Dibuja la tetera de Utah


20

La tetera de Utah , creada originalmente por Martin Newell, es un objeto conveniente para probar programas de gráficos en 3D.

La tarea es crear una imagen de alambre de la tetera en proyección en perspectiva. Para fomentar la idea de una aplicación de código fuente , la visualización y el control de la cámara pueden aislarse y excluirse del recuento. Esto es para que los parámetros y el archivo de entrada puedan modificarse y el código reutilizarse para generar diversas imágenes, pero no es necesario crear una utilidad completa que acepte argumentos de línea de comandos complicados o similares. Se busca un equilibrio "pirata informático".

tetera de alambre

árbitro. StackOverflow: ¿Cómo funcionan los parches Bezier en la tetera de Utah?

Aquí hay tres subtareas:

  • lea los datos de la tetera en su formato original .
  • subdividir los datos del parche utilizando la división deCasteljau u otro método. Otros métodos están utilizando matrices de base de Bezier y evaluando los polinomios (referencias estándar, como Foley y van Dam, Newmann y Sproull), o métodos de base de Bernstein (que todavía están más allá de mí).
  • proyecte los puntos en 2D (si el lenguaje no es compatible con 3D de forma nativa) y dibuje el contorno de cada parche pequeño como se ve desde un punto de ojo cuya vista se centra en un punto LookAt y cuyo eje vertical está alineado con el eje vertical de la tetera (es decir, dibujarlo "en posición vertical" desde un buen punto de vista).

Asumiendo que leer datos de texto orientados a líneas de un archivo es un pequeño problema, este desafío se trata realmente de ponerse manos a la obra con los datos del parche Bi-Cubic Bezier.

Dado que la simple prueba normal para el sacrificio de la cara posterior no es suficiente (los parches no están todos orientados hacia afuera), no es necesaria la eliminación de la línea oculta o de la superficie. Como una estructura metálica, debería verse bien con la parte posterior visible. La apariencia puede mejorarse ajustando el ancho de línea dependiendo de la distancia desde el ojo, pero esto no es estrictamente necesario (mis propios programas no hacen esto).

Esto es a la vez y . Las respuestas que compiten en el golf deben incluir un conteo normal. Pero las presentaciones en idiomas inusuales son muy recomendables, incluso si no son particularmente cortas.

Para los entusiastas de la complejidad de Kolmogorov, hay un conjunto de datos más conciso donde el conjunto completo puede reconstruirse agregando rotaciones y duplicando parches. Y en A Trip Down the Graphics Pipeline de Jim Blinn , hay un método de generación aún más conciso al usar el hecho de que los parches individuales tienen simetrías rotacionales u otras. Todo el cuerpo (o tapa) puede describirse mediante una sola curva de Bezier que gira alrededor del eje y. La boquilla y los mangos se pueden describir mediante las dos curvas de su perfil y luego seleccionando los puntos de control intermedios para aproximar una extrusión circular.


¿Debo incluir el recuento de la matriz de puntos en mi recuento?
TheDoctor

Preferiría verlo venir de un archivo, ... pero no, no es necesario contar los datos del parche como venga.
luser droog

Sugeriría no permitir construcciones como glutSolidTeapotyglutWireTeapot !
Anders Kaseorg

@AndersKaseorg Creo que lo cubrí requiriendo leer los datos originales. ... Dicho esto, he sido negligente en hacer cumplir esta regla. Una respuesta más estrechamente válida tomaría fácilmente la marca de verificación, incluso si es más larga.
luser droog

@luserdroog Imagine una solución que lee los datos originales, los ignora y llama glutWireTeapot.
Anders Kaseorg

Respuestas:


9

Procesamiento (java), 314 (237 sin control de cámara)

Sin incluir las definiciones de matriz:

void setup(){size(640,480,P3D);}void draw(){background(0);noFill();stroke(255);translate(width/2,height/2,70);scale(30);rotateX(map(mouseX,0,width,0,TWO_PI));rotateY(map(mouseY,0,height,0,TWO_PI));for(int[] p:patches){beginShape();for(int pt:p){vertex(data[pt-1][0],data[pt-1][1],data[pt-1][2]);}endShape(CLOSE);}}

