Python 3: 974 caracteres [nb]
Golpee aún más con el palo feo, vea el cuaderno en GH-Gist . Python 3 tiene una codificación ASCII-85 incorporada, que ayuda con el saus comprimido. Los algoritmos de compresión incorporados más avanzados de 3 (LZMA) no parecen funcionar bien con cosas tan pequeñas.
La compresión es muy voluble sobre el cambio de caracteres, estuvo casi tentado a escribir algo que probaría al azar diferentes nombres de 1 letra para las variables para minimizar el tamaño comprimido.
Python 2: 1420 1356 1085 1077 caracteres
Leí el primer argumento pasado cuando se lo llamó, que puede ser una cadena de hasta 106 caracteres de longitud. La salida siempre es un código QR de la versión 5-L y una máscara 4, lo que significa que tiene 37x37 módulos de gran tamaño y solo puede manejar ~ 5% de daño.
Las únicas dependencias del programa son numpy
(manipulaciones de matriz) y matplotlib
(solo visualización); toda la codificación Reed-Solomon, el empaquetado de datos y el diseño del módulo se manejan dentro del código provisto . Para RS, básicamente robé las funciones de Wikiversity ... todavía es una especie de caja negra para mí. Aprendí un montón sobre QR en cualquier caso.
Aquí está el código antes de vencerlo con el palo feo:
import sys
import numpy as np
import matplotlib.pyplot as plt
# version 5-L ! = 108 data code words (bytes), 106 after metadata/packing
### RS code stolen from https://en.wikiversity.org/wiki/Reed%E2%80%93Solomon_codes_for_coders#RS_generator_polynomial
gf_exp = [1] + [0] * 511
gf_log = [0] * 256
x = 1
for i in range(1,255):
x <<= 1
if x & 0x100:
x ^= 0x11d
gf_exp[i] = x
gf_log[x] = i
for i in range(255,512):
gf_exp[i] = gf_exp[i-255]
def gf_mul(x,y):
if x==0 or y==0:
return 0
return gf_exp[gf_log[x] + gf_log[y]]
def main():
s = sys.argv[1]
version = 5
mode = 4 # byte mode
dim = 17 + 4 * version
datamatrix = 0.5 * np.ones((dim, dim))
nsym = 26
# PACK
msg = [mode * 16, len(s) * 16] + [ord(c) << 4 for c in s]
for i in range(1, len(msg)):
msg[i-1] += msg[i] // 256
msg[i] = msg[i] % 256
pad = [236, 17]
msg = (msg + pad * 54)[:108]
# MAGIC (encoding)
gen = [1]
for i in range(0, nsym):
q = [1, gf_exp[i]]
r = [0] * (len(gen)+len(q)-1)
for j in range(0, len(q)):
for i in range(0, len(gen)):
r[i+j] ^= gf_mul(gen[i], q[j])
gen = r
msg_enc = [0] * (len(msg) + nsym)
for i in range(0, len(msg)):
msg_enc[i] = msg[i]
for i in range(0, len(msg)):
coef = msg_enc[i]
if coef != 0:
for j in range(0, len(gen)):
msg_enc[i+j] ^= gf_mul(gen[j], coef)
for i in range(0, len(msg)):
msg_enc[i] = msg[i]
# PATTERN
# position marks
for _ in range(3):
datamatrix = np.rot90(datamatrix)
for i in range(4):
datamatrix[max(0, i-1):8-i, max(0, i-1):8-i] = i%2
datamatrix = np.rot90(datamatrix.T)
# alignment
for i in range(3):
datamatrix[28+i:33-i, 28+i:33-i] = (i+1)%2
# timing
for i in range(7, dim-7):
datamatrix[i, 6] = datamatrix[6, i] = (i+1)%2
# the "dark module"
datamatrix[dim-8, 8] = 1
# FORMAT INFO
L4 = '110011000101111' # Low/Mask4
ptr_ul = np.array([8, -1])
steps_ul = [0, 1] * 8 + [-1, 0] * 7
steps_ul[13] = 2 # hop over vertical timing
steps_ul[18] = -2 # then horizontal
ptr_x = np.array([dim, 8])
steps_x = [-1, 0] * 7 + [15-dim, dim-16] + [0, 1] * 7
for bit, step_ul, step_x in zip(L4, np.array(steps_ul).reshape(-1,2), np.array(steps_x).reshape(-1,2)):
ptr_ul += step_ul
ptr_x += step_x
datamatrix[tuple(ptr_ul)] = int(bit)
datamatrix[tuple(ptr_x)] = int(bit)
# FILL
dmask = datamatrix == 0.5
cols = (dim-1)/2
cursor = np.array([dim-1, dim]) # starting off the matrix
up_col = [-1, 1, 0, -1] * dim
down_col = [1, 1, 0, -1] * dim
steps = ([0, -1] + up_col[2:] + [0, -1] + down_col[2:]) * (cols/2)
steps = np.array(steps).reshape(-1, 2)
