Conversión de base arbitraria [cerrada]


10

Cree una rutina que tome una matriz de bloques en un sistema base numérico y conviértala en una matriz de bloques en otro sistema base numérico. Los sistemas from y to son arbitrarios y deben aceptarse como parámetro. La matriz de entrada puede tener una longitud arbitraria (si usa un lenguaje donde las longitudes de la matriz no se almacenan con la matriz, como C, se debe pasar un parámetro de longitud a la función).

Así es como debería funcionar:

fromArray = [1, 1]
fromBase = 256
toBase = 16
result = convertBase(fromArray, fromBase, toBase);

Lo que debería devolver [0, 1, 0, 1]o posiblemente [1, 0, 1](los 0s iniciales son opcionales ya que no cambian el valor de la respuesta).

Aquí hay algunos vectores de prueba:

  1. Vector de prueba de identidad

    fromArray = [1, 2, 3, 4]
    fromBase = 16
    toBase = 16
    result = [1, 2, 3, 4]
    
  2. Vector de prueba trivial

    fromArray = [1, 0]
    fromBase = 10
    toBase = 100
    result = [10]
    
  3. Vector de gran prueba

    fromArray = [41, 15, 156, 123, 254, 156, 141, 2, 24]
    fromBase = 256
    toBase = 16
    result = [2, 9, 0, 15, 9, 12, 7, 11, 15, 14, 9, 12, 8, 13, 0, 2, 1, 8]
    
  4. Vector de prueba realmente grande

    fromArray = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
    fromBase = 2
    toBase = 10
    result = [1, 2, 3, 7, 9, 4, 0, 0, 3, 9, 2, 8, 5, 3, 8, 0, 2, 7, 4, 8, 9, 9, 1, 2, 4, 2, 2, 3]
    
  5. Vector base no uniforme

    fromArray = [41, 42, 43]
    fromBase = 256
    toBase = 36
    result = [1, 21, 29, 22, 3]
    

Otros criterios / reglas:

  1. Todas las variables enteras deben caber dentro de un entero con signo estándar de 32 bits para todos los rangos de entrada sanos.

  2. Puede convertir a una representación intermedia, siempre que el intermediario no sea más que una matriz de enteros con signo de 32 bits.

  3. Espere manejar bases del 2 al 256. No hay necesidad de soportar bases más altas que eso (pero si lo desea, por supuesto).

  4. Espere manejar tamaños de entrada y salida de al menos hasta 1000 elementos. Una solución que se escala a 2 ^ 32-1 elementos sería mejor, pero 1000 está bien.

  5. No se trata necesariamente de tener el código más corto que cumpla con estas reglas. Se trata de tener el código más limpio y elegante.

Ahora, esto no es exactamente trivial, por lo que una respuesta que casi funciona podría ser aceptada.


¿Significa # 1 que no podemos usar un tipo bigint?
Keith Randall

@Keith: Correcto. Solo enteros de 32 bits.
ircmaxell

Dices "entero con signo" pero los ejemplos son solo para enteros positivos, entonces: ¿tenemos que manejar los negativos?
Eelvex

@Eelvex: No veo la necesidad de manejar los negativos. Si se maneja un negativo, estaría fuera del convertidor.
ircmaxell

¿Son siempre bases enteras?
Peter Olson

Respuestas:


8

Pitón

# divides longnum src (in base src_base) by divisor
# returns a pair of (longnum dividend, remainder)
def divmod_long(src, src_base, divisor):
  dividend=[]
  remainder=0
  for d in src:
    (e, remainder) = divmod(d + remainder * src_base, divisor)
    if dividend or e: dividend += [e]
  return (dividend, remainder)

def convert(src, src_base, dst_base):
  result = []
  while src:
    (src, remainder) = divmod_long(src, src_base, dst_base)
    result = [remainder] + result
  return result

Gracias. Estaba buscando una rutina como esta. Sin embargo, me llevó un tiempo convertirlo a Javascript. Probablemente jugaré un poco al golf y postearé aquí por diversión.
Stephen Perelson

