C # - Solución masiva, lenta e ineficiente
Confesión: escribí esta solución hace algún tiempo cuando la pregunta aún estaba en el sandbox, pero no es muy buena: ¡puedes hacerlo mejor!
Editar: reemplazó la resolución aburrida con un método menos aburrido, más flexible y generalmente mejor
Ejecutas el programa compilando csc dominoPrinter.cs
y luego pasando argumentos al ejecutable, por ejemplo (el verificador principal de 4 bits):
dominoPrinter.exe 4 1 0,0,1,1,0,1,0,1,0,0,0,1,0,1,1,1
Explicación:
La "Impresora Domino" es un programa de 3 etapas:
Etapa 1 : el "solucionador" genera un árbol de expresión de "ifnot" y "u" operaciones binarias con las entradas dadas, y un "1" desde la línea de alimentación, hay 2 formas de hacerlo, dependiendo del número de entradas:
Si hay menos de 4 entradas, el programa presenta una solución de la menor cantidad de operaciones
Si hay 4 o más entradas, el programa elimina cada fragmento de salida de 8 bits y luego combina los resultados para obtener la salida deseada. Las partes brutas son flexibles: cuantas más partes brutas, menor es la solución, pero mayor es el tiempo de ejecución.
El "solucionador" es lo que lleva todo el tiempo (o al menos solía hacerlo), y también es la mayor parte del código. Creo que hay una solución bien documentada, rápida, que no requiere mucha memoria y que probablemente sea óptima para este problema, pero ¿dónde sería divertido buscarlo?
El árbol de expresión (bruto) para el verificador principal de 4 bits es
((2 or 1) ifnot (((0 ifnot 1) or ((1 ifnot 0) or (0 ifnot 2))) ifnot 3))
donde los números son los índices de las entradas.
Etapa 2 : el "organizador" toma el árbol de expresión como entrada y ensambla un diseño de "esqueleto", que describe con precisión un diseño de dominó hecho a partir de un conjunto de celdas superpuestas 4x5. A continuación se muestra el esqueleto para el verificador principal de 4 bits bruto (deberá cambiar la bruteBase
variable entera en la línea 473 a 4 (o más grande) para obtener este resultado).
18 9
I ___ _ _______ O
v _ X X ____ uu
I X X X u UU/
v X X v ___///
I X X \ u //
v X \ v __//
I_X \ \_u /
\ \ ___/
\_U
Esta salida se compone efectivamente de dos partes, el "evaluador" a la derecha, que se crea a partir del árbol de expresión de la etapa 1, y el "panel de control" a la izquierda, que intercambia y divide las entradas para que lleguen al lugares correctos para el "evaluador" para manejar.
Hay un margen considerable para compactar el diseño en este punto, pero el programa actualmente hace muy poco ese trabajo. El código para esta etapa es horrible, pero bastante simple debajo (vea el método "orifnot"). La salida se pasa a la etapa 3.
Etapa 3 : la "impresora" toma la salida del "organizador" e imprime las "celdas" superpuestas 4x5 correspondientes junto con la línea de alimentación. A continuación se muestra una animación del verificador principal de 4 bits que verifica si 5 es primo.
