Este desafío es realmente simple (¡y un precursor de uno más difícil!).
Dada una matriz de accesos a recursos (simplemente denotada por enteros no negativos) y un parámetro n, devuelve el número de fallos de caché que supondría si nuestra caché tiene capacidad ny utiliza un esquema de expulsión de primero en entrar, primero en salir (FIFO) cuando está lleno .
Ejemplo:
4, [0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 0, 1, 2, 3]
0 = not in cache (miss), insert, cache is now [0]
1 = not in cache (miss), insert, cache is now [0, 1]
2 = not in cache (miss), insert, cache is now [0, 1, 2]
3 = not in cache (miss), insert, cache is now [0, 1, 2, 3]
0 = in cache (hit), cache unchanged
1 = in cache (hit), cache unchanged
2 = in cache (hit), cache unchanged
3 = in cache (hit), cache unchanged
4 = not in cache (miss), insert and eject oldest, cache is now [1, 2, 3, 4]
0 = not in cache (miss), insert and eject oldest, cache is now [2, 3, 4, 0]
0 = in cache (hit), cache unchanged
1 = not in cache (miss), insert and eject oldest, cache is now [3, 4, 0, 1]
2 = not in cache (miss), insert and eject oldest, cache is now [4, 0, 1, 2]
3 = not in cache (miss), insert and eject oldest, cache is now [0, 1, 2, 3]
Entonces, en este ejemplo hubo 9 fallas. Tal vez un ejemplo de código ayude a explicarlo mejor. En Python:
def num_misses(n, arr):
misses = 0
cache = []
for access in arr:
if access not in cache:
misses += 1
cache.append(access)
if len(cache) > n:
cache.pop(0)
return misses
Algunos casos de prueba adicionales (que contienen una pista hacia el próximo desafío, ¿notas algo curioso?):
0, [] -> 0
0, [1, 2, 3, 4, 1, 2, 3, 4] -> 8
2, [0, 0, 0, 0, 0, 0, 0] -> 1
3, [3, 2, 1, 0, 3, 2, 4, 3, 2, 1, 0, 4] -> 9
4, [3, 2, 1, 0, 3, 2, 4, 3, 2, 1, 0, 4] -> 10
El código más corto en bytes gana.


notice anything curious?por un tiempo ahora ... y me di cuenta, ¿aumentar la capacidad de caché no necesariamente disminuye la cantidad de fallas?