Regex (ECMAScript), 276 205 201 193 189 bytes
Comparar las multiplicidades (exponentes) de diferentes factores primos es un problema interesante para resolver con la expresión regular ECMAScript: la falta de referencias posteriores que persisten a través de iteraciones de un bucle hace que sea un desafío contar cualquier cosa. Incluso si es posible contar el rasgo numérico en cuestión, a menudo un enfoque más indirecto mejora el golf.
Al igual que con mis otras publicaciones de expresiones regulares ECMA, daré una advertencia de spoiler: recomiendo aprender a resolver problemas matemáticos unarios en expresiones regulares ECMAScript. Ha sido un viaje fascinante para mí, y no quiero estropearlo para cualquiera que quiera probarlo ellos mismos, especialmente aquellos interesados en la teoría de números. Consulte esta publicación anterior para obtener una lista de problemas recomendados etiquetados consecutivamente con spoilers para resolver uno por uno.
Así que no sigas leyendo si no quieres que se te estropee un poco de magia regex unaria avanzada . Si desea intentar descubrir esta magia usted mismo, le recomiendo comenzar resolviendo algunos problemas en la expresión regular de ECMAScript como se describe en la publicación vinculada anteriormente.
La carga útil principal de una expresión regular que desarrollé previamente resultó ser muy aplicable a este desafío. Esa es la expresión regular que encuentra el (los) primo (s) de mayor multiplicidad . Mi primera solución para eso fue muy larga, y luego lo jugué por etapas, primero lo reescribí para usar el lookahead molecular , y luego lo volví a convertir al ECMAScript simple usando una técnica avanzada para evitar la falta de lookahead molecular , y luego jugando golf para que sea mucho más pequeño que la solución ECMAScript original.
La parte de esa expresión regular que se aplica a este problema es el primer paso, que encuentra Q, el factor más pequeño de N que comparte todos sus factores primos. Una vez que tenemos este número, todo lo que tenemos que hacer para demostrar que N es un "número de exponente constante" es dividir N entre Q hasta que no podamos más; Si el resultado es 1, todos los primos son de igual multiplicidad.
Después de enviar una respuesta usando mi algoritmo previamente desarrollado para encontrar Q, me di cuenta de que podría calcularse de una manera completamente diferente: encontrar el factor libre de cuadrados más grande de N (usando el mismo algoritmo que mi expresión regular de números de Carmichael ). Resulta que esto no plantea ninguna dificultad * en términos de evitar la falta de anticipación molecular y de retroceso de longitud variable (no es necesario incorporar la técnica avanzada utilizada anteriormente), ¡y es 64 bytes más corto! Además, elimina la complejidad de tratar el N sin cuadrados y el N principal como diferentes casos especiales, eliminando otros 7 bytes de esta solución.
(Todavía quedan otros problemas que requieren la técnica avanzada utilizada anteriormente para reducir el cálculo de Q, pero actualmente ninguno de ellos está representado por mis publicaciones PPCG).
Puse la prueba de multiplicidad antes de la prueba de primos consecutivos porque esta última es mucho más lenta; poner pruebas que pueden fallar más rápidamente primero hace que la expresión regular sea más rápida para una entrada distribuida uniformemente. También es mejor el golf para ponerlo primero, porque usa más referencias inversas (lo que costaría más si fueran de dos dígitos).
Pude eliminar 4 bytes de esta expresión regular (193 → 189) usando un truco encontrado por Grimy que puede acortar aún más la división en el caso de que se garantice que el cociente sea mayor o igual que el divisor.
^(?=(|(x+)\2*(?=\2$))((?=(xx+?)\4*$)(?=(x+)(\5+$))\6(?!\4*$))*x$)(?=.*$\2|((?=((x*)(?=\2\9+$)x)(\8*$))\10)*x$)(?!(((x+)(?=\13+$)(x+))(?!\12+$)(x+))\11*(?=\11$)(?!(\15\14?)?((xx+)\18+|x?)$))
Pruébalo en línea!
# For the purposes of these comments, the input number = N.
^
# Assert that all of N's prime factors are of equal multiplicity
# Step 1: Find Q, the largest square-free factor of N (which will also be the smallest
# factor of N that has all the same prime factors as N) and put it in \2.
# If N is square-free, \2 will be unset.
(?=
# Search through all factors of N, from largest to smallest, searching for one that
# satisfies the desired property. The first factor tried will be N itself, for which
# \2 will be unset.
(|(x+)\2*(?=\2$)) # for factors < N: \2 = factor of N; tail = \2
# Assert that tail is square-free (its prime factors all have single multiplicity)
(
(?=(xx+?)\4*$) # \4 = smallest prime factor of tail
(?=(x+)(\5+$)) # \5 = tail / \4 (implicitly); \6 = tool to make tail = \5
\6 # tail = \5
(?!\4*$) # Assert that tail is no longer divisible by \4, i.e. that that
# prime factor was of exactly single multiplicity.
)*x$
)
# Step 2: Require that either \2 is unset, or that the result of repeatedly
# dividing tail by \2 is 1.
(?=
.*$\2
|
(
# In the following division calculation, we can skip the test for divisibility
# by \2-1 because it's guaranteed that \2 <= \8. As a result, we did not need to
# capture \2-1 above, and can use a better-golfed form of the division.
(?=
( # \8 = tail / \2
(x*) # \9 = \8-1
(?=\2\9+$)
x
)
(\8*$) # \10 = tool to make tail = \8
)
\10 # tail = \8
)*
x$ # Require that the end result is 1
)
# Assert that there exists no trio of prime numbers such that N is divisible by the
# smallest and largest prime but not the middle prime.
(?!