Codifique la falta de sangría para evitar sobrepasar el límite de caracteres SE 30k que de otro modo :
using System;
using System.Collections.Generic;
namespace dominoPrinter
{
class Program
{
static string bstring(bool[] barr)
{
string str = "";
foreach (bool b in barr)
str += b?1:0;
return str;
}
public static void Main(string[] args)
{
int inputCount;
val[] vals = resolveVals(args[0], args[1], args[2], out inputCount);
System.IO.StringWriter sw = new System.IO.StringWriter();
orifnot(inputCount, vals, sw);
System.IO.StringReader sr = new System.IO.StringReader(sw.ToString());
printDominoes(sr, Console.Out, args.Length > 3 && args[3] == "quite");
}
public abstract class val
{
public int size;
public bool[] rs;
public abstract string strness();
}
public class baseVal : val
{
public bool b;
public int id;
public baseVal(int idN)
{
id = idN;
size = 1;
}
public override string strness()
{
return id.ToString();
}
}
public abstract class biopVal : val
{
public val a, b;
public biopVal(val aN, val bN)
{
a = aN;
b = bN;
size = a.size + b.size;
}
public bool buildCheckApply(nodev ntree)
{
nodev cur = ntree;
rs = new bool[a.rs.Length];
bool notOK = true;
for (int i = 0; i < rs.Length; i++)
{
bool r = rs[i] = go(a.rs[i], b.rs[i]);
if (notOK)
{
if (r)
{
if (cur.a == null)
notOK = false;
else
{
cur = cur.a;
if (cur == nodev.full)
return false;
}
}
else
{
if (cur.b == null)
notOK = false;
else
{
cur = cur.b;
if (cur == nodev.full)
return false;
}
}
}
}
ntree.apply(this, 0);
return true;
}
public abstract bool go(bool a, bool b);
}
public class ifnotVal : biopVal
{
public override bool go(bool a, bool b)
{
return a ? false : b; // b IF NOT a, else FALSE
}
public ifnotVal(val aN, val bN) : base(aN, bN)
{
}
public override string strness()
{
return "(" + b.strness() + " ifnot " + a.strness() + ")";
}
}
public class orval : biopVal
{
public override bool go(bool a, bool b)
{
return a || b; // a OR b
}
public orval(val aN, val bN) : base(aN, bN)
{
}
public override string strness()
{
return "(" + b.strness() + " or " + a.strness() + ")";
}
}
static bool boolCompare(bool[] a, bool b)
{
for (int i = 0; i < a.Length; i++)
{
if (a[i] != b)
{
return false;
}
}
return true;
}
static bool boolFlat(bool[] a)
{
bool p = a[0];
for (int i = 1; i < a.Length; i++)
{
if (a[i] != p)
return false;
}
return true;
}
static bool boolCompare(bool[] a, bool[] b)
{
if (a.Length != b.Length)
return false; // let's do this proeprly
for (int i = 0; i < a.Length; i++)
{
if (a[i] != b[i])
{
return false;
}
}
return true;
}
// solver
// these is something VERY WRONG with the naming in this code
public class nodev
{
public static nodev full = new nodev();
public nodev a, b;
public nodev()
{
a = null;
b = null;
}
public bool contains(bool[] rs)
{
nodev cur = this;
if (cur == full)
return true;
for (int i = 0; i < rs.Length; i++)
{
if (rs[i])
{
if (cur.a == null)
return false;
cur = cur.a;
}
else
{
if (cur.b == null)
return false;
cur = cur.b;
}
if (cur == full)
return true;
}
return true;
}
public bool contains(val v)
{
nodev cur = this;
if (cur == full)
return true;
for (int i = 0; i < v.rs.Length; i++)
{
if (v.rs[i])
{
if (cur.a == null)
return false;
cur = cur.a;
}
else
{
if (cur.b == null)
return false;
cur = cur.b;
}
if (cur == full)
return true;
}
return true;
}
// returns whether it's full or not
public bool apply(val v, int idx)
{
if (v.rs[idx])
{
if (a == null)
{
if (idx == v.rs.Length - 1)
{ // end of the line, fellas
a = full;
if (b == full)
return true;
return false;
}
else
{
a = new nodev();
}
}
if (a.apply(v, idx + 1))
a = full;
if (a == full && b == full)
return true;
}
else
{
if (b == null)
{
if (idx == v.rs.Length - 1)
{ // end of the line, fellas
b = full;
if (a == full)
return true;
return false;
}
else
{
b = new nodev();
}
}
if (b.apply(v, idx + 1))
b = full;
if (a == full && b == full)
return true;
}
return false;
}
}
public static void sortOutIVals(baseVal[] ivals, int rc)
{
for (int i = 0; i < ivals.Length; i++)
{
ivals[i].rs = new bool[rc];
ivals[i].b = false;
}
int eri = 0;
goto next;
again:
for (int i = ivals.Length - 1; i >= 0; i--)
{
if (ivals[i].b == false)
{
ivals[i].b = true;
goto next;
}
ivals[i].b = false;
}
return;
next:
for (int i = ivals.Length - 1; i >= 0; i--)
{
ivals[i].rs[eri] = ivals[i].b;
}
eri++;
goto again;
}
public static val[] resolve(int inputCount, int c, bool[][] erss, out baseVal[] inputs)
{
val[] res = new val[erss.Length];
List<List<val>> bvals = new List<List<val>>();
nodev ntree = new nodev();
List<val> nvals = new List<val>();
baseVal tval = new baseVal(-1);
baseVal fval = new baseVal(-2);
baseVal[] ivals = new baseVal[inputCount];
inputs = new baseVal[inputCount + 2];
for (int i = 0; i < inputCount; i++)
{
ivals[i] = new baseVal(i); // value will change anyway
inputs[i] = ivals[i];
}
inputs[inputCount] = fval;
inputs[inputCount + 1] = tval;
sortOutIVals(ivals, c);
for (int i = 0; i < inputCount; i++)
{
nvals.Add(ivals[i]);
}
tval.rs = new bool[c];
fval.rs = new bool[c];
for (int i = 0; i < c; i++)
{
tval.rs[i] = true;
fval.rs[i] = false;
}
nvals.Add(tval);
nvals.Add(fval); // ifnot and or do nothing with falses
bvals.Add(new List<val>());
foreach (val v in nvals)
{
ntree.apply(v, 0);
if (!boolFlat(v.rs))
bvals[0].Add(v); // I trust these are distinct..