Definiciones de matriz de datos:

float [][] data = {{1.4,0.0,2.4},
{1.4,-0.784,2.4},
{0.784,-1.4,2.4},
{0.0,-1.4,2.4},
{1.3375,0.0,2.53125},
{1.3375,-0.749,2.53125},
{0.749,-1.3375,2.53125},
{0.0,-1.3375,2.53125},
{1.4375,0.0,2.53125},
{1.4375,-0.805,2.53125},
{0.805,-1.4375,2.53125},
{0.0,-1.4375,2.53125},
{1.5,0.0,2.4},
{1.5,-0.84,2.4},
{0.84,-1.5,2.4},
{0.0,-1.5,2.4},
{-0.784,-1.4,2.4},
{-1.4,-0.784,2.4},
{-1.4,0.0,2.4},
{-0.749,-1.3375,2.53125},
{-1.3375,-0.749,2.53125},
{-1.3375,0.0,2.53125},
{-0.805,-1.4375,2.53125},
{-1.4375,-0.805,2.53125},
{-1.4375,0.0,2.53125},
{-0.84,-1.5,2.4},
{-1.5,-0.84,2.4},
{-1.5,0.0,2.4},
{-1.4,0.784,2.4},
{-0.784,1.4,2.4},
{0.0,1.4,2.4},
{-1.3375,0.749,2.53125},
{-0.749,1.3375,2.53125},
{0.0,1.3375,2.53125},
{-1.4375,0.805,2.53125},
{-0.805,1.4375,2.53125},
{0.0,1.4375,2.53125},
{-1.5,0.84,2.4},
{-0.84,1.5,2.4},
{0.0,1.5,2.4},
{0.784,1.4,2.4},
{1.4,0.784,2.4},
{0.749,1.3375,2.53125},
{1.3375,0.749,2.53125},
{0.805,1.4375,2.53125},
{1.4375,0.805,2.53125},
{0.84,1.5,2.4},
{1.5,0.84,2.4},
{1.75,0.0,1.875},
{1.75,-0.98,1.875},
{0.98,-1.75,1.875},
{0.0,-1.75,1.875},
{2.0,0.0,1.35},
{2.0,-1.12,1.35},
{1.12,-2.0,1.35},
{0.0,-2.0,1.35},
{2.0,0.0,0.9},
{2.0,-1.12,0.9},
{1.12,-2.0,0.9},
{0.0,-2.0,0.9},
{-0.98,-1.75,1.875},
{-1.75,-0.98,1.875},
{-1.75,0.0,1.875},
{-1.12,-2.0,1.35},
{-2.0,-1.12,1.35},
{-2.0,0.0,1.35},
{-1.12,-2.0,0.9},
{-2.0,-1.12,0.9},
{-2.0,0.0,0.9},
{-1.75,0.98,1.875},
{-0.98,1.75,1.875},
{0.0,1.75,1.875},
{-2.0,1.12,1.35},
{-1.12,2.0,1.35},
{0.0,2.0,1.35},
{-2.0,1.12,0.9},
{-1.12,2.0,0.9},
{0.0,2.0,0.9},
{0.98,1.75,1.875},
{1.75,0.98,1.875},
{1.12,2.0,1.35},
{2.0,1.12,1.35},
{1.12,2.0,0.9},
{2.0,1.12,0.9},
{2.0,0.0,0.45},
{2.0,-1.12,0.45},
{1.12,-2.0,0.45},
{0.0,-2.0,0.45},
{1.5,0.0,0.225},
{1.5,-0.84,0.225},
{0.84,-1.5,0.225},
{0.0,-1.5,0.225},
{1.5,0.0,0.15},
{1.5,-0.84,0.15},
{0.84,-1.5,0.15},
{0.0,-1.5,0.15},
{-1.12,-2.0,0.45},
{-2.0,-1.12,0.45},
{-2.0,0.0,0.45},
{-0.84,-1.5,0.225},
{-1.5,-0.84,0.225},
{-1.5,0.0,0.225},
{-0.84,-1.5,0.15},
{-1.5,-0.84,0.15},
{-1.5,0.0,0.15},
{-2.0,1.12,0.45},
{-1.12,2.0,0.45},
{0.0,2.0,0.45},
{-1.5,0.84,0.225},
{-0.84,1.5,0.225},
{0.0,1.5,0.225},
{-1.5,0.84,0.15},
{-0.84,1.5,0.15},
{0.0,1.5,0.15},
{1.12,2.0,0.45},
{2.0,1.12,0.45},
{0.84,1.5,0.225},
{1.5,0.84,0.225},
{0.84,1.5,0.15},
{1.5,0.84,0.15},
{-1.6,0.0,2.025},
{-1.6,-0.3,2.025},
{-1.5,-0.3,2.25},
{-1.5,0.0,2.25},
{-2.3,0.0,2.025},
{-2.3,-0.3,2.025},
{-2.5,-0.3,2.25},
{-2.5,0.0,2.25},
{-2.7,0.0,2.025},
{-2.7,-0.3,2.025},
{-3.0,-0.3,2.25},
{-3.0,0.0,2.25},
{-2.7,0.0,1.8},
{-2.7,-0.3,1.8},
{-3.0,-0.3,1.8},
{-3.0,0.0,1.8},
{-1.5,0.3,2.25},
{-1.6,0.3,2.025},
{-2.5,0.3,2.25},
{-2.3,0.3,2.025},
{-3.0,0.3,2.25},
{-2.7,0.3,2.025},
{-3.0,0.3,1.8},
{-2.7,0.3,1.8},
{-2.7,0.0,1.575},
{-2.7,-0.3,1.575},
{-3.0,-0.3,1.35},
{-3.0,0.0,1.35},