5

Aquí hay una solución Haskell

import Data.List
import Control.Monad

type Numeral = (Int, [Int])

swap              ::  (a,b) -> (b,a)
swap (x,y)        =   (y,x)

unfoldl           ::  (b -> Maybe (b,a)) -> b -> [a]
unfoldl f         =   reverse . unfoldr (fmap swap . f)

normalize         ::  Numeral -> Numeral
normalize (r,ds)  =   (r, dropWhile (==0) ds)

divModLongInt            ::  Numeral -> Int -> (Numeral,Int)
divModLongInt (r,dd) dv  =   let  divDigit c d = swap ((c*r+d) `divMod` dv)
                                  (remainder, quotient) = mapAccumR divDigit 0 (reverse dd)
                             in   (normalize (r,reverse quotient), remainder)

changeRadixLongInt       ::  Numeral -> Int -> Numeral
changeRadixLongInt n r'  =   (r', unfoldl produceDigit n)
  where  produceDigit  (_,[])   =  Nothing
         produceDigit  x        =  Just (divModLongInt x r')

changeRadix :: [Int] -> Int -> Int -> [Int]
changeRadix digits origBase newBase = snd $ changeRadixLongInt (origBase,digits) newBase

doLine line = let [(digits,rest0)] = reads line
                  [(origBase,rest1)] = reads rest0
                  [(newBase,rest2)] = reads rest1
              in show $ changeRadix digits origBase newBase

main = interact (unlines . map doLine . lines)

Y ejecutando las pruebas de la pregunta:

$ ./a.out 
[1,2,3,4] 16 16
[1,2,3,4]
[1,0] 10 100
[10]
[41, 15, 156, 123, 254, 156, 141, 2, 24] 256 16
[2,9,0,15,9,12,7,11,15,14,9,12,8,13,0,2,1,8]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] 2 10
[1,2,3,7,9,4,0,0,3,9,2,8,5,3,8,0,2,7,4,8,9,9,1,2,4,2,2,3]
[41, 42, 43] 256 36
[1,21,29,22,3]

Oh wow. ¡Eso es genial! Ahora, si solo pudiera entenderlo: -) ... (pero esa es mi tarea ahora) ...
ircmaxell

5

R

Maneja muchos miles de elementos * en menos de un minuto.

addb <- function(v1,v2,b) {
    ml <- max(length(v1),length(v2))
    v1 <- c(rep(0, ml-length(v1)),v1)
    v2 <- c(rep(0, ml-length(v2)),v2)
    v1 = v1 + v2
    resm = v1%%b
    resd = c(floor(v1/b),0)
    while (any(resd != 0)) {
        v1 = c(0,resm) + resd
        resm = v1%%b
        resd = c(floor(v1/b),0)
    }
    while (v1[1] == 0) v1 = v1[-1]
    return(v1)
}

redb <- function(v,b) {
    return (addb(v,0,b))
}

mm = rbind(1)

mulmat <- function(fromb, tob, n) {
    if (dim(mm)[2] >= n) return(mm)
    if (n == 1) return(1)
    newr = addb(mulmat(fromb,tob,n-1) %*% rep(fromb-1,n-1), 1, tob)
    newm = mulmat(fromb,tob,n-1)
    while (is.null(dim(newm)) || dim(newm)[1] < length(newr)) newm = rbind(0,newm)
    mm <<-  cbind(newr, newm)
    return(mm)
}

dothelocomotion <- function(fromBase, toBase, v) {
    mm  <<- rbind(1)
    return(redb(mulmat(fromBase, toBase, length(v)) %*% v, toBase))
}

* para> 500 elementos, debe elevar el nivel de recursión predeterminado o no restablecer la mmmatriz endothelocomotion()

Ejemplos:

v1 = c(41, 15, 156, 123, 254, 156, 141, 2, 24)
dothelocomotion(256,16,v1)
2  9  0 15  9 12  7 11 15 14  9 12  8 13  0  2  1  8

dothelocomotion(256,36,c(41,42,43))
1 21 29 22  3

dothelocomotion(2,10, rep(1,90))
1 2 3 7 9 4 0 0 3 9 2 8 5 3 8 0 2 7 4 8 9 9 1 2 4 2 2 3

