program Code !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! _start: !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
      e8 17 00 00 00 ! callq _gethx
               85 c0 ! test %eax,%eax
               7c 0b ! jl .+11
               31 ff ! xor %edi,%edi
               01 c7 ! add %eax,%eax
      e8 79 00 00 00 ! callq _putch
               eb ec ! jmp .-20
               31 c0 ! xor %eax,%eax
               89 c7 ! mov %eax,%edi
               b0 3c ! mov $0x3c,%al
               0f 05 ! syscall

!! _gethx: !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
      e8 4c 00 00 00 ! callq _getch
            48 85 c0 ! test %rax,%rax
               7c 20 ! jl _gethx+42
               3c 21 ! cmp $0x21,al
               78 f2 ! js _gethx
               74 1b ! je _gethx+43
               89 c7 ! mov %eax,%edi
      e8 25 00 00 00 ! callq _h2d
            c0 e0 04 ! sal $4,%al
                  50 ! push %rax
      e8 31 00 00 00 ! callq _getch
               89 c7 ! mov %eax,%edi
      e8 15 00 00 00 ! callq _h2d
                  59 ! pop %rcx
               00 c8 ! add %cl,%al
                  c3 ! retq
      e8 21 00 00 00 ! callq _getch
               3c 0d ! cmp $0xd,%al
               7f f7 ! jg _gethx+43
               74 ca ! je _gethx
               3c 0a ! cmp $0xa,%al
               75 f1 ! jne _gethx+43
               eb c4 ! jmp _gethx

!! _h2d: !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
               89 f8 ! mov %edi,%eax
               31 c9 ! xor %ecx,%ecx
               3c 40 ! cmp $0x40,%al
            0f 9c c1 ! setl %cl
            48 ff c9 ! dec %rcx
            80 e1 27 ! and $0x27,%cl
            80 c1 30 ! add $0x30,%cl
               28 c8 ! sub %cl,%al
                  c3 ! retq

!! _getch: !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
               6a 00 ! push $0
            48 89 e6 ! mov %rsp,%rsi
               31 c0 ! xor %eax,%eax
               89 c2 ! mov %eax,%edx
               fe c2 ! inc %dl
               89 c7 ! mov %eax,%edi
               0f 05 ! syscall
               31 c9 ! xor %ecx,%ecx
               85 c0 ! test %eax,%eax
                  58 ! pop %rax
            0f 95 c1 ! setne %cl
            48 ff c9 ! dec %rcx
            48 09 c8 ! or %rcx,%rax
                  c3 ! retq

!! _putch: !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
                  57 ! push %rdi
            48 89 e6 ! mov %rsp,%rsi
               31 c0 ! xor %eax,%eax
               fe c0 ! inc %al
               89 c2 ! mov %eax,%edx
               89 c7 ! mov %eax,%edi
               0f 05 ! syscall
                  58 ! pop %rax
                  c3 ! retq

Si extrae el lenguaje ensamblador de los comentarios a continuación ! Program Code, puede ensamblar y ejecutar el compilador Hex. La entrada y la salida usan stdin y stdout.


HexNo es un idioma.
TuxCrafting

@ TùxCräftîñg Eso no es exactamente cierto. No tiene una página de Wikipedia, pero existía de esta forma, con esta implementación, antes de que supiera de esta pregunta (sin nombre en ese momento). Desde mi svn: lutras-hacking.ddns.net/websvn/listing.php?repname=sasm La idea era construir un ensamblador de la nada, pero nunca llegué tan lejos.
Fox

Oh, lo siento> _> ...
TuxCrafting

Como no es un esolang muy conocido, puedes poner un enlace al repositorio en la publicación
TuxCrafting,

@TuxCopter supongo, que "Linux x86 asamblea" es el nombre de la lengua
Евгений Новиков

3

Subconjunto Javascript -> Java, 504 bytes

document.write("public class Generated{public static void main(String[]args){"+prompt().replace(RegExp("[r]eplace(,"g"),"replaceAll(").replace(RegExp("[v]ar","g"),"double")+"}static class document{static void write(String s){System.out.print(s);}}static void prompt(){return javax.swing.JOptionPane.showInputDialog(\"\");}static void alert(String a){JOptionPane.showMessageDialog(null,a);}static double Number(String a){return Double.parseDouble(a);}static String RegExp(String a,String b){return a;}}");


0

Madera , 0 bytes

Lumber es un completo lenguaje de programación esotérico inventado por Unrelated String escrito en solo 10 líneas de código Prolog.

No lo puedo creer? Estos programas eliminaron comentarios y hacen que la fuente del intérprete sea más concisa.

lumber_corefuncs.pl:

:- use_module(lumber_types).

lumber_types.pl

:- module(lumber_types,
          []).

lumber_corefuncs.pl toma en la biblioteca lumber_types; y a su vez, esta biblioteca define un módulo que no contiene nada. Por lo tanto, Lumber no hace nada en entradas arbitrarias, que a su vez es un autocompilador.



2
@A__ Solo porque sea una respuesta técnicamente válida, no significa que sea buena, especialmente si es floja o más bien absurda (especialmente cuando ya existe una respuesta con la misma excusa con 3 votos negativos)
Jo King,

Además, no es Perl, es Prolog. (También probablemente tendré una respuesta legítima para esto en Lumber en algún momento de esta década)
Cadena no relacionada

-1

Cero , 0 bytes

Increíblemente, a pesar de no estar completo en Turing, el lenguaje Nil es lo suficientemente expresivo como para implementar un intérprete por sí mismo, mucho más concisamente que muchos lenguajes "adecuados". El ejemplo presentado aquí es una implementación simple, pero usando técnicas de compresión avanzadas Los desarrolladores nulos han podido producir intérpretes de trabajo en tan solo 0 líneas de código.



2
Gah! recordar lo que en meta es relevante actualmente es demasiado difícil.
Ørjan Johansen
Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.