Función totient súper rápida


22

El objetivo es simple: calcular la función totient para tantos números como sea posible en 10 segundos y sumar los números.

Debe imprimir su resultado al final y realmente debe calcularlo. No se permite la función totient automatizada, pero las bibliotecas bignum sí. Debe comenzar en 1 y contar todos los enteros consecutivamente. Usted está no permite omitir los números.

Su puntaje es cuántos números puede calcular su programa en su máquina / cuántos puede calcular mi programa en su máquina . Mi código es un programa simple en C ++ (optimizaciones desactivadas), espero que pueda ejecutarlo.

¡Propiedades importantes que podrías usar!

  • Si gcd(m,n) = 1, phi(mn) = phi(m) * phi(n)
  • si pes primo, phi(p) = p - 1(para p < 10^20)
  • si nes parphi(2n) = 2 phi(n)
  • otros listados en el primer enlace

Mi código

#include <iostream>
using namespace std;

int gcd(int a, int b)
{
    while (b != 0)
    {
        int c = a % b;
        a = b;
        b = c;
    }
    return a;
}

int phi(int n)
{
    int x = 0;
    for (int i=1; i<=n; i++)
    {
        if (gcd(n, i) == 1)
            x++;
    }
    return x;
}

int main()
{
    unsigned int sum = 0;
    for (int i=1; i<19000; i++) // Change this so it runs in 10 seconds
    {
        sum += phi(i);
    }
        cout << sum << endl;
        return 0;
}

2
Tal vez desee agregar que los números de entrada deben ser enteros consecutivos. De lo contrario, podría sentir la tentación de calcular la función totient solo para potencias de 2.
Howard

¿Puedo hacer 1, 3, 5, 2, 4o algo así?
Leaky Nun

Respuestas:


14

Nimrod: ~ 38,667 (580,000,000 / 15,000)

Esta respuesta utiliza un enfoque bastante simple. El código emplea un tamiz simple de números primos que almacena el primo de la potencia prima más pequeña en cada ranura para números compuestos (cero para primos), luego usa programación dinámica para construir la función totient sobre el mismo rango, luego suma los resultados. El programa pasa prácticamente todo su tiempo construyendo el tamiz, luego calcula la función totient en una fracción del tiempo. Parece que se trata de construir un tamiz eficiente (con el ligero giro de que uno también tiene que poder extraer un factor primo para los números compuestos del resultado y mantener el uso de la memoria en un nivel razonable).

Actualización: rendimiento mejorado al reducir la huella de memoria y mejorar el comportamiento de la memoria caché. Es posible exprimir un 5% -10% más de rendimiento, pero el aumento en la complejidad del código no vale la pena. En última instancia, este algoritmo ejerce principalmente el cuello de botella de von Neumann de la CPU, y hay muy pocos ajustes algorítmicos que puedan solucionarlo.

También actualicé el divisor de rendimiento ya que el código C ++ no estaba destinado a ser compilado con todas las optimizaciones y nadie más lo hizo. :)

Actualización 2: operación de tamizado optimizada para un mejor acceso a la memoria. Ahora maneja primos pequeños a granel a través de memcpy () (~ 5% de aceleración) y omite múltiplos de 2, 3 y 5 cuando tamiza primos más grandes (~ 10% de aceleración).

Código C ++: 9.9 segundos (con g ++ 4.9)

Código Nimrod: 9.9 segundos (con -d: release, gcc 4.9 backend)

proc handleSmallPrimes(sieve: var openarray[int32], m: int) =
  # Small primes are handled as a special case through what is ideally
  # the system's highly optimized memcpy() routine.
  let k = 2*3*5*7*11*13*17
  var sp = newSeq[int32](k div 2)
  for i in [3,5,7,11,13,17]:
    for j in countup(i, k, 2*i):
      sp[j div 2] = int32(i)
  for i in countup(0, sieve.high, len(sp)):
    if i + len(sp) <= len(sieve):
      copyMem(addr(sieve[i]), addr(sp[0]), sizeof(int32)*len(sp))
    else:
      copyMem(addr(sieve[i]), addr(sp[0]), sizeof(int32)*(len(sieve)-i))
  # Fixing up the numbers for values that are actually prime.
  for i in [3,5,7,11,13,17]:
    sieve[i div 2] = 0