steps = iter(steps)
# bit-ify everything
msg_enc = ''.join('{:08b}'.format(x) for x in msg_enc) + '0' * 7 # 7 0's are for padding
for bit in msg_enc:
collision = 'maybe'
while collision:
cursor += steps.next()
# skip vertical timing
if cursor[1] == 6:
cursor[1] = 5
collision = not dmask[tuple(cursor)]
datamatrix[tuple(cursor)] = int(bit)
# COOK
mask4 = lambda i, j: (i//2 + j//3)%2 == 0
for i in range(dim):
for j in range(dim):
if dmask[i, j]:
datamatrix[i, j] = int(datamatrix[i, j]) ^ (1 if mask4(i, j) else 0)
# THE PRESTIGE
plt.figure(facecolor='white')
plt.imshow(datamatrix, cmap=plt.cm.gray_r, interpolation='nearest')
plt.axis('off')
plt.show()
if __name__ == '__main__':
main()
Después:
import sys
from pylab import*
n=range
l=len
E=[1]+[0]*511
L=[0]*256
x=1
for i in n(1,255):
x<<=1
if x&256:x^=285
E[i]=x;L[x]=i
for i in n(255,512):E[i]=E[i-255]
def f(x,y):
if x*y==0:return 0
return E[L[x]+L[y]]
m=sys.argv[1]
m=[ord(c)*16 for c in'\4'+chr(l(m))+m]
for i in n(1,l(m)):m[i-1]+=m[i]/256;m[i]=m[i]%256
m=(m+[236,17]*54)[:108]
g=[1]
for i in n(26):
q=[1,E[i]]
r=[0]*(l(g)+l(q)-1)
for j in n(l(q)):
for i in n(l(g)):r[i+j]^=f(g[i],q[j])
g=r
e=[0]*134
for i in n(108):
e[i]=m[i]
for i in n(108):
c=e[i]
if c:
for j in n(l(g)):e[i+j]^=f(g[j],c)
for i in n(108):e[i]=m[i]
m=.1*ones((37,)*2)
for _ in n(3):
m=rot90(m)
for i in n(4):m[max(0,i-1):8-i,max(0,i-1):8-i]=i%2
m=rot90(m.T)
for i in n(3):m[28+i:33-i,28+i:33-i]=(i+1)%2
for i in n(7,30):m[i,6]=m[6,i]=(i+1)%2
m[29,8]=1
a=array
t=tuple
g=int
r=lambda x:iter(a(x).reshape(-1,2))
p=a([8,-1])
s=[0,1]*8+[-1,0]*7
s[13]=2
s[18]=-2
P=a([37,8])
S=[-1,0]*7+[-22,21]+[0,1]*7
for b,q,Q in zip(bin(32170)[2:],r(s),r(S)):p+=q;P+=Q;m[t(p)]=g(b);m[t(P)]=g(b)
D=m==0.1
c=a([36,37])
s=r(([0,-1]+([-1,1,0,-1]*37)[2:]+[0,-1]+([1,1,0,-1]*37)[2:])*9)
for b in ''.join('{:08b}'.format(x) for x in e):
k=3
while k:
c+=s.next()
if c[1]==6:c[1]=5
k=not D[t(c)]
m[t(c)]=g(b)
a=n(37)
for i in a:
for j in a:
if D[i,j]:m[i,j]=g(m[i,j])^(j%3==0)
imshow(m,cmap=cm.gray_r);show()
(confiando en una pestaña para contar como 4/8 / cualquier número de espacios> = 2., no estoy seguro de qué tan bien se copiará)
Debido a que es tan largo, podemos comprimirlo (vi a alguien hacer esto en otro lugar, olvidé quién aunque :() para guardar algunos caracteres más, reduciendo el total a 1085 1077 porque pylab
está sucio:
import zlib,base64
exec zlib.decompress(base64.b64decode('eJxtU0tzmzAQvvSkX6FLaglkyiM2hHRvyS2HZNobo3QwwY6IBVjQFrfT/96V3KR4Wg5I+/6+3ZXSfWdGOhwHsjWdpv1xX26oclqPtGDKdleTPezrltxCEUm/CKW3iiJyB/YWr9ZkgohsO0MVVS1tWSTi1YrnhE4fP6KFqi2d3qNfPj1CnK0IvS2UhOn6rpgkqHkkxolVFPPceeBviRpJnuot3bJJHG1Sm807AoS5qcevpqUhoX9ut4VN6d8VRymJBuQUlGb3DUGjVHTmiVXci9bUVqyw4uLdwq+eDdszzbmv5TkJp801gkDSgKf8gCSu7cVJF5a6Bqb9Ik7WIkqxLZe8yKMwk2RnW3VGbW3BH1AtLDmJoF3/sPiO+3t24MuIEwetOUVYnY3Bb5bHuvPcFMpv5CNs2Q6TiUPRSAzegSG1yxoll2dkwsxmql+h/8dWgbW69lY5favazKvWs6qNFBX/J8/fChqCyOvaemAsSQX34pPzl5NzYktqMN14FWKbyZzhpW26LicWCmw9z7OlEucibs1FTN7Cg89nQBIbH2e+ypMEQ99uEpjyI46RM+dUJKEbslhb4Gsxc8MsVyKTuMIllMaURzLC+LXf1zhd1Y7EwL7Um6eSTrkaa8NKNvHA1MNz2ddsia+Ac9JDyYpM4ApxMuBoRCS9zC/QilNKyVBEiYTYnlhoGZN7648Ny9D/E7z6YUAci9g9PpshdRQ24iAeLI0fqmcbhczjKA15EedSGDZw/H3CqfU+HK7vfXjA1R1ZzyXs2IY74f6PQG5A44sKIlK5+muRpA6wYQwr2gfALBZEYwUvSV0V/832j4l7V6ehbCzAxSJoOgS4+JmH2ebXIkCLLkfslxv8ZH1quxIvkBD6/Vnta/pyWv3KhyFo62lk3Ml2P/FpAaxzd66c9gXabqQ3SKniuMT6dDlxKwE7k85WpMxn76zMX9Pe4BI00u1CY0NPF/7ImosEm8OJ0sNz951pUemyh0oHO9yJL4ZfOzX/DQ2mdSs='))
Si reemplaza la última línea con la siguiente (agrega 62 caracteres), obtendrá una salida casi perfecta, pero la otra aún escanea, así que lo que sea.
figure(facecolor='white');imshow(m,cmap=cm.gray_r,interpolation='nearest');axis('off');show()