ML / (estricto) Haskell en Java
Esto es de un proyecto real real. Utiliza estructuras de datos inmutables persistentes y utiliza la recursividad incluso cuando no es necesario. En realidad, se parece más a Kore (el lenguaje que implementa el proyecto) en Java, pero el estilo es básicamente el mismo que ML. Pero la filosofía de Kore es que el autor no debe formatear su código, por lo que ninguno de los códigos Java está formateado (está autoformatado por eclipse).
soltar n elementos de una lista :
public static <T> List<T> drop(List<T> l, Integer n) {
return n == 0 ? l : drop(l.cons().tail, n - 1);
}
En ML / Haskell, donde harías coincidir el patrón para extraer la cabeza y la cola, aquí dices list.cons().x
y list.cons().tail
.
inserte un elemento en una lista :
public static <T> List<T> insert(List<T> l, Integer i, T x) {
if (i == 0)
return cons(x, l);
return cons(l.cons().x, insert(l.cons().tail, i - 1, x));
}
La lista se define literalmente cómo se definiría el tipo de datos algebraicos. Aquí hay una versión con el repetitivo generado por el eclipse eliminado:
public final class List<T> {
public static final class Nil<T> {
}
public static final class Cons<T> {
public final T x;
public final List<T> tail;
public Cons(T x, List<T> tail) {
if (x == null)
throw new RuntimeException("null head");
if (tail == null)
throw new RuntimeException("null tail");
this.x = x;
this.tail = tail;
}
}
private final Nil<T> nil;
private final Cons<T> cons;
private List(Nil<T> nil, Cons<T> cons) {
this.nil = nil;
this.cons = cons;
}
public boolean isEmpty() {
return nil != null;
}
public Nil<T> nil() {
if (nil == null)
throw new RuntimeException("not nil");
return nil;
}
public Cons<T> cons() {
if (cons == null)
throw new RuntimeException("not cons");
return cons;
}
public static <T> List<T> cons(Cons<T> cons) {
if (cons == null)
throw new RuntimeException("constructor received null");
return new List<T>(null, cons);
}
public static <T> List<T> nil(Nil<T> nil) {
if (nil == null)
throw new RuntimeException("constructor received null");
return new List<T>(nil, null);
}
}
Aquí hay una estructura de datos de mapas implementada en términos de un trie :
public final class Map<K, V> {
private final Tree<Character, Optional<Pair<K, V>>> tree;
// keys are sorted in reverse order so entrySet can use cons instead of append
private final Comparer<Pair<Character, Tree<Character, Optional<Pair<K, V>>>>> comparer =
new PairLeftComparer<Character, Tree<Character, Optional<Pair<K, V>>>>(
new ReverseComparer<Character>(new CharacterComparer()));
private Map(Tree<Character, Optional<Pair<K, V>>> tree) {
this.tree = tree;
}
public static <K, V> Map<K, V> empty() {
return new Map<K, V>(new Tree<Character, Optional<Pair<K, V>>>(
OptionalUtils.<Pair<K, V>> nothing(),
ListUtils
.<Pair<Character, Tree<Character, Optional<Pair<K, V>>>>> nil()));
}
public Optional<V> get(K k) {
Tree<Character, Optional<Pair<K, V>>> t = tree;
for (char c : k.toString().toCharArray()) {
Tree<Character, Optional<Pair<K, V>>> t2 = getEdge(t, c);
if (t2 == null)
return nothing();
t = t2;
}
if (t.v.isNothing())
return nothing();
return some(t.v.some().x.y);
}
public Map<K, V> put(K k, V v) {
return new Map<K, V>(put(tree, k.toString(), v, k));
