Draw Sri Yantra


11

Desafío:

Dibuja a Sri Yantra .

Cómo:

Hay diferentes formas de dibujarlo. Todos incluyen muchos pasos. Si cree que puede dibujarlo sin seguir los pasos vinculados, desplácese a continuación para ver los elementos que debe tener en su dibujo .

Los pasos completos se pueden encontrar aquí:

http://www.saralhindi.com/Shri_Yantra/makingsky14steps_eng.htm

( No los copié aquí porque sería una pregunta muy larga , aquí está archieve.org mirror en caso de que el primer enlace se caiga )

La imagen final debe verse como la imagen a continuación:

ingrese la descripción de la imagen aquí

Debe tener:

Básicamente, cualquier método de dibujo de su elección sería una respuesta válida siempre que mantenga los elementos más importantes.

  1. El número de triángulos debe ser el mismo que en la imagen de arriba (43 triángulos más pequeños resultaron del entrelazado de los 9 triángulos más grandes)

  2. Estas triples intersecciones se respetan:

ingrese la descripción de la imagen aquí

  1. Las puntas de los triángulos hacia arriba tocan las bases de los 4 triángulos hacia abajo y las puntas de los triángulos hacia abajo deben tocar las bases de los 3 triángulos hacia arriba como se muestra en la figura a continuación.

    ingrese la descripción de la imagen aquí

  2. El círculo interno (bindu) es concéntrico con el círculo externo.

  3. Las puntas (vértices) de los triángulos más grandes deben tocar el círculo exterior: ingrese la descripción de la imagen aquí

  4. La imagen final debe tener todos los elementos y generalmente debe verse así: ingrese la descripción de la imagen aquí

  5. El color debe ser aproximadamente el mismo que la imagen de arriba para cada elemento (incluidos los pétalos).

  6. La forma de los pétalos preferiblemente debe verse más o menos como en la imagen de abajo, pero también puede ser solo semicírculos o una sección de círculo simple:

  7. No hay restricciones de proporción estrictas para los círculos o el tamaño de las puertas, pero el círculo más externo debe tener un diámetro no menor al 90% del lado del cuadrado externo, los otros elementos se organizarían respectivamente en relación con estas proporciones.

ingrese la descripción de la imagen aquí

ingrese la descripción de la imagen aquí

Lenguajes de programación y resultados

No hay restricciones en el lenguaje de programación ni en el formato del resultado (puede ser una imagen vectorial, una imagen de mapa de bits, un lienzo, etc.) siempre que el resultado sea relativamente claro y discernible (al menos 800px X 800px)

Última edición: no existe un método perfecto para dibujar, ya que este blog los explora tan bien: http://fotthewuk.livejournal.com/ Teniendo eso en cuenta, se tolerarán fallas menores.

En este punto, es un ejercicio interesante aprender que es muy probable que no haya una solución perfecta, como la cuadratura del círculo.


3
Creo que tendrá que definir la paleta de colores, las escalas de longitud relevantes de los círculos exteriores y el fondo y la forma de los pétalos.
Martin Ender

@ MartinBüttner Reedité la pregunta, por favor dígame si la información es mejor ahora. Dibujar este Yantra no es un desafío fácil, y establecer las especificaciones también es un poco desafiante
Eduard Florinescu

Hola, sé que la especificación es muy difícil en este caso. Pero se requiere. Mi pregunta similar reciente también tuvo problemas debido a las especificaciones, por lo que es mejor que se te ocurra una porque, sin eso, es demasiado difícil de dibujar y prácticamente no es un verdadero desafío.
Optimizador

55
Este desafío es una locura.
AL

1
Gracias, ya lo entendí;) Y maldición ... esto es difícil, solo hice los triángulos y mi código ya es enorme. Optimizándolo ahora xD
Teun Pronk

Respuestas:


8

Mathematica - 2836 2536 caracteres

Fue un poco vertiginoso descubrir los combos de regiones que hacen pequeños triángulos disponibles para colorear.