proc constructSieve(m: int): seq[int32] =
  result = newSeq[int32](m div 2 + 1)
  handleSmallPrimes(result, m)
  var i = 19
  # Having handled small primes, we only consider candidates for
  # composite numbers that are relatively prime with 31. This cuts
  # their number almost in half.
  let steps = [ 1, 7, 11, 13, 17, 19, 23, 29, 31 ]
  var isteps: array[8, int]
  while i * i <= m:
    if result[i div 2] == 0:
      for j in 0..7: isteps[j] = i*(steps[j+1]-steps[j])
      var k = 1 # second entry in "steps mod 30" list.
      var j = 7*i
      while j <= m:
        result[j div 2] = int32(i)
        j += isteps[k]
        k = (k + 1) and 7 # "mod 30" list has eight elements.
    i += 2

proc calculateAndSumTotients(sieve: var openarray[int32], n: int): int =
  result = 1
  for i in 2'i32..int32(n):
    var tot: int32
    if (i and 1) == 0:
      var m = i div 2
      var pp: int32 = 2
      while (m and 1) == 0:
        pp *= 2
        m = m div 2
      if m == 1:
        tot = pp div 2
      else:
        tot = (pp div 2) * sieve[m div 2]
    elif sieve[i div 2] == 0: # prime?
      tot = i - 1
      sieve[i div 2] = tot
    else:
      # find and extract the first prime power pp.
      # It's relatively prime with i/pp.
      var p = sieve[i div 2]
      var m = i div p
      var pp = p
      while m mod p == 0 and m != p:
        pp *= p
        m = m div p
      if m == p: # is i a prime power?
        tot = pp*(p-1)
      else:
        tot = sieve[pp div 2] * sieve[m div 2]
      sieve[i div 2] = tot
    result += tot

proc main(n: int) =
  var sieve = constructSieve(n)
  let totSum = calculateAndSumTotients(sieve, n)
  echo totSum

main(580_000_000)

¡Épico! +1. Nimrod comienza a hacerse más popular; 3
cjfaure

Espere. Woah Estoy votando tu otra respuesta. : P
cjfaure

1
¿Es Nimrod un cruce entre Python y C?
mbomb007

Nimrod fue renombrado recientemente a Nim; Si bien toma prestado el estilo sintáctico de Python, la semántica es diferente y, a diferencia de C, es segura para la memoria (a menos que use características inseguras) y tiene recolección de basura.
Reimer Behrends

9

Java, puntaje ~ 24,000 (360,000,000 / 15,000)

El siguiente código de Java hace el cálculo de la función totient y el tamiz principal juntos. Tenga en cuenta que, dependiendo de su máquina, debe aumentar el tamaño de almacenamiento dinámico inicial / máximo (en mi portátil bastante lento tuve que subir -Xmx3g -Xms3g).

public class Totient {

    final static int size = 360000000;
    final static int[] phi = new int[size];

    public static void main(String[] args) {
        long time = System.currentTimeMillis();
        long sum = 0;

        phi[1] = 1;
        for (int i = 2; i < size; i++) {
            if (phi[i] == 0) {
                phi[i] = i - 1;
                for (int j = 2; i * j < size; j++) {
                    if (phi[j] == 0)
                        continue;

                    int q = j;
                    int f = i - 1;
                    while (q % i == 0) {
                        f *= i;
                        q /= i;
                    }
                    phi[i * j] = f * phi[q];
                }
            }
            sum += phi[i];
        }
        System.out.println(System.currentTimeMillis() - time);
        System.out.println(sum);
    }
}

9

Nimrod: ~ 2,333,333 (42,000,000,000 / 18,000)

Esto utiliza un enfoque completamente diferente de mi respuesta anterior. Ver comentarios para más detalles. El longintmódulo se puede encontrar aquí .

import longint

const max = 500_000_000

var ts_mem: array[1..max, int]

