Python 3 - solución parcial ( 760 742 734 710 705 657 caracteres)
(Última edición; lo prometo)
Esto parece un problema muy, muy, muy difícil (especialmente reconocer dónde comienzan o terminan las notas). La transcripción automática de música parece un tema de investigación abierto (no es que yo sepa nada al respecto). Así que aquí hay una solución parcial que no hace ninguna segmentación de notas (por ejemplo, imprime "Twinkle" de una vez cuando escucha la frecuencia) y probablemente solo funciona para ese archivo ogg específico:
A=-52
F=44100
C=4096
import pyaudio as P
import array
import scipy.signal as G
import numpy as N
import math
L=math.log
i=0
j=[9,2,0,2,4,5,7,9]
k=[2,4,5,7]
n=j+k+k+j
w="Twinkle, |twinkle, |little |star,\n|How I |wonder |what you |are.\n|Up a|bove the |world so |high,\n|Like a |diamond |in the |sky.\n".split('|')
w+=w[:8]
e=P.PyAudio().open(F,1,8,1,0,None,0,C)
while i<24:
g=array.array('h',e.read(C));b=sum(map(abs,g))/C
if b>0 and 20*L(b/32768,10)>A:
f=G.fftconvolve(g,g[::-1])[C:];d=N.diff(f);s=0
while d[s]<=0:s+=1
x=N.argmax(f[s:])+s;u=f[x-1];v=f[x+1]
if int(12*L(((u-v)/2/(u-2*f[x]+v)+x)*F/C/440,2))==n[i]+15:print(w[i],end='',flush=1);i+=1
Esto requiere...
Cambie la A = -52 (amplitud mínima) en la línea superior dependiendo de su micrófono, cantidad de sonido ambiental, qué tan fuerte suena la canción, etc. En mi micrófono, menos de -57 parece captar mucho ruido extraño y más de -49 requiere que lo juegues muy alto.
Esto podría jugar mucho más golf; Estoy seguro de que hay formas de guardar un montón de caracteres en la matriz de palabras en particular. Este es mi primer programa no trivial en python, por lo que todavía no estoy muy familiarizado con el lenguaje.
Robé el código para la detección de frecuencia mediante autocorrelación de https://gist.github.com/endolith/255291
Sin golf:
import pyaudio
from array import array
import scipy.signal
import numpy
import math
import sys
MIN_AMPLITUDE = -52
FRAMERATE = 44100
def first(list):
for i in range(len(list)):
if(list[i] > 0):
return i
return 0
# Based on: https://en.wikipedia.org/wiki/Decibel#Acoustics
def getAmplitude(sig):
total = 0;
elems = float(len(sig))
for x in sig:
total += numpy.abs(x) / elems
if(total == 0):
return -99
else:
return 20 * math.log(total / 32768., 10)
# Based on: https://en.wikipedia.org/wiki/Piano_key_frequencies
def getNote(freq):
return int(12 * math.log(freq / 440, 2) + 49)
# --------------------------------------------------------------------------
# This is stolen straight from here w/ very slight modifications: https://gist.github.com/endolith/255291
def parabolic(f, x):
return 1/2. * (f[x-1] - f[x+1]) / (f[x-1] - 2 * f[x] + f[x+1]) + x
def getFrequency(sig):
# Calculate autocorrelation (same thing as convolution, but with
# one input reversed in time), and throw away the negative lags
corr = scipy.signal.fftconvolve(sig, sig[::-1], mode='full')
corr = corr[len(corr)/2:]
# Find the first low point
diffs = numpy.diff(corr)
# Find the next peak after the low point (other than 0 lag). This bit is
# not reliable for long signals, due to the desired peak occurring between
# samples, and other peaks appearing higher.
# Should use a weighting function to de-emphasize the peaks at longer lags.
start = first(diffs)
peak = numpy.argmax(corr[start:]) + start
return parabolic(corr, peak) * (FRAMERATE / len(sig))
# --------------------------------------------------------------------------
# These are the wrong keys (ie it is detecting middle C as an A), but I'm far too lazy to figure out why.
# Anyway, these are what are detected from the Wikipedia .ogg file:
notes = [73, 66, 64, 66, 68, 69, 71, 73, 66, 68, 69, 71, 66, 68, 69, 71 ]
words = ["Twinkle, ", "twinkle, ", "little ", "star,\n", "How I ", "wonder ", "what you ", "are.\n", "Up a", "bove the ", "world so ", "high,\n", "Like a ", "diamond ", "in the ", "sky.\n"]
notes += notes[:8]
words += words[:8]
pa = pyaudio.PyAudio()
stream = pa.open(format=pyaudio.paInt16, channels = 1, rate = FRAMERATE, input = True, frames_per_buffer = 4096)
idx = 0
while(idx < len(notes)):
# Read signal
sig = array('h', stream.read(4096))
if(getAmplitude(sig) > MIN_AMPLITUDE):
note = getNote(getFrequency(sig))
if(note == notes[idx]):
sys.stdout.write(words[idx])
sys.stdout.flush()
idx += 1