El marco

Los objetos de marco son desigualdades que se describen como regiones. Por ejemplo, las vieiras rojas y amarillas son dos regiones de círculos.

n1=8;n2=16;
w8=Round[.78 Table[{Cos[2\[Pi] k/n1],Sin[2\[Pi] k/n1]},{k,0,n1-1}],.01];
w16=Round[1 Table[{Cos[2\[Pi] k/n2],Sin[2\[Pi] k/n2]},{k,0,n2-1}],.01];
n=12;y1=.267;
x2=1/Sqrt[2];w=1.8;v=1.85;
pts={{-w,w},{-w/4,w},{-w/4,w+w/8},{-5w/8,w+w/8},{-5w/8,w+5w/24},{5w/8,w+5w/24},{5w/8,w+w/8},{w/4,w+w/8},{w/4,w},
{w,w},{w,w/4},{w+w/8,w/4},{w+w/8,5w/8},{w+5w/24,5w/8},{w+5w/24,-5w/8},{w+w/8,-5w/8},{w+w/8,-w/4},{w,-w/4},
{w,-w},
{w/4,-w},{w/4,-w-w/8},{(5 w)/8,-w-w/8},{(5 w)/8,-w-(5 w)/24},{-((5 w)/8),-w-(5 w)/24},{-((5 w)/8),-w-w/8},{-(w/4),-w-w/8},{-(w/4),-w},{-w,-w},

{-w,-w/4},{-w-w/8,-w/4},{-w-w/8,-5w/8},{-w-5w/24,-5w/8},{-w-5w/24,5w/8},{-w-w/8,5w/8},{-w-w/8,w/4},{-w,w/4}
};

frame=RegionPlot[{
(*MeshRegion[pts2,Polygon[Range[20]]],*) (*orange trim *)
MeshRegion[pts,Polygon[Range[Length[pts]]]], (*green box *)
ImplicitRegion[x^2+y^2<2.8,{x,y}], (*white, largest circle *)
ImplicitRegion[Or@@(((x-#)^2+(y-#2)^2<.1)&@@@w16),{x,y}], (*yellow scallops*)
ImplicitRegion[x^2+y^2<1,{x,y}],(*white circle *)
ImplicitRegion[x^2+y^2<1.4,{x,y}],(*white disk*)
ImplicitRegion[Or@@(((x-#)^2+(y-#2)^2<.15)&@@@w8),{x,y}],(*red scallops*)
ImplicitRegion[x^2+y^2<1,{x,y}] , (*white disk *)
ImplicitRegion[1.8 < x^2+y^2< 2.2,{x,y}] ,(*brown outer rim*)
ImplicitRegion[2.4 < x^2+y^2< 2.8,{x,y}](*yellow outer rim*)},
BoundaryStyle->Directive[Thickness[.005],Black],
AspectRatio->1,
Frame-> False,
PlotStyle->{(*Lighter@Orange,*)
Darker@Green,White,Yellow,White,White,
Red,White,Lighter@Brown,Yellow,Red,
White,White,White,White,White,
White,White,Red,Red,Darker@Blue,
Darker@Blue,Darker@Blue,Darker@Blue,Darker@Blue,Darker@Blue,
Red,Red,Darker@Blue,Red,Yellow,Red}];

Luego hay un disco para ocultar algunos círculos que se usaron para hacer el festoneado.

Graphics[{White,Disk[{0,0},.99]}]

Las tripas

Algunas definiciones de vértices y triángulos. Cada triángulo, t1, t2, ... es una región distinta. Las operaciones lógicas ( RegionUnion. RegionIntersectionY RegionDifference) en triángulos grandes se utilizan para definir celdas triangulares más pequeñas como regiones derivadas que pueden colorearse individualmente.