}
Func<biopVal, bool> checkValb = (v) =>
{
if (!v.buildCheckApply(ntree))
{
return false;
}
bvals[v.size-1].Add(v);
return true;
};
Action<biopVal, List<val>> checkVal = (v, li) =>
{
if (checkValb(v))
li.Add(v);
};
int maxSize = 1;
again:
for (int i = 0; i < erss.Length; i++)
{
bool[] ers = erss[i];
if (res[i] == null && ntree.contains(ers))
{
// there is a reason this is separate... I'm sure there is....
foreach (val rv in nvals)
{
if (boolCompare(rv.rs, ers))
{
res[i] = rv;
break;
}
}
}
}
for (int i = 0; i < erss.Length; i++)
{
if (res[i] == null)
goto notoveryet;
}
return res;
notoveryet:
maxSize++;
bvals.Add(new List<val>()); // bvals[maxSize-1] always exists
nvals.Clear();
long cc = 0;
List<val> sbvals = bvals[maxSize - 2];
// NOTs have a habit of working out, get it checked first
for (int i = sbvals.Count - 1; i >= 0; i--)
{ // also known as nvals, but let's ignore that
val arv = sbvals[i];
checkVal(new ifnotVal(arv, tval), nvals);
cc += 1;
}
for (int s = 1; s < maxSize; s++)
{
List<val> abvals = bvals[s - 1];
int t = maxSize - s;
if (t < s)
break;
List<val> bbvals = bvals[t - 1];
for (int i = abvals.Count - 1; i >= 0; i--)
{
val arv = abvals[i];
int jt = t == s ? i : bbvals.Count - 1;
for (int j = jt; j >= 0; j--)
{
val brv = bbvals[j];
checkVal(new ifnotVal(brv, arv), nvals);
checkVal(new ifnotVal(arv, brv), nvals);
checkVal(new orval(brv, arv), nvals); // don't technically need ors, but they are good fun
cc += 3;
}
}
}
int bc = 0;
foreach (List<val> bv in bvals)
bc += bv.Count;
goto again;
}
public static val[] resolveVals(string mStr, string nStr, string erStr, out int inputCount)
{
int ic = int.Parse(mStr);
int oc = int.Parse(nStr);
inputCount = ic;
int bruteBase = 3;
if (inputCount <= bruteBase)
return resolveVals(ic, oc, erStr);
else
return resolveValFours(bruteBase, ic, oc, erStr);
}
public static val joinVals(val low, val high, baseVal inp, baseVal tval, baseVal fval)
{
val lowCut = low == fval ? (val)fval : low == tval ? (val)new ifnotVal(inp, tval) : (val)new ifnotVal(inp, low);
val highCut = high == fval ? (val)fval : high == tval ? (val)inp : (val)new ifnotVal(new ifnotVal(inp, tval), high);
if (highCut == fval)
return lowCut;
if (lowCut == fval)
return highCut;
return new orval(highCut, lowCut);
}
public static val resolveValFour(int n, int m, int inputCount, bool[] ers)
{
// solves fours
int fc = ers.Length / m;
bool[][] fours = new bool[fc][];
for (int i = 0; i < fc; i++)
{
fours[i] = new bool[m];
for (int j = 0; j < m; j++)
{
fours[i][j] = ers[i*m+j];
}
}
baseVal[] inputs;
val[] fres = resolve(n, m, fours, out inputs);
baseVal tval = inputs[inputs.Length - 1];
baseVal fval = inputs[inputs.Length - 2];
for (int i = 0; i < n; i++)
{
inputs[i].id += inputCount - n;
}
// assemble
for (int i = 0, c = 1; c < fc; c *= 2, i++)
{
for (int j = 0; j + c < fc; j += c * 2)
{
fres[j] = joinVals(fres[j], fres[j+c], new baseVal((inputCount - n - 1) - i), tval, fval);
}
}
return fres[0];
