?::`}:("(!@
perfect:
{:{:;%"}
+puts; "
}zero: "
}else{(:
"negI" _~
""""""{{{"!@
Los caracteres latinos perfect puts zero else neg I
son en realidad solo comentarios *.
es decir, si la entrada es perfecta, 0
se imprime a, de lo contrario -1
es.
Pruébalo en línea!
* así que esto o este trabajo también ...
?::`}:("(!@ ?::`}:("(!@
: BEWARE :
{:{:;%"} {:{:;%"}
+ ; " +LAIR; "
} : " } OF : "
} {(: }MINO{(:
" " _~ "TAUR" _~
""""""{{{"!@ """"""{{{"!@
¿Cómo?
Toma como entrada un número entero positivo n
y coloca una variable de acumulador -n
en la pila auxiliar, luego realiza una prueba de divisibilidad para cada número entero desde n-1
abajo hasta e incluyendo 1
, agregando cualquiera que divida n
al acumulador. Una vez que esto se completa, si la variable del acumulador no es cero, -1
se emite, de lo contrario, se0
es
El ?::`}:(
solo se ejecuta una vez, al comienzo de la ejecución:
?::`}:( Main,Aux
? - take an integer from STDIN and place it onto Main [[n],[]]
: - duplicate top of Main [[n,n],[]]
: - duplicate top of Main [[n,n,n],[]]
` - negate top of Main [[n,n,-n],[]]
} - place top of Main onto Aux [[n,n],[-n]]
: - duplicate top of Main [[n,n,n],[-n]]
( - decrement top of Main [[n,n,n-1],[-n]]
La siguiente instrucción "
es no operativa, pero tenemos tres instrucciones contiguas, por lo que nos ramificamos de acuerdo con el valor en la parte superior de Main, cero nos lleva hacia adelante, mientras que no cero nos lleva a la derecha.
Si la entrada fue 1
, avanzamos porque la parte superior de Main es cero:
(!@ Main,Aux
( - decrement top of Main [[1,1,-1],[-1]]
! - print top of Main, a -1
@ - exit the labyrinth
Pero si la entrada fue mayor que 1
giramos a la derecha porque la parte superior de Main no es cero:
:} Main,Aux
: - duplicate top of Main [[n,n,n-1,n-1],[-n]]
} - place top of Main onto Aux [[n,n,n-1],[-n,n-1]]
En este punto tenemos una rama de tres vecinos, pero sabemos n-1
que no es cero, así que giramos a la derecha ...
"% Main,Aux
" - no-op [[n,n,n-1],[-n,n-1]]
% - place modulo result onto Main [[n,n%(n-1)],[-n,n-1]]
- ...i.e we've got our first divisibility indicator n%(n-1), an
- accumulator, a=-n, and our potential divisor p=n-1:
- [[n,n%(n-1)],[a,p]]
Ahora estamos en otra sucursal de tres vecinos en %
.
Si el resultado de %
no es cero, vamos a la izquierda para disminuir nuestro divisor potencial p=p-1
, y dejamos el acumulador a
, como está:
;:{(:""}" Main,Aux
; - drop top of Main [[n],[a,p]]
: - duplicate top of Main [[n,n],[a,p]]
{ - place top of Aux onto Main [[n,n,p],[a]]
- three-neighbour branch but n-1 is non-zero so we turn left
( - decrement top of Main [[n,n,p-1],[a]]
: - duplicate top of Main [[n,n,p-1,p-1],[a]]
"" - no-ops [[n,n,p-1,p-1],[a]]
} - place top of Main onto Aux [[n,n,p-1],[a,p-1]]
" - no-op [[n,n,p-1],[a,p-1]]
% - place modulo result onto Main [[n,n%(p-1)],[a,p-1]]
- ...and we branch again according to the divisibility
- of n by our new potential divisor, p-1
... pero si el resultado de la %
era de cero (para el primer pase sólo cuando n=2