p1={-Cos[ArcTan[.267]],y1};
p2={Cos[ArcTan[.267]],y1};
p3={-Cos[ArcTan[.267]],-y1};
p4={Cos[ArcTan[.267]],-y1};
p5={-x2,(x2+y1)/2};
p6={x2,(x2+y1)/2};
p7={-x2,-(x2+y1)/2};
p8={x2,-(x2+y1)/2};
p9={0.5,-x2};
p10={-0.5,-x2};
p11={0.5,-x2};
p12={-0.5,-x2};
p13={a=-.34,b=-.12};
p14={-a,b};
p15={0.5,x2};
p16={-0.5,x2};  
t1=MeshRegion[{{0,-1},p1,p2},Triangle[{1,2,3}]];
t2=MeshRegion[{{0,1},p3,p4},Triangle[{1,3,2}]];
t3=MeshRegion[{{0,-x2},p5,p6},Triangle[{1,3,2}]];
t4=MeshRegion[{{0,x2},p7,p8},Triangle[{1,3,2}]];
t5=MeshRegion[{{0,+y1},p9,p10},Triangle[{1,3,2}]];
t6=MeshRegion[{{0,p5[[2]]},p13,p14},Triangle[{1,3,2}]];
t7=MeshRegion[{{0,p13[[2]]},p15,p16},Triangle[{1,3,2}]];
t8=MeshRegion[{{0,p7[[2]]},{-.33,p1[[2]]-.12},{.33,p1[[2]]-.12}},Triangle[{1,3,2}]];
t9=MeshRegion[{{0,p3[[2]]},{z=-.23,0.063},{-z,.063}},Triangle[{1,3,2}]];

disk=Graphics[{White,Disk[{0,0},.99]}];


innards=RegionPlot[{
t1,t2,t3,t4,t5,t6,t7,t8,t9,(*White*)
RegionDifference[t1,RegionUnion[t5,t4,t2]],(*Blue*)
RegionDifference[t4,RegionUnion[t1,t3,t5]],(*red*)
RegionDifference[t3,RegionUnion[t7,t4,t2]], (*blue*)
RegionDifference[t2,RegionUnion[t1,t7,t3]], (*blue*)
RegionDifference[t5,t1],   (*blue*)
RegionDifference[t4,RegionUnion[t1,t7]], (*Blue *)
RegionDifference[t7,t2],(*Blue*)
RegionDifference[t3,RegionUnion[t1,t2]],(*Blue *)
RegionDifference[t8,t2],  (* blue *)
RegionDifference[t9,t5],  (* red *)
RegionDifference[t9,t6],  (* red *)
RegionIntersection[t4,RegionDifference[t6,t1]], (*blue*)
RegionIntersection[t6,RegionDifference[t5,t8]],  (* red *)
RegionIntersection[t7,t9], (*yellow*)
RegionDifference[RegionIntersection[t7,t8],t5], (*red *)
RegionDifference[RegionIntersection[t5,t6],RegionUnion[t7,t9]],(*red *)
ImplicitRegion[x^2+y^2<= .001,{x,y}],  (* smallest circle *) (* red *)
RegionDifference[RegionIntersection[t7,t1 ],t6], (*Red*)
RegionDifference[t8,RegionUnion[t5,t6]],
RegionDifference[t6,RegionUnion[t7,t8]],
RegionDifference[RegionIntersection[t2,t5],RegionUnion[t7,t8]],
RegionDifference[RegionIntersection[t7,t3],t4],
RegionDifference[RegionIntersection[t1,t3],RegionUnion[t5,t4]],
RegionDifference[RegionIntersection[t2,t4],RegionUnion[t7,t3]],
RegionDifference[RegionIntersection[t5,t4],t3]},
BoundaryStyle->Directive[Thickness[.005],Black],
AspectRatio->1,
PlotStyle->{
White,White,White,White,White,White,White,White,White,
Blue,Red,Red,Blue,Blue,Blue,Blue,Blue,Blue,
Red,Red,Blue,Red,Yellow,Red,Red,Red,Blue,Blue,Blue,Blue,Red,Red,Red,Red}]