{-2.5,0.0,1.125},
{-2.5,-0.3,1.125},
{-2.65,-0.3,0.9375},
{-2.65,0.0,0.9375},
{-2.0,-0.3,0.9},
{-1.9,-0.3,0.6},
{-1.9,0.0,0.6},
{-3.0,0.3,1.35},
{-2.7,0.3,1.575},
{-2.65,0.3,0.9375},
{-2.5,0.3,1.125},
{-1.9,0.3,0.6},
{-2.0,0.3,0.9},
{1.7,0.0,1.425},
{1.7,-0.66,1.425},
{1.7,-0.66,0.6},
{1.7,0.0,0.6},
{2.6,0.0,1.425},
{2.6,-0.66,1.425},
{3.1,-0.66,0.825},
{3.1,0.0,0.825},
{2.3,0.0,2.1},
{2.3,-0.25,2.1},
{2.4,-0.25,2.025},
{2.4,0.0,2.025},
{2.7,0.0,2.4},
{2.7,-0.25,2.4},
{3.3,-0.25,2.4},
{3.3,0.0,2.4},
{1.7,0.66,0.6},
{1.7,0.66,1.425},
{3.1,0.66,0.825},
{2.6,0.66,1.425},
{2.4,0.25,2.025},
{2.3,0.25,2.1},
{3.3,0.25,2.4},
{2.7,0.25,2.4},
{2.8,0.0,2.475},
{2.8,-0.25,2.475},
{3.525,-0.25,2.49375},
{3.525,0.0,2.49375},
{2.9,0.0,2.475},
{2.9,-0.15,2.475},
{3.45,-0.15,2.5125},
{3.45,0.0,2.5125},
{2.8,0.0,2.4},
{2.8,-0.15,2.4},
{3.2,-0.15,2.4},
{3.2,0.0,2.4},
{3.525,0.25,2.49375},
{2.8,0.25,2.475},
{3.45,0.15,2.5125},
{2.9,0.15,2.475},
{3.2,0.15,2.4},
{2.8,0.15,2.4},
{0.0,0.0,3.15},
{0.0,-0.002,3.15},
{0.002,0.0,3.15},
{0.8,0.0,3.15},
{0.8,-0.45,3.15},
{0.45,-0.8,3.15},
{0.0,-0.8,3.15},
{0.0,0.0,2.85},
{0.2,0.0,2.7},
{0.2,-0.112,2.7},
{0.112,-0.2,2.7},
{0.0,-0.2,2.7},
{-0.002,0.0,3.15},
{-0.45,-0.8,3.15},
{-0.8,-0.45,3.15},
{-0.8,0.0,3.15},
{-0.112,-0.2,2.7},
{-0.2,-0.112,2.7},
{-0.2,0.0,2.7},
{0.0,0.002,3.15},
{-0.8,0.45,3.15},
{-0.45,0.8,3.15},
{0.0,0.8,3.15},
{-0.2,0.112,2.7},
{-0.112,0.2,2.7},
{0.0,0.2,2.7},
{0.45,0.8,3.15},
{0.8,0.45,3.15},
{0.112,0.2,2.7},
{0.2,0.112,2.7},
{0.4,0.0,2.55},
{0.4,-0.224,2.55},
{0.224,-0.4,2.55},
{0.0,-0.4,2.55},
{1.3,0.0,2.55},
{1.3,-0.728,2.55},
{0.728,-1.3,2.55},
{0.0,-1.3,2.55},
{1.3,0.0,2.4},
{1.3,-0.728,2.4},
{0.728,-1.3,2.4},
{0.0,-1.3,2.4},
{-0.224,-0.4,2.55},
{-0.4,-0.224,2.55},
{-0.4,0.0,2.55},
{-0.728,-1.3,2.55},
{-1.3,-0.728,2.55},
{-1.3,0.0,2.55},
{-0.728,-1.3,2.4},
{-1.3,-0.728,2.4},
{-1.3,0.0,2.4},
{-0.4,0.224,2.55},
{-0.224,0.4,2.55},
{0.0,0.4,2.55},
{-1.3,0.728,2.55},
{-0.728,1.3,2.55},
{0.0,1.3,2.55},
{-1.3,0.728,2.4},
{-0.728,1.3,2.4},
{0.0,1.3,2.4},
{0.224,0.4,2.55},
{0.4,0.224,2.55},
{0.728,1.3,2.55},
{1.3,0.728,2.55},
{0.728,1.3,2.4},
{1.3,0.728,2.4},
{0.0,0.0,0.0},
{1.5,0.0,0.15},
{1.5,0.84,0.15},
{0.84,1.5,0.15},
{0.0,1.5,0.15},
{1.5,0.0,0.075},
{1.5,0.84,0.075},
{0.84,1.5,0.075},
{0.0,1.5,0.075},
{1.425,0.0,0.0},
{1.425,0.798,0.0},
{0.798,1.425,0.0},
{0.0,1.425,0.0},
{-0.84,1.5,0.15},
{-1.5,0.84,0.15},
{-1.5,0.0,0.15},
{-0.84,1.5,0.075},
{-1.5,0.84,0.075},
{-1.5,0.0,0.075},
{-0.798,1.425,0.0},
{-1.425,0.798,0.0},
{-1.425,0.0,0.0},
{-1.5,-0.84,0.15},
{-0.84,-1.5,0.15},
{0.0,-1.5,0.15},
{-1.5,-0.84,0.075},
{-0.84,-1.5,0.075},
{0.0,-1.5,0.075},
{-1.425,-0.798,0.0},
{-0.798,-1.425,0.0},
{0.0,-1.425,0.0},
{0.84,-1.5,0.15},
{1.5,-0.84,0.15},
{0.84,-1.5,0.075},
{1.5,-0.84,0.075},
{0.798,-1.425,0.0},
{1.425,-0.798,0.0}
};