}
private Tree<Character, Optional<Pair<K, V>>> put(
Tree<Character, Optional<Pair<K, V>>> t, String s, V v, K k) {
if (s.equals(""))
return new Tree<Character, Optional<Pair<K, V>>>(some(Pair.pair(k, v)),
t.edges);
char c = s.charAt(0);
Tree<Character, Optional<Pair<K, V>>> t2 = getEdge(t, c);
if (t2 == null)
return new Tree<Character, Optional<Pair<K, V>>>(
t.v,
sort(
cons(
pair(
c,
put(new Tree<Character, Optional<Pair<K, V>>>(
OptionalUtils.<Pair<K, V>> nothing(),
ListUtils
.<Pair<Character, Tree<Character, Optional<Pair<K, V>>>>> nil()),
s.substring(1), v, k)), t.edges), comparer));
return new Tree<Character, Optional<Pair<K, V>>>(t.v, sort(
replace(pair(c, put(t2, s.substring(1), v, k)), t.edges), comparer));
}
private List<Pair<Character, Tree<Character, Optional<Pair<K, V>>>>> replace(
Pair<Character, Tree<Character, Optional<Pair<K, V>>>> edge,
List<Pair<Character, Tree<Character, Optional<Pair<K, V>>>>> edges) {
if (edges.cons().x.x.equals(edge.x))
return cons(edge, edges.cons().tail);
return cons(edges.cons().x, replace(edge, edges.cons().tail));
}
// I consider this O(1). There are a constant of 2^16 values of
// char. Either way it's unusual to have a large amount of
// edges since only ASCII chars are typically used.
private Tree<Character, Optional<Pair<K, V>>> getEdge(
Tree<Character, Optional<Pair<K, V>>> t, char c) {
for (Pair<Character, Tree<Character, Optional<Pair<K, V>>>> p : iter(t.edges))
if (p.x.equals(c))
return p.y;
return null;
}
public Map<K, V> delete(K k) {
return new Map<K, V>(delete(tree, k.toString()).x);
}
private Pair<Tree<Character, Optional<Pair<K, V>>>, Boolean> delete(
Tree<Character, Optional<Pair<K, V>>> t, String k) {
if (k.equals(""))
return pair(
new Tree<Character, Optional<Pair<K, V>>>(
OptionalUtils.<Pair<K, V>> nothing(), t.edges), t.edges.isEmpty());
char c = k.charAt(0);
Tree<Character, Optional<Pair<K, V>>> t2 = getEdge(t, c);
if (t2 == null)
return pair(t, false);
Pair<Tree<Character, Optional<Pair<K, V>>>, Boolean> p =
delete(t2, k.substring(1));
List<Pair<Character, Tree<Character, Optional<Pair<K, V>>>>> edges = nil();
for (Pair<Character, Tree<Character, Optional<Pair<K, V>>>> e : iter(t.edges))
if (!e.x.equals(c))
edges = cons(e, edges);
if (!p.y)
return pair(
new Tree<Character, Optional<Pair<K, V>>>(t.v, cons(pair(c, p.x),
edges)), false);
boolean oneEdge = t.edges.cons().tail.isEmpty();
return pair(new Tree<Character, Optional<Pair<K, V>>>(t.v, edges), oneEdge
&& t.v.isNothing());
}
public static class Entry<K, V> {
public Entry(K k, V v) {
this.k = k;
this.v = v;
}
public final K k;
public final V v;
}
public List<Entry<K, V>> entrySet() {
return entrySet(ListUtils.<Entry<K, V>> nil(), tree);
}
private List<Entry<K, V>> entrySet(List<Entry<K, V>> l,
Tree<Character, Optional<Pair<K, V>>> t) {
if (!t.v.isNothing()) {
Pair<K, V> p = t.v.some().x;
l = cons(new Entry<K, V>(p.x, p.y), l);
}
for (Pair<Character, Tree<Character, Optional<Pair<K, V>>>> e : iter(t.edges))
l = entrySet(l, e.y);
return l;
}
}
Los tipos comienzan a ocupar tanto espacio como el código. Por ejemplo, en put , el método tiene 302 caracteres de tipos y 343 caracteres de código (sin contar espacios / líneas nuevas).
.litcoffee
. Podría ayudar.