Poniendo las partes juntas

Show[frame,disk,innards,Graphics[{Brown,Thickness[.02],Line[Append[pts,{-w,w}]]}];
Graphics[{RGBColor[0.92,0.8,0.],Thickness[.015],Line[Append[pts,{-w,w}]]}]]

sri4


Golfed

r=ImplicitRegion;m=MeshRegion;t=Triangle;d=RegionDifference;u=RegionUnion;i=RegionIntersection;(*s=ImplicitRegion*)

n1=8;n2=16;w8=.78 Table[{Cos[2\[Pi] k/n1],Sin[2\[Pi] k/n1]},{k,0,n1-1}];
w16=Table[{Cos[2\[Pi] k/n2],Sin[2\[Pi] k/n2]},{k,0,n2-1}];n=12;y1=.267;x2=1/Sqrt[2];w=1.8;v=1.85;
pts={{-w,w},{-w/4,w},{-w/4,w+w/8},{-5w/8,w+w/8},{-5w/8,w+5w/24},{5w/8,w+5w/24},{5w/8,w+w/8},{w/4,w+w/8},{w/4,w},
{w,w},{w,w/4},{w+w/8,w/4},{w+w/8,5w/8},{w+5w/24,5w/8},{w+5w/24,-5w/8},{w+w/8,-5w/8},{w+w/8,-w/4},{w,-w/4},
{w,-w},{w/4,-w},{w/4,-w-w/8},{(5 w)/8,-w-w/8},{(5 w)/8,-w-(5 w)/24},{-((5 w)/8),-w-(5 w)/24},{-((5 w)/8),-w-w/8},{-(w/4),-w-w/8},{-(w/4),-w},{-w,-w},
{-w,-w/4},{-w-w/8,-w/4},{-w-w/8,-5w/8},{-w-5w/24,-5w/8},{-w-5w/24,5w/8},{-w-w/8,5w/8},{-w-w/8,w/4},{-w,w/4}};

frame=RegionPlot[{
m[pts,Polygon[Range[Length[pts]]]], 
r[x^2+y^2<2.8,{x,y}], 
r[Or@@(((x-#)^2+(y-#2)^2<.1)&@@@w16),{x,y}], 
r[x^2+y^2<1,{x,y}],
r[x^2+y^2<1.4,{x,y}],
r[Or@@(((x-#)^2+(y-#2)^2<.15)&@@@w8),{x,y}],
r[x^2+y^2<1,{x,y}] , 
r[1.8 < x^2+y^2< 2.2,{x,y}] ,
r[2.4 < x^2+y^2< 2.8,{x,y}]},
BoundaryStyle->Directive[Thickness[.003],Black],
AspectRatio->1,
Frame-> False,
PlotStyle->{Darker@Green,White,Yellow,White,White,Red,White,Lighter@Brown,Yellow,Red}];

c=Cos[ArcTan[y1]];
p1={-c,y1};
p2={c,y1};
p3={-c,-y1};
p4={c,-y1};
p5={-x2,(x2+y1)/2};
p6={x2,(x2+y1)/2};
p7={-x2,-(x2+y1)/2};
p8={x2,-(x2+y1)/2};
p9={0.5,-x2};
p10={-0.5,-x2};
p11={0.5,-x2};
p12={-0.5,-x2};
p13={a=-.34,b=-.12};
p14={-a,b};
p15={0.5,x2};
p16={-0.5,x2};
t1=m[{{0,-1},p1,p2},t[{1,2,3}]];
t2=m[{{0,1},p3,p4},t[{1,3,2}]];
t3=m[{{0,-x2},p5,p6},t[{1,3,2}]];
t4=m[{{0,x2},p7,p8},t[{1,3,2}]];
t5=m[{{0,+y1},p9,p10},t[{1,3,2}]];
t6=m[{{0,p5[[2]]},p13,p14},t[{1,3,2}]];
t7=m[{{0,p13[[2]]},p15,p16},t[{1,3,2}]];
t8=m[{{0,p7[[2]]},{-.33,p1[[2]]-.12},{.33,p1[[2]]-.12}},t[{1,3,2}]];
t9=m[{{0,p3[[2]]},{z=-.23,0.063},{-z,.063}},t[{1,3,2}]];