int [][] patches = {
    {32},
{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},
{4,17,18,19,8,20,21,22,12,23,24,25,16,26,27,28},
{19,29,30,31,22,32,33,34,25,35,36,37,28,38,39,40},
{31,41,42,1,34,43,44,5,37,45,46,9,40,47,48,13},
{13,14,15,16,49,50,51,52,53,54,55,56,57,58,59,60},
{16,26,27,28,52,61,62,63,56,64,65,66,60,67,68,69},
{28,38,39,40,63,70,71,72,66,73,74,75,69,76,77,78},
{40,47,48,13,72,79,80,49,75,81,82,53,78,83,84,57},
{57,58,59,60,85,86,87,88,89,90,91,92,93,94,95,96},
{60,67,68,69,88,97,98,99,92,100,101,102,96,103,104,105},
{69,76,77,78,99,106,107,108,102,109,110,111,105,112,113,114},
{78,83,84,57,108,115,116,85,111,117,118,89,114,119,120,93},
{121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136},
{124,137,138,121,128,139,140,125,132,141,142,129,136,143,144,133},
{133,134,135,136,145,146,147,148,149,150,151,152,69,153,154,155},
{136,143,144,133,148,156,157,145,152,158,159,149,155,160,161,69},
{162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177},
{165,178,179,162,169,180,181,166,173,182,183,170,177,184,185,174},
{174,175,176,177,186,187,188,189,190,191,192,193,194,195,196,197},
{177,184,185,174,189,198,199,186,193,200,201,190,197,202,203,194},
{204,204,204,204,207,208,209,210,211,211,211,211,212,213,214,215},
{204,204,204,204,210,217,218,219,211,211,211,211,215,220,221,222},
{204,204,204,204,219,224,225,226,211,211,211,211,222,227,228,229},
{204,204,204,204,226,230,231,207,211,211,211,211,229,232,233,212},
{212,213,214,215,234,235,236,237,238,239,240,241,242,243,244,245},
{215,220,221,222,237,246,247,248,241,249,250,251,245,252,253,254},
{222,227,228,229,248,255,256,257,251,258,259,260,254,261,262,263},
{229,232,233,212,257,264,265,234,260,266,267,238,263,268,269,242},
{270,270,270,270,279,280,281,282,275,276,277,278,271,272,273,274},
{270,270,270,270,282,289,290,291,278,286,287,288,274,283,284,285},
{270,270,270,270,291,298,299,300,288,295,296,297,285,292,293,294},
{270,270,270,270,300,305,306,279,297,303,304,275,294,301,302,271},
{306}
};