3

Una versión de JavaScript menos ofuscada y más rápida:

function convert (number, src_base, dst_base)
{
    var res = [];
    var quotient;
    var remainder;

    while (number.length)
    {
        // divide successive powers of dst_base
        quotient = [];
        remainder = 0;
        var len = number.length;
        for (var i = 0 ; i != len ; i++)
        {
            var accumulator = number[i] + remainder * src_base;
            var digit = accumulator / dst_base | 0; // rounding faster than Math.floor
            remainder = accumulator % dst_base;
            if (quotient.length || digit) quotient.push(digit);
        }

        // the remainder of current division is the next rightmost digit
        res.unshift(remainder);

        // rinse and repeat with next power of dst_base
        number = quotient;
    }

    return res;
}

El tiempo de cálculo crece como o (número de dígitos 2 ).
No es muy eficiente para grandes números.
Las versiones especializadas de codificación de línea base64 aprovechan las relaciones de base para acelerar los cálculos.


haciendo el trabajo de Dios hijo
bryc

2

Javascript

Gracias Keith Randall por tu respuesta a Python. Estaba luchando con las minucias de mi solución y terminé copiando tu lógica. Si alguien está otorgando un voto a esta solución porque funciona, entonces también vote por la solución de Keith.

function convert(src,fb,tb){
  var res=[]
  while(src.length > 0){
    var a=(function(src){
      var d=[];var rem=0
      for each (var i in src){
        var c=i+rem*fb
        var e=Math.floor(c/tb)
        rem=c%tb
        d.length||e?d.push(e):0
      }
      return[d,rem]
    }).call(this,src)
    src=a[0]
    var rem=a[1]
    res.unshift(rem)
  }
  return res
}

Pruebas

console.log(convert([1, 2, 3, 4], 16, 16))
console.log(convert([1, 0], 10, 100))
console.log(convert([41, 15, 156, 123, 254, 156, 141, 2, 24], 256, 16))
console.log(convert([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 2, 10))
console.log(convert([41, 42, 43], 256, 36))

/*
Produces:
[1, 2, 3, 4]
[10]
[2, 9, 0, 15, 9, 12, 7, 11, 15, 14, 9, 12, 8, 13, 0, 2, 1, 8]
[1, 2, 3, 7, 9, 4, 0, 0, 3, 9, 2, 8, 5, 3, 8, 0, 2, 7, 4, 8, 9, 9, 1, 2, 4, 2, 2, 3]
[1, 21, 29, 22, 3]
*/

Esto probablemente podría reducirse mucho, pero en realidad quiero usarlo para un pequeño proyecto paralelo. Así que lo he mantenido legible (algo) y he tratado de mantener las variables bajo control.


como es javascript ¿para cada?
Hernán Eche

No hay nombres de variables de más de 3 caracteres, for eachdeclaraciones obsoletas y construcciones que hacen llorar los ojos como d.length||e?d.push(e):0... ¿Es este un desafío de código ofuscado o algo así? Podrías escribir lo mismo con una sintaxis comprensible y mejores interpretaciones.

@kuroineko Este es el código de golf. ¿Que estabas esperando? ¿Código limpio y legible utilizando estándares actualizados? Nunca dije que mi respuesta fuera perfecta y ciertamente no la usaría como en un proyecto de producción.
Stephen Perelson

Bueno, en realidad necesitaba este algoritmo en JavaScript por alguna razón, y tuve que reescribirlo desde cero, tomando la solución de Python como base. Agradezco su contribución, pero a efectos prácticos apenas fue utilizable en mi humilde opinión.