( # \11 = a factor of N
( # \12 = a non-factor of N between \11 and \13
(x+)(?=\13+$) # \13 = a factor of N smaller than \11
(x+) # \14 = tool (with \15) to make tail = \13
)
(?!\12+$)
(x+) # \15 = tool to make tail = \12
)
\11*(?=\11$) # tail = \11
# Assert that \11, \12, and \13 are all prime
(?!
(\15\14?)? # tail = either \11, \12, or \13
((xx+)\18+|x?)$
)
)
* Todavía es más limpio con anticipación molecular, sin ningún caso especial para que N esté libre de cuadrados. Esto deja caer 6 bytes, produciendo una solución de 195 187 183 bytes :
^(?=(?*(x+))\1*(?=\1$)((?=(xx+?)\3*$)(?=(x+)(\4+$))\5(?!\3*$))*x$)(?=((?=((x*)(?=\1\8+$)x)(\7*$))\9)*x$)(?!(((x+)(?=\12+$)(x+))(?!\11+$)(x+))\10*(?=\10$)(?!(\14\13?)?((xx+)\17+|x?)$))
# For the purposes of these comments, the input number = N.
^
# Assert that all of N's prime factors are of equal multiplicity
# Step 1: Find Q, the largest square-free factor of N (which will also be the smallest
# factor of N that has all the same prime factors as N) and put it in \1.
(?=
(?*(x+)) # \1 = proposed factor of N
\1*(?=\1$) # Assert that \1 is a factor of N; tail = \1
# Assert that tail is square-free (its prime factors all have single multiplicity)
(
(?=(xx+?)\3*$) # \3 = smallest prime factor of tail
(?=(x+)(\4+$)) # \4 = tail / \3 (implicitly); \5 = tool to make tail = \4
\5 # tail = \4
(?!\3*$) # Assert that tail is no longer divisible by \3, i.e. that that
# prime factor was of exactly single multiplicity.
)*x$
)
# Step 2: Require that the result of repeatedly dividing tail by \1 is 1.
(?=
(
# In the following division calculation, we can skip the test for divisibility
# by \1-1 because it's guaranteed that \2 <= \8. As a result, we did not need to
# capture \1-1 above, and can use a better-golfed form of the division.
(?=
( # \7 = tail / \1
(x*) # \8 = \7-1
(?=\1\8+$)
x
)
(\7*$) # \9 = tool to make tail = \7
)
\9 # tail = \7
)*
x$ # Require that the end result is 1
)
# Assert that there exists no trio of prime numbers such that N is divisible by the
# smallest and largest prime but not the middle prime.
(?!
( # \10 = a factor of N
( # \11 = a non-factor of N between \10 and \12
(x+)(?=\12+$) # \12 = a factor of N smaller than \10
(x+) # \13 = tool (with \14) to make tail = \12
)
(?!\11+$)
(x+) # \14 = tool to make tail = \11
)
\10*(?=\10$) # tail = \10
# Assert that \10, \11, and \12 are all prime
(?!
(\14\13?)? # tail = either \10, \11, or \12
((xx+)\17+|x?)$
)
)
Aquí está portado a lookbehind de longitud variable:
Expresiones regulares (ECMAScript 2018), 198 195 194 186 182 bytes
^(?=(x+)(?=\1*$)(?<=^x((?<!^\5*)\3(?<=(^\4+)(x+))(?<=^\5*(x+?x)))*))((?=((x*)(?=\1\8+$)x)(\7*$))\9)*x$(?<!(?!(\14\16?)?((xx+)\12+|x?)$)(?<=^\13+)((x+)(?<!^\15+)((x+)(?<=^\17+)(x+))))
Pruébalo en línea!
# For the purposes of these comments, the input number = N.
^
# Assert that all of N's prime factors are of equal multiplicity
# Step 1: Find Q, the largest square-free factor of N (which will also be the smallest
# factor of N that has all the same prime factors as N) and put it in \1.
(?=
(x+)(?=\1*$) # \1 = factor of N; head = \1
(?<= # This is evaluated right-to-left, so please read bottom to top.
^x
(
(?<!^\5*) # Assert that head is no longer divisible by \6, i.e. that
# that prime factor was of exactly single multiplicity.
\3 # head = \4
(?<=(^\4+)(x+)) # \4 = head / \5 (implicitly); \3 = tool to make head = \4
(?<=^\5*(x+?x)) # \5 = smallest prime factor of head
)*
)
)
# Step 2: Require that the result of repeatedly dividing tail by \1 is 1.
(
# In the following division calculation, we can skip the test for divisibility
# by \1-1 because it's guaranteed that \2 <= \8. As a result, we did not need to
# capture \1-1 above, and can use a better-golfed form of the division.
(?=
( # \7 = tail / \1
(x*) # \8 = \7-1
(?=\1\8+$)
x
)
(\7*$) # \9 = tool to make tail = \7
)
\9 # tail = \7
)*
x$ # Require that the end result is 1
# Assert that there exists no trio of prime numbers such that N is divisible by the
# smallest and largest prime but not the middle prime.
# This is evaluated right-to-left, so please read bottom to top, but switch back to
# reading top to bottom at the negative lookahead.
(?<!
# Assert that \13, \15, and \17 are all prime.
(?!
(\14\16?)? # tail = either \13, \15, or \17
((xx+)\12+|x?)$
)
(?<=^\13+)
( # tail = \13
(x+) # \14 = tool to make tail = \15
(?<!^\15+)
(
(x+) # \16 = tool (with \14) to make tail = \17
(?<=^\17+)(x+) # \17 = a factor of N smaller than \13
) # \15 = a non-factor of N between \13 and \17
) # \13 = a factor of N
)