innards=RegionPlot[{
d[t1,u[t5,t4,t2]],
d[t4,u[t1,t3,t5]],
d[t3,u[t7,t4,t2]], 
d[t2,u[t1,t7,t3]], 
d[t5,t1],   
d[t4,u[t1,t7]], 
d[t7,t2],
d[t3,u[t1,t2]],
d[t8,t2],  
d[t9,t5],  
d[t9,t6],  
i[t4,d[t6,t1]], 
i[t6,d[t5,t8]],  
i[t7,t9], 
d[i[t7,t8],t5], 
d[i[t5,t6],u[t7,t9]],
r[x^2+y^2<= .001,{x,y}],   
d[i[t7,t1 ],t6], 
d[t8,u[t5,t6]],
d[t6,u[t7,t8]],
d[i[t2,t5],u[t7,t8]],
d[i[t7,t3],t4],
d[i[t1,t3],u[t5,t4]],
d[i[t2,t4],u[t7,t3]],
d[i[t5,t4],t3]},
BoundaryStyle->Directive[Thickness[.003],Black],
Frame->False,
PlotStyle->{Blue,Red,Red,Blue,Blue,Blue,Blue,Blue,Blue,
Red,Red,Blue,Red,Yellow,Red,Red,Red,Blue,Blue,Blue,Blue,Red,Red,Red,Red}];

trim=Graphics[{RGBColor[0.92,0.8,0.],Thickness[.01],Line[Append[pts,{-w,w}]]}];
trim2=Graphics[{Brown,Thickness[.02],Line[Append[pts,{-w,w}]]}];
Show[frame,Graphics[{White,Disk[{0,0},.99]}],trim2,trim,innards]

2
* entrañas, y esto es completamente asombroso; tener un +1
Soham Chowdhury

Luchando con los colores aquí también, aunque el círculo interno con triángulos es todo lo que tengo hasta ahora. Tengo que ponerme al día;)
Teun Pronk

Teun Pronk, ayuda a usar capas para el marco (todo fuera de los triángulos azules). Los pétalos en forma de luna se pueden lograr al hacer círculos completos y superponerlos con un gran disco blanco sobre el que se representa la figura central. Para mí, la parte más difícil es colorear las celdas triangulares internas.
DavidC

Lo mismo, muy difícil. Tratando de resolver algo con recursividad pero aún no puedo hacerlo funcionar.
Teun Pronk

@DavidCarraher Arreglé la parte para colorear. ¿Quieres un consejo al respecto?
Teun Pronk

2

Delphi [Trabajo en progreso]

Este es realmente difícil ...
Hasta ahora todo lo que tengo es el círculo interno con los triángulos y mi código es enorme.
Todavía no he contado los caracteres, sé que puedo ahorrar mucho en espacios en blanco, etc.

Para empezar

Hice una clase TD T es un prefijo de clase predeterminado no obligatorio pero hace que sea fácil ver que es una clase, D significa Draw.

  TP = TPoint;
  TD = class
  private
    FCv: TCanvas;
    FC: TP;
    a:array[1..9,0..2]of TP;
    FB:TBitmap32;
    FWi: integer;
  public
    constructor Create(AC: TCanvas;CP:TP;W:integer);
    property cv: TCanvas read FCv;
    property c:TP read FC;
    property Wi:integer read FWi;
    procedure tr;
    procedure StartDrawing;
    procedure ft;          
  end;
const t=1>0;f=0>1;off=50;ic=500;

También hice un TPtipo, no, ya que son mis iniciales pero son más cortas TPointy pensé que usaría muchos puntos.
La propiedad Ces el punto central del lienzo.
procedimientos:
StartDrawing(aún no se ha cambiado el nombre) activa todas las funciones de dibujo para mí.
trhace que todos los triángulos del círculo (incluido el círculo mismo)
ftcoloreen todos los triángulos.
También hice algunas constantes para verdadero y falso, desplazamiento y el tamaño del círculo.

Funciones y procedimientos.

Qdevolverá el punto donde 2 líneas se cruzan / intersectan.
Hay muchas funciones / procedimientos anidados. No tengo ganas de explicarlos a todos, pero si te preguntas qué hace, siempre puedes preguntar.