2

Mathematica

No hay variables definidas, cualquier entrada aceptada siempre que quepa en la memoria.

f[i_, sb_, db_] := IntegerDigits[FromDigits[i, sb], db];

Prueba de conducción:

f[{1,2,3,4},16,16]
f[{1,0},10,100]
f[{41,15,156,123,254,156,141,2,24},256,16]
f[{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
   1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
   1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1},2,10]
f[{41,42,43},256,36]

Afuera

{1,2,3,4}
{10}
{2,9,0,15,9,12,7,11,15,14,9,12,8,13,0,2,1,8}
{1,2,3 7,9,4,0,0,3,9,2,8,5,3,8,0,2,7,4,8,9,9,1,2,4,2,2,3}
{1,21,29,22,3}

1

Scala:

def toDecimal (li: List[Int], base: Int) : BigInt = li match {                       
  case Nil => BigInt (0)                                                             
  case x :: xs => BigInt (x % base) + (BigInt (base) * toDecimal (xs, base)) }  

def fromDecimal (dec: BigInt, base: Int) : List[Int] =
  if (dec==0L) Nil else (dec % base).toInt :: fromDecimal (dec/base, base)

def x2y (value: List[Int], from: Int, to: Int) =
  fromDecimal (toDecimal (value.reverse, from), to).reverse

Código de prueba con pruebas:

def test (li: List[Int], from: Int, to: Int, s: String) = {
 val erg= "" + x2y (li, from, to)
 if (! erg.equals (s))
   println ("2dec: " + toDecimal (li, from) + "\n\terg: " + erg + "\n\texp: " + s)
}   

 test (List (1, 2, 3, 4), 16, 16, "List(1, 2, 3, 4)")
 test (List (1, 0), 10, 100, "List(10)")
 test (List (41, 15, 156, 123, 254, 156, 141, 2, 24), 256, 16, "List(2, 9, 0, 15, 9, 12, 7, 11, 15, 14, 9, 12, 8, 13, 0, 2, 1, 8)") 
 test (List (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), 
   2, 10, "List(1, 2, 3, 7, 9, 4, 0, 0, 3, 9, 2, 8, 5, 3, 8, 0, 2, 7, 4, 8, 9, 9, 1, 2, 4, 2, 2, 3)") 
 test (List (41, 42, 43), 256, 36, "List(1, 21, 29, 22, 3)")

Pasó todas las pruebas.


1

J, 109 105

Maneja miles de dígitos sin sudar. No enteros perjudicados!

e=:<.@%,.|~
t=:]`}.@.(0={.)@((e{:)~h=:+//.@)^:_
s=:[t[:+/;.0]*|.@>@(4 :'x((];~[t((*/e/)~>@{.)h)^:(<:#y))1')

Ejemplos

256 16 s 41 15 156 123 254 156 141 2 24
2 9 0 15 9 12 7 11 15 14 9 12 8 13 0 2 1 8

256 36 s 41 42 43
1 21 29 22 3

16 16 s 1 2 3 4
1 2 3 4

256 46 s ?.1000$45
14 0 4 23 42 7 11 30 37 10 28 44 ...

time'256 46 s ?.3000$45'  NB. Timing conversion of 3000-vector.
1.96s

Se acorta.


0

Smalltalk, 128

o:=[:n :b|n>b ifTrue:[(o value:n//b value:b),{n\\b}]ifFalse:[{n}]].
f:=[:a :f :t|o value:(a inject:0into:[:s :d|s*f+d])value:t].

pruebas:

f value:#[41 15 156 123 254 156 141 2 24]
  value:256
  value:16. 
    -> #(2 9 0 15 9 12 7 11 15 14 9 12 8 13 0 2 1 8)

f value:#[1 2 3 4]
  value:16
  value:16.
    -> #(1 2 3 4)

f value:#[1 0]
  value:10
  value:100.
    -> #(10)

f value:#[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
  value:2
  value:10.
    -> #(1 2 3 7 9 4 0 0 3 9 2 8 5 3 8 0 2 7 4 8 9 9 1 2 4 2 2 3)

f value:#[41 42 43]
  value:256
  value:36.
    -> #(1 21 29 22 3)

y para su diversión especial ( desafío: averiguar, qué tiene de especial el valor de entrada ):

f value:#[3 193 88 29 73 27 40 245 35 194 58 189 243 91 104 156 144 128 0 0 0 0]
  value:256
  value:1000.
    -> #(1 405 6 117 752 879 898 543 142 606 244 511 569 936 384 0 0 0) 
Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.