# ts(n, d) is defined as the number of pairs (a,b)
# such that 1 <= a <= b <= n and gcd(a,b) = d.
#
# The following equations hold:
#
# ts(n, d) = ts(n div d, 1)
# sum for i in 1..n of ts(n, i) = n*(n+1)/2
#
# This leads to the recurrence:
# ts(n, 1) = n*(n+1)/2 - sum for i in 2..n of ts(n, i)
#
# or, where ts(n) = ts(n, 1):
# ts(n) = n*(n+1)/2 - sum for i in 2..n of ts(n div i)
#
# Note that the large numbers that we deal with can
# overflow 64-bit integers.

proc ts(n, gcd: int): int =
  if n == 0:
    result = 0
  elif n == 1 and gcd == 1:
    result = 1
  elif gcd == 1:
    result = n*(n+1) div 2
    for i in 2..n:
      result -= ts(n, i)
  else:
    result = ts(n div gcd, 1)

# Below is the optimized version of the same algorithm.

proc ts(n: int): int =
  if n == 0:
    result = 0
  elif n == 1:
    result = 1
  else:
    if n <= max and ts_mem[n] > 0:
      return ts_mem[n]
    result = n*(n+1) div 2
    var p = n
    var k = 2
    while k < n div k:
      let pold = p
      p = n div k
      k += 1
      let t = ts(n div pold)
      result -= t * (pold-p)
    while p >= 2:
      result -= ts(n div p)
      p -= 1
    if n <= max:
      ts_mem[n] = result

proc ts(n: int128): int128 =
  if n <= 2_000_000_000:
    result = ts(n.toInt)
  else:
    result = n*(n+1) div 2
    var p = n
    var k = 2
    while k < n div k:
      let pold = p
      p = n div k
      k += 1
      let t = ts(n div pold)
      result = result - t * (pold-p)
    while p >= 2:
      result = result - ts(n div p)
      p = p - 1

echo ts(42_000_000_000.toInt128)

Damas y caballeros, esto es lo que yo llamo magia.
Anna Jokela

2
Gran enfoque para calcular la suma directamente, pero desafortunadamente no calcula la función totient para tantos números como sea posible, que es el desafío anterior. Su código en realidad calcula los resultados (ni siquiera el resultado de la función totient) para solo varios miles de números (aprox. 2*sqrt(n)), Lo que hace una puntuación mucho más baja.
Howard

7

C #: 49,000 (980,000,000 / 20,000)

/codegolf//a/26800 "Código de Howard".
Pero modificado, los valores de phi se calculan para enteros impares.

using System;
using sw = System.Diagnostics.Stopwatch;
class Program
{
    static void Main()
    {
        sw sw = sw.StartNew();
        Console.Write(sumPhi(980000000) + " " + sw.Elapsed);
        sw.Stop(); Console.Read();
    }

    static long sumPhi(int n)  // sum phi[i] , 1 <= i <= n
    {
        long s = 0; int[] phi;
        if (n < 1) return 0; phi = buildPhi(n + 1);
        for (int i = 1; i <= n; i++) s += getPhi(i, phi);
        return s;
    }

    static int getPhi(int i, int[] phi)
    {
        if ((i & 1) > 0) return phi[i >> 1];
        if ((i & 3) > 0) return phi[i >> 2];
        int z = ntz(i); return phi[i >> z >> 1] << z - 1;
    }

    static int[] buildPhi(int n)  // phi[i >> 1] , i odd , i < n
    {
        int i, j, y, x, q, r, f; int[] phi;
        if (n < 2) return new int[] { 0 };
        phi = new int[n / 2]; phi[0] = 1;
        for (j = 2, i = 3; i < n; i *= 3, j *= 3) phi[i >> 1] = j;
        for (x = 4, i = 5; i <= n >> 1; i += x ^= 6)
        {
            if (phi[i >> 1] > 0) continue; phi[i >> 1] = i ^ 1;
            for (j = 3, y = 3 * i; y < n; y += i << 1, j += 2)
            {
                if (phi[j >> 1] == 0) continue; q = j; f = i ^ 1;
                while ((r = q) == i * (q /= i)) f *= i;
                phi[y >> 1] = f * phi[r >> 1];
            }
        }
        for (; i < n; i += x ^= 6)  // primes > n / 2 
            if (phi[i >> 1] == 0)
                phi[i >> 1] = i ^ 1;
        return phi;
    }

    static int ntz(int i)  // number of trailing zeros
    {
        int z = 1;
        if ((i & 0xffff) == 0) { z += 16; i >>= 16; }
        if ((i & 0x00ff) == 0) { z += 08; i >>= 08; }
        if ((i & 0x000f) == 0) { z += 04; i >>= 04; }
        if ((i & 0x0003) == 0) { z += 02; i >>= 02; }
        return z - (i & 1);
    }
}

