Optimice el plegado de papel para mitigar las manchas de tinta


19

¡La tinta negra oscura ha salpicado por toda su hoja blanca de papel de impresora! La solución obvia es doblar el papel para que las partes en blanco y negro se unan y ambas se vuelvan grises a medida que la tinta se difunde. Luego despliegue y vuelva a plegar hasta que su papel esté igualmente gris.

Encontrar la mejor manera de hacer estos pliegues es su tarea en este desafío de codificación. Este Pastebin contiene cuatro cuadrículas de diferentes tamaños de unos y ceros. Cada cuadrícula representa un trozo de papel salpicado de tinta que debe volverse gris. Los ceros son papel y los unos son tinta.

En estas cuadrículas, solo son válidos los pliegues horizontales y verticales a lo largo de los espacios entre líneas y columnas. Cuando se realiza un pliegue, se promedian los pares de valores superpuestos. Los pliegues se hacen uno a la vez y siempre se despliegan. Los pliegues solo cambian la distribución de la tinta, no el tamaño del papel.

Rn denota doblar el borde izquierdo de la cuadrícula a la derecha, comenzando después de la enésima columna. Dn denota doblar el borde superior de la cuadrícula hacia abajo, comenzando después de la enésima fila. (n es 1 indexado)

Ejemplo

Dada esta cuadrícula

0 1 1 1
0 0 0 0
0 0 0 0

un pliegue D1 significa "doblar toda la fila superior hacia abajo y luego desplegar".

0 0.5 0.5 0.5
0 0.5 0.5 0.5
0   0   0   0

Entonces un R2 producirá

0.25 0.5 0.5 0.25
0.25 0.5 0.5 0.25
   0   0   0    0

y otro R2 no cambiará nada.

Objetivo

Su objetivo es escribir un algoritmo que encuentre la mejor secuencia de plegado de difusión de tinta para cada una de las cuatro cuadrículas utilizando exactamente 8 pliegues cada vez. Los pliegues pueden ser cualquier combinación de Rs o Ds.

Puntuación

El puntaje de su envío es la suma de sus puntajes para cada cuadrícula. La puntuación de una cuadrícula es la suma de las diferencias absolutas entre cada uno de sus valores y su promedio (su suma dividida por su área). Los puntajes más bajos son mejores. Una puntuación de 0 es perfecta, pero probablemente sea imposible en solo 8 pliegues.

Debe informar sus cuatro secuencias de plegado de 8 pasos con su código en su respuesta. Esto es para que podamos verificar que su algoritmo realmente funcione.

Por favor, póngalos en este formulario:

20*20R1D2R3D4R5D6R7D8
40*20R1D2R3D4R5D6R7D8
40*40R1D2R3D4R5D6R7D8
20*80R1D2R3D4R5D6R7D8

Aquí hay un script de Python que calculará sus puntajes dadas sus secuencias de plegado.

Naturalmente, no debe copiar el envío de secuencia de otra persona. Las secuencias para cada cuadrícula solo pertenecen a la persona que las creó por primera vez.

Aclaraciones

  • Idealmente, su algoritmo funcionará bien en cualquier cuadrícula, aunque puede adaptarlo a estos específicos.

  • Debe enviar su código con su secuencia. Para ganar, necesita el conjunto más pequeño de secuencias de plegado de 8 pasos que aún no se ha publicado, y también un algoritmo que resista el escrutinio público. Explica tu código, no lo ofusques.

  • La cuadrícula nunca debe contener números negativos.

  • Se aplican lagunas estándar.