) seguimos de frente a AMBOS añadir el divisor en nuestro acumulador, a=a+p
, y decremento nuestro potencial divisor p=p-1
:
;:{:{+}}""""""""{(:""} Main,Aux
; - drop top of Main [[n],[a,p]]
: - duplicate top of Main [[n,n],[a,p]]
{ - place top of Aux onto Main [[n,n,p],[a]]
: - duplicate top of Main [[n,n,p,p],[a]]
{ - place top of Aux onto Main [[n,n,p,p,a],[]]
+ - perform addition [[n,n,p,a+p],[]]
} - place top of Main onto Aux [[n,n,p],[a+p]]
} - place top of Main onto Aux [[n,n],[a+p,p]]
""""""" - no-ops [[n,n],[a+p,p]]
- a branch, but n is non-zero so we turn left
" - no-op [[n,n],[a+p,p]]
{ - place top of Aux onto Main [[n,n,p],[a+p]]
- we branch, but p is non-zero so we turn right
( - decrement top of Main [[n,n,p-1],[a+p]]
: - duplicate top of Main [[n,n,p-1,p-1],[a+p]]
"" - no-ops [[n,n,p-1,p-1],[a+p]]
} - place top of Main onto Aux [[n,n,p-1],[a+p,p-1]]
En este punto, si p-1
todavía no es cero, giramos a la izquierda:
"% Main,Aux
" - no-op [[n,n,p-1],[a+p,p-1]]
% - modulo [[n,n%(p-1)],[a+p,p-1]]
- ...and we branch again according to the divisibility
- of n by our new potential divisor, p-1
... pero si p-1
llega a cero, vamos directamente a la :
segunda línea del laberinto (has visto todas las instrucciones antes, así que dejo sus descripciones y solo doy su efecto):
:":}"":({):""}"%;:{:{+}}"""""""{{{ Main,Aux
: - [[n,n,0,0],[a,0]]
" - [[n,n,0,0],[a,0]]
- top of Main is zero so we go straight
- ...but we hit the wall and so turn around
: - [[n,n,0,0,0],[a,0]]
} - [[n,n,0,0],[a,0,0]]
- top of Main is zero so we go straight
"" - [[n,n,0,0],[a,0,0]]
: - [[n,n,0,0,0],[a,0,0]]
( - [[n,n,0,0,-1],[a,0,0]]
{ - [[n,n,0,0,-1,0],[a,0]]
- top of Main is zero so we go straight
- ...but we hit the wall and so turn around
( - [[n,n,0,0,-1,-1],[a,0]]
: - [[n,n,0,0,-1,-1,-1],[a,0]]
"" - [[n,n,0,0,-1,-1,-1],[a,0]]
} - [[n,n,0,0,-1,-1],[a,0,-1]]
- top of Main is non-zero so we turn left
" - [[n,n,0,0,-1,-1],[a,0,-1]]
% - (-1)%(-1)=0 [[n,n,0,0,0],[a,0,-1]]
; - [[n,n,0,0],[a,0,-1]]
: - [[n,n,0,0,0],[a,0,-1]]
{ - [[n,n,0,0,0,-1],[a,0]]
: - [[n,n,0,0,0,-1,-1],[a,0]]
{ - [[n,n,0,0,0,-1,-1,0],[a]]
+ - [[n,n,0,0,0,-1,-1],[a]]
} - [[n,n,0,0,0,-1],[a,-1]]
} - [[n,n,0,0,0],[a,-1,-1]]
""""""" - [[n,n,0,0,0],[a,-1,-1]]
- top of Main is zero so we go straight
{ - [[n,n,0,0,0,-1],[a,-1]]
{ - [[n,n,0,0,0,-1,-1],[a]]
{ - [[n,n,0,0,0,-1,-1,a],[]]
Ahora esto {
tiene tres instrucciones vecinas, así que ...
... si a
es cero, lo que será perfecto n
, entonces vamos directamente:
"!@ Main,Aux
" - [[n,n,0,0,0,-1,-1,a],[]]
- top of Main is a, which is zero, so we go straight
! - print top of Main, which is a, which is a 0
@ - exit the labyrinth
... si a
no es cero, lo que será para no perfecto n
, entonces giramos a la izquierda:
_~"!@ Main,Aux
_ - place a zero onto Main [[n,n,0,0,0,-1,-1,a,0],[]]
~ - bitwise NOT top of Main (=-1-x) [[n,n,0,0,0,-1,-1,a,-1],[]]
" - [[n,n,0,0,0,-1,-1,a,-1],[]]
- top of Main is NEGATIVE so we turn left
! - print top of Main, which is -1
@ - exit the labyrinth