Nueva puntuación: 61,000 (1,220,000,000 / 20,000)
En "App.config" tuve que agregar "gcAllowVeryLargeObjects enabled = true".

    static long sumPhi(int n)
    {
        int i1, i2, i3, i4, z; long s1, s2, s3, s4; int[] phi;
        if (n < 1) return 0; phi = buildPhi(n + 1); n -= 4; z = 2;
        i1 = 1; i2 = 2; i3 = 3; i4 = 4; s1 = s2 = s3 = s4 = 0;
        if (n > 0)
            for (; ; )
            {
                s1 += phi[i1 >> 1];
                s2 += phi[i2 >> 2];
                s3 += phi[i3 >> 1];
                s4 += phi[i4 >> z >> 1] << z - 1;
                i1 += 4; i2 += 4; i3 += 4; i4 += 4;
                n -= 4; if (n < 0) break;
                if (z == 2)
                {
                    z = 3; i4 >>= 3;
                    while ((i4 & 3) == 0) { i4 >>= 2; z += 2; }
                    z += i4 & 1 ^ 1;
                    i4 = i3 + 1;
                }
                else z = 2;
            }
        if (n > -4) s1 += phi[i1 >> 1];
        if (n > -3) s2 += phi[i2 >> 2];
        if (n > -2) s3 += phi[i3 >> 1];
        if (n > -1) s4 += phi[i4 >> z >> 1] << z - 1;
        return s1 + s2 + s3 + s4;
    }

    static int[] buildPhi(int n)
    {
        int i, j, y, x, q0, q1, f; int[] phi;
        if (n < 2) return new int[] { 0 };
        phi = new int[n / 2]; phi[0] = 1;
        for (uint u = 2, v = 3; v < n; v *= 3, u *= 3) phi[v >> 1] = (int)u;
        for (x = 4, i = 5; i <= n >> 1; i += x ^= 6)
        {
            if (phi[i >> 1] > 0) continue; phi[i >> 1] = i ^ 1;
            for (j = 3, y = 3 * i; y < n; y += i << 1, j += 2)
            {
                if (phi[j >> 1] == 0) continue; q0 = j; f = i ^ 1;
                while ((q1 = q0) == i * (q0 /= i)) f *= i;
                phi[y >> 1] = f * phi[q1 >> 1];
            }
        }
        for (; i < n; i += x ^= 6)
            if (phi[i >> 1] == 0)
                phi[i >> 1] = i ^ 1;
        return phi;
    }

4

Python 3: ~ 24000 (335,000,000 / 14,000)

Mi versión es un puerto Python del algoritmo de Howard . Mi función original era una modificación de un algoritmo introducido en este blog .

Estoy usando los módulos Numpy y Numba para acelerar el tiempo de ejecución. Tenga en cuenta que normalmente no necesita declarar los tipos de variables locales (cuando usa Numba), pero en este caso quería reducir el tiempo de ejecución tanto como sea posible.

Editar: combina las funciones constructsieve y summaryum en una sola función.

C ++: 9.99s (n = 14,000); Python 3: 9.94s (n = 335,000,000)

import numba as nb
import numpy as np
import time

n = 335000000

@nb.njit("i8(i4[:])", locals=dict(
    n=nb.int32, s=nb.int64, i=nb.int32,
    j=nb.int32, q=nb.int32, f=nb.int32))

def summarum(phi):
    s = 0

    phi[1] = 1

    i = 2
    while i < n:
        if phi[i] == 0:
            phi[i] = i - 1

            j = 2

            while j * i < n:
                if phi[j] != 0:
                    q = j
                    f = i - 1

                    while q % i == 0:
                        f *= i
                        q //= i

                    phi[i * j] = f * phi[q]
                j += 1
        s += phi[i]
        i += 1
    return s

if __name__ == "__main__":
    s1 = time.time()
    a = summarum(np.zeros(n, np.int32))
    s2 = time.time()

    print(a)
    print("{}s".format(s2 - s1))