}
public static val[] resolveValFours(int n, int inputCount, int outputCount, string erStr)
{
int m = 1;
for (int i = 0; i < n; i++)
m *= 2;
val[] res = new val[outputCount];
string[] data = erStr.Split(',');
for (int i = 0; i < outputCount; i++)
{
bool[] ers = new bool[data.Length];
for (int j = 0; j < data.Length; j++)
ers[j] = data[j][i] == '1';
res[i] = resolveValFour(n, m, inputCount, ers);
}
return res;
}
public static val[] resolveVals(int inputCount, int outputCount, string erStr)
{
val[] res;
string[] data = erStr.Split(',');
bool[][] erss = new bool[outputCount][];
for (int i = 0; i < outputCount; i++)
{
bool[] ers = new bool[data.Length];
for (int j = 0; j < data.Length; j++)
ers[j] = data[j][i] == '1';
erss[i] = ers;
}
baseVal[] inputs; // no need
res = resolve(inputCount, data.Length, erss, out inputs);
return res;
}
// organiser
public class vnode
{
private static vnode[] emptyVC = new vnode[0];
public static vnode oneVN = new vnode('1');
public static vnode noVN = new vnode(' ');
public static vnode flatVN = new vnode('_');
public static vnode moveUpVN = new vnode('/');
public static vnode moveDownVN = new vnode('\\');
public static vnode inputVN = new vnode('I');
public static vnode outputVN = new vnode('O');
public static vnode swapVN = new vnode('X');
public static vnode splitDownVN = new vnode('v');
public int size;
public vnode[] children;
public char c;
public int id = -3;
public vnode(char cN)
{
c = cN;
children = emptyVC;
size = 1;
}
public vnode(val v)
{
biopVal bv = v as biopVal;
if (bv != null)
{
children = new vnode[2];
children[0] = new vnode(bv.a);
children[1] = new vnode(bv.b);
size = children[0].size + children[1].size;
if (bv is orval)
c = 'U';
if (bv is ifnotVal)
c = 'u';
}
else
{
children = emptyVC;
size = 1;
c = 'I';
id = ((baseVal)v).id;
}
}
}
public class nonArray<T>
{
public int w = 0, h = 0;
Dictionary<int, Dictionary<int, T>> map;
public nonArray()
{
map = new Dictionary<int, Dictionary<int, T>>();
}
public T this[int x, int y]
{
get
{
Dictionary<int, T> yd;
if (map.TryGetValue(x, out yd))
{
T v;
if (yd.TryGetValue(y, out v))
{
return v;
}
}
return default(T);
}
set
{
if (x >= w)
w = x + 1;
if (y >= h)
h = y + 1;
Dictionary<int, T> yd;
if (map.TryGetValue(x, out yd))
{
yd[y] = value;
}
else
{
map[x] = new Dictionary<int, T>();
map[x][y] = value;
}
}
}
}
public static int fillOutMap(nonArray<vnode> map, vnode rn, int y, int x)
{
if (rn.children.Length == 0)
{
map[y,x] = rn;
return 1;
}
else
{
map[y+1,x] = rn;
for (int i = 0; i < rn.children.Length; i++)
{
if (i == 0)
{
fillOutMap(map, rn.children[i], y, x + 1);
}
if (i == 1)
{
int ex = x + rn.children[0].size;
for (int j = 1; j < ex - x; j++)
map[y - j + 1,ex - j] = vnode.moveUpVN;
fillOutMap(map, rn.children[i], y, ex);
}
y += rn.children[i].size;
}
}
return rn.size;
}
public static void orifnot(int inputCount, val[] vals, System.IO.TextWriter writer)
{
// step one - build weird tree like thing of death