Versión más legible:

void setup() {
  size(640,480,P3D);
}

void draw() {
  background(0);
  noFill();
  stroke(255);
  translate(width/2,height/2,70);
  scale(30);
  rotateX(map(mouseX,0,width,0,TWO_PI));
  rotateY(map(mouseY,0,height,0,TWO_PI));
  for (int[] p:patches) {
    beginShape();
    for (int pt:p) {
      vertex(data[pt-1][0],data[pt-1][2],data[pt-1][2]);
    }
    endShape(CLOSE); 
  }
}

Y algunas fotos:

producto terminado

Otra versión con algunos efectos interesantes:

void setup(){size(640,480,P3D);}
void draw(){
  background(0);noFill();stroke(255);
  translate(width/2,height/2,70);scale(30);
  rotateX(map(mouseX,0,width,0,TWO_PI));rotateY(map(mouseY,0,height,0,TWO_PI));
  for(int[] p:patches){
    //beginShape(QUADS);
    for(int pt:p){
      for(int pu:p){
        //vertex(data[pu-1][0],data[pu-1][4],data[pu-1][2]);
        line(data[pt-1][0],data[pt-1][5],data[pt-1][2],data[pu-1][0],data[pu-1][6],data[pu-1][2]);
    }}
    //endShape(CLOSE);
  }
}

versión 2


Creo que debería dividir los parches al menos una vez para que la boquilla tome forma.
luser droog

Sí, la segunda foto es mejor. Sin embargo, en realidad no estás haciendo una subdivisión. Los bordes de cada parche son curvas de Bezier ... Aun así, +1 ¡Parece una tetera!
luser droog

stroke(-1)es un byte más corto questroke(255)
Kritixi Lithos

11

Posdata

No está totalmente golfizado, pero esto ilustra un enfoque diferente al de la subdivisión deCasteljau: evaluar el polinomio base. Usos mat.ps .