1
Debe otorgar el crédito adecuado cuando copie el código de otros usuarios.
Howard

Actualizado con los créditos adecuados!
Anna Jokela

3

Aquí está mi implementación de Python que parece capaz de producir ~ 60000 números en 10 segundos. Estoy factorizando números usando el algoritmo pollard rho y usando la prueba de primalidad Rabin miller.

from Queue import Queue
import random

def gcd ( a , b ):
    while b != 0: a, b = b, a % b
    return a

def rabin_miller(p):
    if(p<2): return False
    if(p!=2 and p%2==0): return False
    s=p-1
    while(s%2==0): s>>=1
    for _ in xrange(10):
        a=random.randrange(p-1)+1
        temp=s
        mod=pow(a,temp,p)
        while(temp!=p-1 and mod!=1 and mod!=p-1):
            mod=(mod*mod)%p
            temp=temp*2
        if(mod!=p-1 and temp%2==0): return False
    return True

def pollard_rho(n):
    if(n%2==0): return 2;
    x=random.randrange(2,1000000)
    c=random.randrange(2,1000000)
    y=x
    d=1
    while(d==1):
        x=(x*x+c)%n
        y=(y*y+c)%n
        y=(y*y+c)%n
        d=gcd(x-y,n)
        if(d==n): break;
    return d;

def primeFactorization(n):
    if n <= 0: raise ValueError("Fucked up input, n <= 0")
    elif n == 1: return []
    queue = Queue()
    factors=[]
    queue.put(n)
    while(not queue.empty()):
        l=queue.get()
        if(rabin_miller(l)):
            factors.append(l)
            continue
        d=pollard_rho(l)
        if(d==l):queue.put(l)
        else:
            queue.put(d)
            queue.put(l/d)
    return factors

def phi(n):

    if rabin_miller(n): return n-1
    phi = n
    for p in set(primeFactorization(n)):
        phi -= (phi/p)
    return phi

if __name__ == '__main__':

  n = 1
  s = 0

  while n < 60000:
    n += 1
    s += phi(n)
  print(s)

2

φ (2 n ) = 2 n - 1
Σ φ (2 i ) = 2 i - 1 para i de 1 a n

Primero, algo para encontrar tiempos:

import os
from time import perf_counter

SEARCH_LOWER = -1
SEARCH_HIGHER = 1

def integer_binary_search(start, lower=None, upper=None, big_jump=1):
    if lower is not None and lower == upper:
        raise StopIteration # ?

    result = yield start

    if result == SEARCH_LOWER:
        if lower is None:
            yield from integer_binary_search(
                start=start - big_jump,
                lower=None,
                upper=start - 1,
                big_jump=big_jump * 2)
        else:
            yield from integer_binary_search(
                start=(lower + start) // 2,
                lower=lower,
                upper=start - 1)
    elif result == SEARCH_HIGHER:
        if upper is None:
            yield from integer_binary_search(
                start=start + big_jump,
                lower=start + 1,
                upper=None,
                big_jump=big_jump * 2)
        else:
            yield from integer_binary_search(
                start=(start + upper) // 2,
                lower=start + 1,
                upper=upper)
    else:
        raise ValueError('Expected SEARCH_LOWER or SEARCH_HIGHER.')

search = integer_binary_search(start=1000, lower=1, upper=None, big_jump=2500)
n = search.send(None)

while True:
    print('Trying with %d iterations.' % (n,))

    os.spawnlp(
        os.P_WAIT,
        'g++', 'g++', '-Wall', '-Wextra', '-pedantic', '-O0', '-o', 'reference',
        '-DITERATIONS=%d' % (n,),
        'reference.cpp')

    start = perf_counter()
    os.spawnl(os.P_WAIT, './reference', './reference')
    end = perf_counter()
    t = end - start

    if t >= 10.1:
        n = search.send(SEARCH_LOWER)
    elif t <= 9.9:
        n = search.send(SEARCH_HIGHER)
    else:
        print('%d iterations in %f seconds!' % (n, t))
        break

Para el código de referencia, para mí, eso es:

...
Intentando con 14593 iteraciones.
64724364
14593 iteraciones en 9.987747 segundos!