nonArray<vnode> map = new nonArray<vnode>();
int curY = 0;
foreach (val v in vals)
{
vnode vnt = new vnode(v);
map[curY, 0] = vnode.outputVN;
curY += fillOutMap(map, vnt, curY, 1);
}
// step two - build the thing to get the values to where they need to be
// find Is
List<int> tis = new List<int>();
for (int y = 0; y < map.w; y++)
{
for (int x = map.h - 1; x >= 0; x--)
{
vnode vn = map[y,x];
if (vn != null && vn.c == 'I')
{
tis.Add(vn.id);
if (vn.id > -2)
{
for (;x < map.h; x++)
{
map[y,x] = vnode.flatVN;
}
}
goto next;
}
}
tis.Add(-2);
next:
continue;
}
// I do not like this piece of code, it can be replaced further down for the better if you get round to thinking about it
// add unused Is
for (int z = 0; z < inputCount; z++)
{
if (!tis.Contains(z))
{
int midx = tis.IndexOf(-2);
if (midx != -1)
{
tis[midx] = z;
map[midx,map.h-1] = vnode.noVN;
}
else
{
tis.Add(z);
map[map.w,map.h-1] = vnode.noVN;
}
}
}
int curX = map.h;
MORE:
for (int y = 0; y < map.w; y++)
{
if (y == map.w - 1)
{
if (tis[y] == -2)
map[y,curX] = vnode.noVN;
else
map[y,curX] = vnode.flatVN;
}
else
{
int prev = tis[y];
int cur = tis[y + 1];
if (cur != -2 && (prev == -2 || cur < prev))
{ // swap 'em
map[y,curX] = vnode.noVN;
if (prev == -2)
map[y+1,curX] = vnode.moveDownVN;
else
map[y+1,curX] = vnode.swapVN;
int temp = tis[y];
tis[y] = tis[y + 1];
tis[y + 1] = temp;
y++; // skip
}
else
{
if (/*thatThingThat'sAThing*/ prev == cur && cur != -2)
{
map[y,curX] = vnode.noVN;
map[y+1,curX] = vnode.splitDownVN;
int temp = tis[y];
tis[y+1] = -2;
y++; // skip
}
else
{
if (prev == -2)
map[y,curX] = vnode.noVN;
else
map[y,curX] = vnode.flatVN;
}
}
}
}
// check if sorted
for (int y = 0; y < map.w - 1; y++)
{
int prev = tis[y];
int cur = tis[y + 1];
if (cur != -2 && (prev == -2 || cur < prev))
goto NOTSORTED;
}
goto WHATNOW;
NOTSORTED:
curX++;
goto MORE;
WHATNOW:
tis.Add(-2); // this is to avoid boud checking y+2
// so... it's sorted now, so add the splits
morePlease:
curX++;
for (int y = 0; y < map.w; y++)
{
if (y == map.w - 1)
{
if (tis[y] == -2)
map[y,curX] = vnode.noVN;
else
map[y,curX] = vnode.flatVN;
}
else
{
int prev = tis[y];
int cur = tis[y + 1];
int next = tis[y + 2];
if (cur != -2 && prev == cur && cur != next)
{ // split
map[y,curX] = vnode.noVN;
map[y+1,curX] = vnode.splitDownVN;
tis[y + 1] = -2;
y++; // skip
}
else
{
if (prev == -2)
map[y,curX] = vnode.noVN;
else
map[y,curX] = vnode.flatVN;
}
}
}
// check if collapsed
for (int y = 0; y < map.w - 1; y++)
{
int prev = tis[y];
int cur = tis[y + 1];
if (cur != -2 && prev == cur)
goto morePlease;
}
// ok... now we put in the Is and 1
curX++;
map[0, curX] = vnode.oneVN;
int eyeCount = 0;
int ly = 0;
for (int y = 0; y < map.w; y++)
{
if (tis[y] > -1)
{
map[y, curX] = vnode.inputVN;
eyeCount++;
ly = y;
}
}
// step three - clean up if we can
// push back _ esq things to _
// _/ /
// this /shouldn't/ be necessary if I compact the vals properlu
for (int y = 0; y < map.w - 1; y++)
{