(mat.ps)run[    % load matrix library, begin dictionary construction

/N 17
/C [ 0 7 4 ]   % Cam
/E [ 0 0 40 ] % Eye
/R 0 roty 120 rotx 90 rotz   % Rot: pan tilt twist
          matmul   matmul

/f(teapot)(r)file
/t{token pop exch pop}      % parse a number or other ps token
/s{(,){search not{t exit}if t 3 1 roll}loop}  % parse a comma-separated list
/r{token pop{[f 99 string readline pop s]}repeat}>>begin   % parse a count-prefixed paragraph of csv numbers
[/P[f r]/V[f r]/v{1 sub V exch get}        % Patches and Vertices and vert lookup shortcut
/B[[-1 3 -3 1][3 -6 3 0][-3 3 0 0][1 0 0 0]]              % Bezier basis matrix
/A{dup dup mul exch 2 copy mul 3 1 roll 1 4 array astore} % x->[x^3 x^2 x 1]
/M{[1 index 0 4 getinterval 2 index 4 4 getinterval       % flattened matrix->rowXcolumn matrix
3 index 8 4 getinterval 4 index 12 4 getinterval]exch pop}
/J{ C{sub}vop R matmul 0 get                              % perspective proJection  [x y z]->[X Y]
    aload pop E aload pop
    4 3 roll div exch neg
    4 3 roll add 1 index mul 4 1 roll
    3 1 roll sub mul}
>>begin

300 400 translate
1 14 dup dup scale div currentlinewidth mul setlinewidth  % global scale
/newline { /line {moveto /line {lineto} store} store } def
newline
P{
    8 dict begin
        [exch{v J 2 array astore}forall]/p exch def   % load patch vertices and project to 2D
        /X[p{0 get}forall] M B exch matmul B matmul def  % multiply control points by Bezier basis
        /Y[p{1 get}forall] M B exch matmul B matmul def

        0 1 N div 1 1 index .2 mul add{A/U exch def   % interpolate the polynomial over (u,v)/(N)
            /UX U X matmul def
            /UY U Y matmul def
            0 1 N div 1 1 index .2 mul add{A/V exch 1 array astore transpose def
                /UXV UX V matmul def
                /UYV UY V matmul def
                UXV 0 get 0 get
                UYV 0 get 0 get line
            }for
            newline
        }for

        0 1 N div 1 1 index .2 mul add{A/V exch def   % interpolate the polynomial over (u,v)/(N)
            /V [V] transpose def
            /XV X V matmul def
            /YV Y V matmul def
            0 1 N div 1 1 index .2 mul add{A/U exch 1 array astore transpose def
                /UXV U XV matmul def
                /UYV U YV matmul def
                UXV 0 get 0 get
                UYV 0 get 0 get line
            }for
            newline
        }for

    end

    %exit
}forall
stroke

Tetera con base de Bezier

1112

Al eliminar las líneas verticales y descontar los parámetros, se obtiene esta versión 1112 char. Usos mat.ps .

(mat.ps)run[    % 12

/N 17
/C [ 0 7 4 ]   % Cam 
/E [ 0 0 40 ] % Eye 
/R 0 roty 120 rotx 90 rotz   % Rot: pan tilt twist
          matmul   matmul

/f(teapot)(r)file/t{token pop exch pop}/s{(,){search not{t exit}if t   % 1100
3 1 roll}loop}/r{token pop{[f 99 string readline pop 
s]}repeat}>>begin[/P[f r]/V[f r]/v{1 sub 
V exch get}/B[[-1 3 -3 1][3 -6 3 0][-3 3 0 0][1 0 0 0]]/A{dup dup mul exch
2 copy mul 3 1 roll 1 4 array astore}/M{[1 index 0 4 getinterval 2 index 4 4 getinterval    
3 index 8 4 getinterval 4 index 12 4 getinterval]exch pop}/J{C{sub}vop R matmul 0 get    
aload pop E aload pop 4 3 roll div exch neg 4 3 roll add 1 index mul 4 1 roll
3 1 roll sub mul}>>begin 300 400 translate
1 14 dup dup scale div currentlinewidth mul setlinewidth  
/newline{/line{moveto/line{lineto}store}store}def newline
P{8 dict begin[exch{v J 2 array astore}forall]/p
exch def/X[p{0 get}forall] M B exch matmul B matmul
def/Y[p{1 get}forall] M B exch matmul B matmul def 
0 1 N div 1 1 index .2 mul add{A/U exch def/UX U X matmul def/UY U Y matmul def 
0 1 N div 1 1 index .2 mul add{A/V exch 1 array astore transpose
def/UXV UX V matmul def/UYV UY V matmul def UXV 0 get 0 get UYV 0 get 0 get line}for
newline}for end}forall stroke

Bucles de base Bezier

Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.