Ahora, Haskell:

import System.Environment (getArgs)

phiSum :: Integer -> Integer
phiSum n = 2 ^ n - 1

main :: IO ()
main = getArgs >>= print . phiSum . (2^) . read . head

Hace algo con 2525224 dígitos en 0.718 segundos. Y ahora solo estoy notando el comentario de @ Howard.


¿Puedes publicar un puntaje con los números consecutivos totales a partir del 1 que lograste sumar?
qwr

@qwr, eso sería 0. Si desea números consecutivos, debe especificarlo en su pregunta =)
Ry-

Yo si. Ya lo he editado, lo volveré a editar.
qwr

2

Matlab: 1464 = 26355867/18000

No puedo probar su código, así que dividí entre 18000, ya que representa la computadora más rápida de las personas que lo probaron. Llegué a la partitura usando esta propiedad:

  • si p es primo, phi (p) = p - 1 (para p <10 ^ 20)

Principalmente me gusta que es un trazador de líneas:

sum(primes(500000000)-1)

1
¿Qué pasa phi(p)con todos los no primos p?
Geobits

2
@Geobits Los omití, ya que la pregunta no menciona qué números debe usar, siempre que realmente se calculen.
Dennis Jaheruddin

Ah, no me di cuenta de eso en la redacción. Agradable.
Geobits

Ni siquiera
publicaste

1
... ¿Cómo es posible no tener Matlab & C ++ en la misma computadora?
Kyle Kanos

1

Python 2.7: 10.999 (165975/15090)

Pypy 2.3.1: 28.496 (430000/15090)

Algunos métodos interesantes que uso:

Prueba de pseudoprime fuerte de Rabin-Miller : una prueba de primalidad que proporciona un algoritmo probabilístico eficiente para determinar si un número dado es primo

Fórmula del producto de Euler : el producto está sobre los distintos números primos que dividen n

Fórmula del producto de Euler

Código:

import math
import random

#perform a Modular exponentiation
def modular_pow(base, exponent, modulus):
    result=1
    while exponent>0:
        if exponent%2==1:
           result=(result * base)%modulus
        exponent=exponent>>1
        base=(base * base)%modulus
    return result

#Miller-Rabin primality test
def checkMillerRabin(n,k):
    if n==2: return True
    if n==1 or n%2==0: return False

    #find s and d, with d odd
    s=0
    d=n-1
    while(d%2==0):
        d/=2
        s+=1
    assert (2**s*d==n-1)

    #witness loop
    composite=1
    for i in xrange(k):
        a=random.randint(2,n-1)
        x=modular_pow(a,d,n)
        if x==1 or x==n-1: continue
        for j in xrange(s-1):
            composite=1
            x=modular_pow(x,2,n)
            if x==1: return False #is composite
            if x==n-1: 
                composite=0
                break
        if composite==1:
            return False        #is composite
    return True                 #is probably prime

def findPrimes(n):              #generate a list of primes, using the sieve of eratosthenes

    primes=(n+2)*[True]

    for i in range(2,int(math.sqrt(n))+1):
        if primes[i]==True:
            for j in range(i**2,n+1,i):
                primes[j]=False

    primes=[i for i in range(2,len(primes)-1) if primes[i]==True]
    return primes

def primeFactorization(n,primes):   #find the factors of a number

    factors=[]

    i=0
    while(n!=1):
        if(n%primes[i]==0):
            factors.append(primes[i])
            n/=primes[i]
        else:
            i+=1

    return factors

def phi(n,primes):
    #some useful properties
    if (checkMillerRabin(n,10)==True):      #fast prime check
        return n-1

    factors=primeFactorization(n,primes)    #prime factors
    distinctive_prime_factors=set(factors)  

    totient=n
    for f in distinctive_prime_factors:     #phi = n * sum (1 - 1/p), p is a distinctive prime factor
        totient*=(1-1.0/f);

    return totient

if __name__ == '__main__':


    s=0
    N=165975
    # N=430000
    primes=findPrimes(N)    #upper bound for the number of primes
    for i in xrange(1,N):
        s+=phi(i,primes)

    print "Sum =",s 

¡Gracias por los algoritmos! Era lo único que podía entender fácilmente y no es la verificación de la fuerza bruta de contar co-primos.
usuario
Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.