1
Creo que es mejor si tiene algunos casos de prueba y se espera que los participantes den un código que produzca la secuencia, en lugar de simplemente dar la secuencia.
justhalf

1
Otra opción es pedirle a las personas que den la secuencia que obtuvieron con su código, pero pídales que proporcionen un hash (digamos SHA-256) de su código como prueba de que realmente lo producen utilizando su propio trabajo. Recuerdo haber visto ese tipo de mecanismo hace algún tiempo, pero no puedo recordarlo. ¿Alguien puede señalar ese desafío?
justo el

1
Otra forma de prohibir la codificación rígida es hacer que el desafío se abra también a otros casos de prueba.
Howard

1
@Hobbies de Calvin También preferiría un conjunto más grande de casos de prueba, para ser honesto, porque algunos algoritmos podrían funcionar mejor en ciertas cuadrículas que otros. Lo que podría hacer es lo que hice con Vector Racing para que cada participante pueda agregar un caso de prueba al conjunto de referencia. En ese caso, tendrías que encargarte de probar y calificar todas las presentaciones, porque no puedes esperar que los primeros participantes vuelvan a ejecutar su código con los casos de prueba agregados más adelante.
Martin Ender

1
@ Calvin'sHobbies La fuerza bruta es (19 + 39) ^ 8 (menos algunas simetrías) que es mucho más factible.
Howard

Respuestas:


8

Pitón

Prueba exhaustivamente diferentes combinaciones de pliegues para los primeros pliegues, luego hace el resto de los pliegues con un enfoque codicioso.

El enfoque exhaustivo está limitado dentro de un rango razonable de pliegues en el centro, de modo que no tomará una eternidad, sin ignorar demasiados pliegues posibles para producir un buen mínimo.

Corrí usando pypy en mi macbook air.

Respuestas:

20*20D9R15R6D11R10R9D10R11
40*20D6D13D9R19R21R20D11D10
40*40D21R21R11D19R23R20D23D15
20*80D33D47D40R10D39D41R9R11

Salidas:

Exhaustive folds levels: 3
Percentage pruned from sides from exhaustive folds: 0.2
Time taken: 4.016076s
Score: 7.91125
20*20D9R15R6D11R10R9D10R11

Exhaustive folds levels: 3
Percentage pruned from sides from exhaustive folds: 0.2
Time taken: 28.529278s
Score: 16.34375
40*20D6D13D9R19R21R20D11D10

Exhaustive folds levels: 3
Percentage pruned from sides from exhaustive folds: 0.25
Time taken: 98.430465s
Score: 42.13
40*40D21R21R11D19R23R20D23D15

Exhaustive folds levels: 3
Percentage pruned from sides from exhaustive folds: 0.25
Time taken: 234.873787s
Score: 32.30875
20*80D33D47D40R10D39D41R9R11

Puntuación total: 7.91125 + 16.34375 + 42.13 + 32.30875 = 98.69375

Código:

import time, math
from collections import deque

numberOfFolds = 8 # Total number of folds

startTime = time.clock()

exec "grid = ("+"""
1 1 1 0 1 1 0 0 1 0 0 1 0 1 1 0 1 0 1 1
1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 1 0 1 1
0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 0 1 0 1 0
0 0 0 1 0 1 0 0 0 0 1 1 1 0 1 1 0 0 0 1
0 1 0 1 1 0 0 0 0 0 1 0 1 1 1 0 1 0 1 0
1 0 1 1 0 1 1 1 1 1 1 0 0 1 0 1 0 1 0 1
0 1 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 0 0 0 0
1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 0 0 0 0 1
1 1 0 0 0 1 1 1 0 1 0 1 0 0 1 1 0 0 1 0
0 1 1 0 0 0 1 1 0 1 1 1 0 1 1 1 0 1 0 1
0 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 0 1 1 0
0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1
0 0 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 1 1 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1
1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0
0 1 1 1 0 0 1 1 0 0 1 1 1 1 0 1 1 0 0 1
0 0 1 0 1 1 1 1 0 1 1 0 1 0 1 0 0 1 1 0
0 1 1 0 1 0 0 1 0 0 1 1 1 1 1 0 1 1 0 0
0 0 1 0 1 1 1 0 0 1 0 0 0 1 0 1 1 1 1 1 
""".replace(" ",",").replace("\n","],[")[2:-2]+")"

def getAverage(grid):
    count = total = 0
    for j in grid:
        for i in j:
            count += 1
            total += i
    return total/float(count)

def getScore(grid, average):
    score = 0
    for j in grid:
        for i in j:
            score += abs(average-i)
    return score