for (int x = 1; x < map.h; x++)
{
if (map[y, x] != null && map[y+1, x] != null && map[y+1, x-1] != null)
{
char uc = map[y+1, x-1].c;
if (map[y, x].c == '_' && map[y+1, x].c == '_'
&& (uc == 'U' || uc == 'u'))
{
map[y, x] = vnode.noVN;
map[y, x-1] = vnode.flatVN;
map[y+1, x] = map[y+1, x-1];
map[y+1, x-1] = vnode.noVN;
}
}
}
}
// step four - write out map
writer.WriteLine(map.h + " " + map.w);
for (int y = 0; y < map.w; y++)
{
for (int x = map.h - 1; x >= 0; x--)
{
vnode vn = map[y,x];
if (vn != null)
writer.Write(vn.c);
else
writer.Write(' ');
}
writer.WriteLine();
}
}
// printer
static string up1 = @" / / / /";
static string input = @" |||||";
static string output = @" | ";
static string flat = @" |/ \ /|\ ";
static string splitDown = @"|// / /\ |\/ / ";
static string splitUp = @" \ |/\ \ \/|\\ ";
static string moveDown = @"|// / / / ";
static string moveUp = @" \ \ \ |\\ ";
static string swap = @"|/ | /\ /\ \/ |\ |";
static string orDown = @"|/ / |/ \ /|\ ";
static string orUp = @"|/ / \ |\ \ |\ ";
static string ifnotDown = @"|/ / - \/ |\ |";
static string ifnotUp = @"|/ | /\ - \ |\ ";
public static void printDominoes(System.IO.TextReader reader, System.IO.TextWriter writer, bool moreverbosemaybe)
{
string line;
string[] data;
line = reader.ReadLine();
data = line.Split(' ');
int w = int.Parse(data[0]);
int h = int.Parse(data[1]);
int ox = 0;
int oy = 0;
int cx = 5;
int cy = 5;
char[,] T = new char[ox + w * cx, oy + h * (cy - 1) + 1];
Action<int, int, string> setBlock = (int x, int y, string str) =>
{
for (int i = 0; i < cx; i++)
{
for (int j = 0; j < cy; j++)
{
char c = str[i + j * cx];
if (c != ' ')
T[ox + x * cx + i, oy + y * (cy - 1) + j] = c;
}
}
};
// read and write
for (int j = 0; j < h; j++)
{
line = reader.ReadLine();
for (int i = 0; i < w; i++)
{
if (line[i] != ' ')
{
switch (line[i])
{
case '1':
setBlock(i, j, up1);
break;
case '_':
setBlock(i, j, flat);
break;
case '^':
setBlock(i, j, splitUp);
break;
case 'v':
setBlock(i, j, splitDown);
break;
case '/':
setBlock(i, j, moveUp);
break;
case '\\':
setBlock(i, j, moveDown);
break;
case 'X':
setBlock(i, j, swap);
break;
case 'U':
setBlock(i, j, orUp);
break;
case 'D':
setBlock(i, j, orDown);
break;
case 'u':
setBlock(i, j, ifnotUp);
break;
case 'd':
setBlock(i, j, ifnotDown);
break;
case 'I':
setBlock(i, j, input);
break;
case 'O':
setBlock(i, j, output);
break;
}
}
}
}
// end
for (int i = 0; i < T.GetLength(0); i++)
{
T[i, 0] = '/';
}
// writeout
w = T.GetLength(0) - cx + 1;
h = T.GetLength(1);
if (moreverbosemaybe)
writer.Write(w + " " + h + " ");
for (int j = 0; j < T.GetLength(1); j++)
{
for (int i = 0; i < T.GetLength(0) - cx + 1; i++)
{
char c = T[i, j];
writer.Write(c == 0 ? ' ' : c);
}
if (!moreverbosemaybe)
writer.WriteLine();
}
}
}
}
Un caso de prueba adicional:
4 1 0,0,0,1,0,0,1,1,0,0,0,1,1,1,1,1
Esto verifica si dos bits adyacentes (sin envoltura) son ambos 1s (por ejemplo, verdadero para 0110, pero falso para 0101 y 1001)