Clase completa

unit Unit3;
interface
Uses
  Windows,Sysutils, Classes, DateUtils, Math, Graphics, types,idglobal, gr32, gr32_polygons, GR32_Backends;
type
  TP = TPoint;
  TD = class
  private
    FCv: TCanvas;
    FC: TP;
    a:array[1..9,0..2]of TP;
    FB:TBitmap32;
    FWi: integer;
  public
    constructor Create(AC: TCanvas;CP:TP;W:integer);
    property cv: TCanvas read FCv;
    property c:TP read FC;
    property Wi:integer read FWi;
    procedure tr;
    procedure StartDrawing;
    procedure ft;
    const
      ic=500;
  end;
  const t=1>0;f=0>1;off=50;
implementation

function q(A1,A2,B1,B2:TP;out o:int16):TP;
Var
 a,b,c:Real;
 d,e:TP;
begin
 a:=A1.X*A2.Y-A1.Y*A2.X;
 b:=B1.X*B2.Y-B1.Y*B2.X;
 d:=A1.Subtract(A2);
 e:=B1.Subtract(B2);
 c:=1/((d.X*e.Y)-(d.Y*e.X));
 Result:=TP.Create(Round(((a*e.X)-(d.X*b))*c),Round(((a*e.Y)-(d.Y*b))*c));
 o:=Result.Y;
end;
constructor TD.Create(AC: TCanvas; CP:TP;W:integer);
begin
  FCv:=AC;
  FC:=CP;
  FWi:=W;
  FB := TBitmap32.Create;
  FB.SetSize(W,W);
end;