def downFoldedGrid(grid, row, width, height, copy=True):
    if copy: grid = [r[:] for r in grid]
    foldRange = min(row, height-row)
    for j in xrange(foldRange):
        rowRef1 = grid[row+j]
        rowRef2 = grid[row-1-j]
        for i in xrange(width):
            rowRef1[i] = rowRef2[i] = (rowRef1[i] + rowRef2[i]) * .5
    return grid

def downFoldedScore(grid, score, average, row, width, height):
    foldRange = min(row, height-row)
    average2  = 2*average
    for j in xrange(foldRange):
        rowRef1 = grid[row+j]
        rowRef2 = grid[row-1-j]
        a = b = c = 0
        for i in xrange(width):
            a = rowRef1[i] 
            b = rowRef2[i]
            c = a+b
            score += abs(average2-c) - abs(average-a) - abs(average-b)
    return score

def rightFoldedGrid(grid, column, width, height, copy=True):
    if copy: grid = [r[:] for r in grid]
    foldRange = min(column, width-column)
    for j in xrange(height):
        rowRef = grid[j]
        for i in xrange(foldRange):
            a = column+i
            b = column-1-i
            rowRef[a] = rowRef[b] = (rowRef[a] + rowRef[b]) * .5
    return grid

def rightFoldedScore(grid, score, average, column, width, height):
    foldRange = min(column, width-column)
    average2 = 2*average
    for j in xrange(height):
        rowRef = grid[j]
        a = b = c = 0
        for i in xrange(foldRange):
            a = rowRef[column+i]
            b = rowRef[column-1-i]
            c = a+b
            score += abs(average2-c) - abs(average-a) - abs(average-b)
    return score

def bestFoldsGreedy(grid, average, maxFolds, width, height):
    score  = getScore(grid, average)
    folds  = []
    append = folds.append
    for z in xrange(maxFolds):
        bestFold      = 0
        bestFoldScore = score
        bestFoldGrid  = grid
        for i in xrange(1, width): #Try all right folds
            foldScore = rightFoldedScore(grid, score, average, i, width, height)
            if foldScore < bestFoldScore:
                bestFold      = i
                bestFoldScore = foldScore
        for i in xrange(1, height): #Try all down folds
            foldScore = downFoldedScore(grid, score, average, i, width, height)
            if foldScore < bestFoldScore:
                bestFold      = -i
                bestFoldScore = foldScore
        if bestFold:
            append(bestFold)
            score = bestFoldScore
            if bestFold > 0: rightFoldedGrid(grid, bestFold, width, height, False)
            else:            downFoldedGrid(grid, -bestFold, width, height, False)
    return score, folds


# Get the height and width
height  = len(grid)
width   = len(grid[0])

# Transpose the grid if height > width for better locality of reference
transposed = False
if height > width:
    grid = [[grid[i][j] for i in range(height)] for j in range(width)]
    transposed = True
    height, width = width, height

# The exhaustive grids and folds attempted
exhaustiveGridsAndFolds = deque([(grid,[])])
popleft = exhaustiveGridsAndFolds.popleft
append  = exhaustiveGridsAndFolds.append

# Set the bounds to exhaustively test for
exhaustiveLevels   = 3
prunePadding       = [0.2, 0.25][width*height > 1000]
leftBound          = int(max(width*prunePadding, 1))
rightBound         = int(width*(1.0-prunePadding))
topBound           = int(max(height*prunePadding, 1))
bottomBound        = int(height*(1.0-prunePadding))

# Populate the exhaustive grids and folds
while 1:
    grid, folds = popleft()
    if len(folds) == exhaustiveLevels:
        append((grid, folds))
        break
    for i in xrange(leftBound, rightBound):
        if i not in folds:
            append((rightFoldedGrid(grid, i, width, height), folds+[i]))
    for i in xrange(topBound, bottomBound):
        if -i not in folds:
            append((downFoldedGrid(grid, i, width, height), folds+[-i]))

# Test all the exhaustive grids and folds greedily
average             = getAverage(grid)
bestFinalScore      = getScore(grid, average)
bestFinalFolds      = []
numberOfGreedyFolds = numberOfFolds-exhaustiveLevels
while exhaustiveGridsAndFolds:
    grid, exhaustiveFolds = popleft()
    finalScore, greedyFolds = bestFoldsGreedy(grid, average, numberOfGreedyFolds, width, height)
    if finalScore <= bestFinalScore:
        bestFinalScore = finalScore
        bestFinalFolds = exhaustiveFolds + greedyFolds


# Repeat the last fold till the total number of folds if needed
if len(bestFinalFolds) < numberOfFolds:
    bestFinalFolds += [bestFinalFolds[-1]]*(numberOfFolds-len(bestFinalFolds))

# Print the best result
foldsString = ""
down  = "D"
right = "R"
if transposed:
    down,  right  = right,  down
    width, height = height, width
for fold in bestFinalFolds:
    if   fold > 0: foldsString += right+str(fold)
    elif fold < 0: foldsString += down+str(-fold)
print "Exhaustive folds levels: " + str(exhaustiveLevels)
print "Percentage pruned from sides from exhaustive folds: " + str(prunePadding)
print "Time taken: " + str(time.clock()-startTime) + "s"
print "Score: " + str(bestFinalScore)
print str(width) + "*" + str(height) + foldsString

2
Bien, puedo dejar de trabajar en esto ahora. Este habría sido exactamente mi algoritmo.
Martin Ender

@bitpwner Sigues usando 0,5 como promedio de la cuadrícula, pero en realidad es ligeramente diferente dependiendo de la cuadrícula. Con mi script en ideone.com/5wbrOQ está obteniendo 8.26, 17.71875, 44.61125 y 32.72 para un total de 103.31.
Calvin's Hobbies

5

C, 16.344 (4 minutos 33 segundos)

Mejores movimientos encontrados hasta ahora: D6, D13, R19, D9, D11, R21, D10, R20

Utiliza una mezcla de Monte Carlo y escalada. Podría estar hecho para correr mucho más rápido, estoy seguro.

#include <stdio.h>
#include <stdlib.h>

/*

Best result so far: 16.344
D6,D13,R19,D9,D11,R21,D10,R20

real    4m33.027s
user    4m12.787s
sys 0m1.334s

*/

#define GRID_WIDTH   40
#define GRID_HEIGHT  20
#define GRID_SIZE    (GRID_WIDTH * GRID_HEIGHT)
#define NUM_FOLDS    8
#define MAX_VALUE    (1 << NUM_FOLDS)
#define TARGET_VALUE (MAX_VALUE / 2)

double score_grid(short *g) {
  int i, sum;
  for (i=sum=0; i<GRID_SIZE; i++) sum += abs(*g++ - TARGET_VALUE);
  return sum * 1.0 / MAX_VALUE;
}

void h_fold(short *g, int fold_row) {
  int x, y0, y1;
  if (fold_row<1 || fold_row>=GRID_HEIGHT) return;
  y1 = fold_row * GRID_WIDTH;
  y0 = y1 - GRID_WIDTH;
  while (y0>=0 && y1<GRID_SIZE) {
    for (x=0; x<GRID_WIDTH; x++) {
      g[y0+x] = g[y1+x] = (g[y0+x] + g[y1+x]) >> 1;
    }
    y0 -= GRID_WIDTH;
    y1 += GRID_WIDTH;
  }
}

void v_fold(short *g, int fold_col) {
  int y, x0, x1;
  if (fold_col<1 || fold_col>=GRID_WIDTH) return;
  x1 = fold_col;
  x0 = x1 - 1;
  while (x0>=0 && x1<GRID_WIDTH) {
    for (y=0; y<GRID_SIZE; y+=GRID_WIDTH) {
      g[y+x0] = g[y+x1] = (g[y+x0] + g[y+x1]) >> 1;
    }
    x0--;
    x1++;
  }
}

void print_grid(short *g) {
  int i=0, checksum=0;
  while (i<GRID_SIZE) {
    checksum += *g;
    printf("%3X",*g++);
    if ((++i) % GRID_WIDTH == 0) putchar('\n');
  }
  if (checksum != GRID_SIZE * TARGET_VALUE) printf("Bad total: %d\n",checksum);
}