procedure TD.ft;
var
  X,Y:int32;
  procedure cl(f,g:int32;e:TColor);
  begin
    fb.Canvas.Brush.Color:=e;
    fb.Canvas.FloodFill(f,g,clBlack32, fsBorder);
  end;
  function it(p1,p2: int32):int32;
  var i,r:int32;
  rgn:HRGN;
  begin
    r:=0;
    if fb.Pixel[x,y]<>clPurple32 then
      exit(50);
    for I := 1 to 9 do
    begin
      rgn:=CreatePolygonRgn(a[i],3,WINDING);
      if PtInRegion(rgn,p1,p2) then
        r:=r+1;
    end;
    it:=r;
  end;
begin
  Y:=c.Y;
  fb.Canvas.Brush.Color := clHighlight;
  fb.Canvas.FloodFill(1,1,clBlack32, fsBorder);
  X := c.X;
  cl(c.x-1,51,clWhite);
  for Y := 0 to fwi-1 do
    for X := 0 to fwi-1 do
      case it(x,y) of
        0,2,4,6,8:cl(x,y,clwhite);
        1,5:cl(x,y,clNavy);
        3,7:cl(x,y,clred);
      end;
end;
procedure TD.StartDrawing;
begin
  with fcv do
  begin
    Brush.Style := bsSolid;
    Brush.Color := clBtnFace;
    Ellipse(off,off,ic+off,ic+off);
    Brush.Style:=bsClear;
    tr;
    ft;
    CopyRect(ClipRect, FB.Canvas, FB.ClipRect);
    Brush.Color := clRed;
    Ellipse(c.X-10,c.Y-5,c.X+10,c.Y+15);
  end;
end;
procedure TD.tr;
const
  L=250;
var
  p1,w,v:tp;
  i:int16;
  r:TRect;
  function e(n:int16;b:boolean=f):TP;
  var r:single;
  begin
    r:=DegToRad(iif(b,n,(n*30)-90));
    Result := tp.Create(C.X +Round(L*Cos(r)),C.Y+Round(L*Sin(r)));
  end;
  function CS(Y:integer; L:boolean=t): tp;
  var
    I: integer;
  begin
    with FCv do
      if L then
      begin
        for I := 0+off to 499+off do
          if Pixels[I,Y]=0 then
            exit(TP.Create(I+1,Y));
      end
      else
        for i := 499+off downto 0+off do
          if Pixels[I,Y]=0 then
            exit(TP.Create(I-1,Y));
  end;
  procedure d(n,x,y:int16;b,c:TP);
  begin
    a[n][0]:=TP.Create(x,y);
    a[n][1]:=b;
    a[n][2]:=c;
  end;
  function Int(a,b,c,d,s1,s2:tp;h:int32):tp;
  var
    f,ww:tp;
    e:extended;
  begin
    f:=q(a,b,c,d,i);
    e:=ArcTan2(f.Y-h,f.X-c.X);
    ww:=tp.Create(C.X +ceil(500*Cos(e)),r.Bottom+ceil(500*Sin(e)));
    s2.Y:=ww.Y;
    Result:=q(f,ww,s1,s2,i);
  end;
begin
  r:=trect.Create(e(225,t),e(45,t));
  q(e(12),e(9),e(10),e(6),i);
  d(1,C.X,off+ic-1,CS(i),CS(i,f));
  q(e(12),e(8),e(9),e(6),i);
  d(2,C.X,off+1,CS(i),CS(i,f));
  w:=int(a[1][1],a[1][2],a[2][0],a[2][1],r.TopLeft,tp.Create(r.Left,0), r.Bottom);
  d(3,c.X,r.Bottom,w,tp.Create(r.Right,w.Y));
  w.Y:=r.Bottom-(w.Y-r.Top);
  d(4,c.X,r.Top,w,tp.Create(r.Right,w.Y));
  w:=int(a[1][0],a[1][1],a[4][1],a[4][2],tp.Create(r.Left,0),tp.Create(r.Bottom,0),r.Top);
  w.Y:=r.BottomRight.Y;
  v:=tp.Create(w);
  v.X := c.X+(c.X-w.X);
  d(5,c.X,a[1][1].Y,w,v);
  p1:=q(a[3][0],a[3][1],q(a[2][0],a[2][2],a[3][0],a[3][2],i),q(a[1][0],a[1][1],a[4][0],a[4][1],i),i);
  d(6,c.X,a[3][1].Y,p1,tp.Create(c.X+(c.X-p1.X),p1.Y));
  d(7,c.X,p1.Y, tp.Create(a[5][1]),tp.Create(a[5][2]));
  a[7][1].Y:=r.Top;
  a[7][2].Y:=r.Top;
  w:=q(a[6][0],a[6][1],a[7][0],a[7][1],i);
  w:=q(w,tp.Create(w.X-20,w.Y),a[4][0],a[4][1],i);
  d(8,c.X,a[4][1].Y,w,tp.Create(c.X+(c.X-w.X),w.Y));
  w:=q(a[5][0],a[5][1],a[7][0],a[7][1],i);
  w:=q(w,tp.Create(w.X-20,w.Y),a[6][0],a[6][1],i);
  d(9,c.X,a[2][1].Y,w,tp.Create(c.X+(c.X-w.X),w.Y));
  FB.Clear(clPurple32);
  FB.PenColor := clBlack32;
  fb.Canvas.Brush.Style:=bsClear;
  FB.Canvas.Ellipse(off,off,500+off,500+off);
  for I := 1 to 9 do
  begin
    p1:=a[i][0];
    w:=a[i][1];
    v:=a[i][2];
    FB.Line(p1.X,p1.Y,w.X,w.Y, fb.PenColor);
    FB.Line(p1.X,p1.Y,v.X,v.Y,fb.PenColor);
    FB.Line(v.X,v.Y,w.X,w.Y,fb.PenColor);
  end;
  FB.Canvas.Brush.Color := clYellow;
  FB.Canvas.FloodFill(c.X,c.Y,clBlack32, fsBorder);
end;
end.

Resultado hasta ahora: (Sí, sé que las líneas no son perfectas en todas partes. No puedo encontrar el problema :() ingrese la descripción de la imagen aquí
No sé por qué, pero los triángulos no muestran sus contornos. Sin embargo, lo hacen en mi bmp guardado.


¿Alguna actualización sobre esto?
Taylor Scott
Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.