void init_grid(short *g) {
  int i;
  static short *start_grid=0, *sg;
  if (!start_grid) {
    char *src = "11010110100011100000001000110001001101010111000100100100000101100000101111000010"
                "10110011111011111101101011111001000010101010110111000101000001011111101000011001"
                "10000111111001111011100101101001101100001110001101001011010011011110101000011100"
                "00110010100010100010110101001100110001100100111010000110100110001000110000111101"
                "01000001110000101000110101011011101010111110101010110000001011010010000011101000"
                "11111011111100100100100010111010111111000101011110000100111111111000110101101101"
                "00110100010111101111000011011010000110001001101010010101110010110111101001011111"
                "10110001101100001110010100110100010011011110100110000100100111101101000010011001"
                "00011100110100111101000000001000010100001101001011000101101001000100111100011010"
                "00010110001110011111100011101111011100111001110011111011010010000100101111101001";
    start_grid = malloc(GRID_SIZE * sizeof(short));
    for (i=0; i<GRID_SIZE; i++) start_grid[i] = (src[i]&1)<<NUM_FOLDS;
  }
  sg = start_grid;
  for (i=0; i<GRID_SIZE; i++) *g++ = *sg++;
}

double evaluate(int *moves) {
  short *grid;
  double score;
  int i, f;
  grid = malloc(GRID_SIZE * sizeof(short));
  init_grid(grid);
  for (i=0; i<NUM_FOLDS; i++) {
    f = moves[i];
    if (f>0) v_fold(grid,f);
    else h_fold(grid,-f);
  }
  score = score_grid(grid);
  free(grid);
  return score;
}


double optimize_folding(int *moves, double score) {
  int opt_cycle, i, which_fold, new_move, f1, f2, t;
  double s;

  for (opt_cycle=0; opt_cycle<1000; opt_cycle++) {
    for (i=0; i<NUM_FOLDS; i++) {
      which_fold = random() % NUM_FOLDS;
      do {
        if (random()&1) new_move = random() % (GRID_WIDTH-1) + 1;
        else new_move = -(random() % (GRID_HEIGHT-1) + 1);
      } while (moves[which_fold]==new_move);
      t = moves[which_fold];
      moves[which_fold] = new_move;
      s = evaluate(moves);
      if (s>score) moves[which_fold] = t;
      else score = s;
    }
    for (i=0; i<NUM_FOLDS; i++) {
      f1 = random() % NUM_FOLDS;
      do {
        f2 = random() % NUM_FOLDS;
      } while (f2==f1);
      t = moves[f1];
      moves[f1] = moves[f2];
      moves[f2] = t;
      s = evaluate(moves);
      if (s>score) {
        t = moves[f1];
        moves[f1] = moves[f2];
        moves[f2] = t;
      }
      else score = s;
    }
  }

  return score;
}

void show_moves(int *moves) {
  int i, m;
  for (i=0; i<NUM_FOLDS; i++) {
    m = moves[i];
    printf("%c%d%c",(m>0)?'R':'D',abs(m),((i+1)%NUM_FOLDS)?',':'\n');
  }
}

int main() {
  int i, j, moves[NUM_FOLDS], save_moves[NUM_FOLDS];
  double score, best_score = 1.0E+99;

  srandomdev();
  for (i=0; i<400; i++) {
    for (j=0; j<NUM_FOLDS; j++) {
            if (random()&1) moves[j] = random() % (GRID_WIDTH-1) + 1;
            else moves[j] = -(random() % (GRID_HEIGHT-1) + 1);
        }
        score = optimize_folding(moves, 1.0E+99);
        if (score<best_score) {
            best_score = score;
            for (j=0; j<NUM_FOLDS; j++) save_moves[j]=moves[j];
        }
    }
  printf("%.3lf\n",best_score);
  show_moves(save_moves);
  return 0;
}

Bah. Acabo de notar que la pregunta ha cambiado. Voy a tener que arreglar esto más tarde ...
quebrantahuesos aprensivos

Actualmente obtengo un puntaje decente de 16.34375 por su 40 * 20.
Calvin's Hobbies
Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.