-2 ya que ya no estamos obligados a manejar una lista vacía
-1 cambiar de unir, j@
para concatenar, ;
(el elemento perdido no necesita encontrarse en el medio para el método empleado, estar al comienzo del trío está bien )
-2 cambiar de P¬aSH
a oSH
(OK para tener dos resultados ya que aplanar, medio de 1
es 0.5
que se filtra fuera de todos modos, y que tiene múltiples resultados iguales no tiene efecto en el método empleado tampoco)
-1 Gracias al Sr. Xcoder (0-indexado se permite la entrada)
d3ZIỊoSH;µƝFf9Ḷ¤Q⁼
Un enlace monádico que toma una lista de enteros [0,8]
y devuelve un valor verdadero ( 1
) si es legal y un valor falso ( 0
) si no.
Pruébalo en línea! o ver un conjunto de pruebas .
¿Cómo?
Mira cada par adyacente de nodos indexados a 0 en la lista de entrada. Si la división de enteros entre tres de los dos difiere en 2, están en las filas superior e inferior, si el módulo entre tres de los dos difiere en 2, están en las columnas izquierda y derecha. La suma de tales pares divididos por dos es el nodo medio indexado en 0 de una línea de tres nodos o un valor no entero, por lo que estos valores se insertan primero delante del par indexado en 0 y luego cualquier nodos falsos (como 0.5
o3.5
) se eliminan, la lista de listas resultante se aplana y luego se desduplica (para obtener entradas únicas y preservadas por orden) y finalmente se compara con la entrada; para un deslizamiento legal, todo esto terminará siendo un no operativo mientras ilegal las unidades agregarán nodos medios faltantes y / o eliminarán nodos duplicados (tenga en cuenta que no se requiere una carcasa especial para una lista de entrada de longitud 1 ya que no tiene pares adyacentes):
d3ZIỊoSH;µƝFf9Ḷ¤Q⁼ - left input is a list of integers e.g. [3,4,7,1,2,8,3]
µƝ - perform the chain to the left for adjacent pairs:
- e.g. for [a,b] in: [3,4] [4,7] [7,1] [1,2] [2,8] [8,3]
d3 - divmod by 3 [[1,0],[1,1]] [[1,1],[2,1]] [[2,1],[0,1]] [[0,1],[0,2]] [[0,2],[2,2]] [[2,2],[1,0]]
Z - transpose [[1,1],[0,1]] [[1,2],[1,1]] [[2,0],[1,1]] [[0,0],[1,2]] [[0,2],[2,2]] [[2,1],[2,0]]
I - differences [0,1] [1,0] [-2,0] [0,1] [2,0] [-1,-2]
Ị - abs(v)<=1 [1,1] [1,1] [0,1] [1,1] [0,1] [1,0]
S - sum (of [a,b]) 7 11 8 3 10 11
o - OR (vectorises) [1,1] [1,1] [8,1] [1,1] [10,1] [1,11]
H - halve (vectorises) [0.5,0.5] [0.5,0.5] [4,0.5] [0.5,0.5] [5,0.5] [0.5,5.5]
; - concatenate [0.5,0.5,3,4] [0.5,0.5,4,7] [4,0.5,7,1] [0.5,0.5,1,2] [5,0.5,2,8] [0.5,5.5,8,3]
F - flatten [0.5,0.5,3,4, 0.5,0.5,4,7, 4,0.5,7,1, 0.5,0.5,1,2, 5,0.5,2,8, 0.5,5.5,8,3]
¤ - nilad followed by link(s) as a nilad:
9 - literal nine
Ḷ - lowered range = [0,1,2,3,4,5,6,7,8]
f - filter keep [ 3,4, 4,7, 4, 7,1, 1,2, 5, 2,8, ,8,3]
Q - deduplicate [3,4,7,1,2,5,8]
⁼ - equal to the input? e.g. 0 (here because 5 was introduced AND because 3 was removed from the right)
Método anterior
Gelatina , 36 35 bytes
9s3;Z$;“Æ7a‘DZ¤;U$;©0m€2iị®oµƝFQ⁼ȧȦ
Pruébalo en línea! o ver un conjunto de pruebas .
¿Cómo?
Similar a lo anterior, pero construye todas las posibilidades de línea de tres nodos y realiza una búsqueda (en lugar de verificar a medida que avanza usando divmod para probar y reducir a la mitad la suma para el nodo medio).
En primer lugar, la construcción de la lista de líneas de tres nodos:
9s3;Z$;“Æ7a‘DZ¤;U$;©0
9s3 - nine (implicit range) split into threes = [[1,2,3],[4,5,6],[7,8,9]]
$ - last two links as a monad:
Z - transpose = [[1,4,7],[2,5,8],[6,7,9]]
; - concatenate = [[1,2,3],[4,5,6],[7,8,9],[1,4,7],[2,5,8],[3,6,9]]
¤ - nilad followed by link(s) as a nilad:
“Æ7a‘ - code-page index list = [13,55,97]
D - decimal (vectorises) = [[1,3],[5,5],[9,7]]
Z - transpose = [[1,5,9],[3,5,7]]
; - concatenate = [[1,2,3],[4,5,6],[7,8,9],[1,4,7],[2,5,8],[3,6,9],[1,5,9],[3,5,7]]
$ - last two links as a monad:
U - upend = [[3,2,1],[6,5,4],[9,8,7],[7,4,1],[8,5,2],[9,6,3],[9,5,1],[7,5,3]]
; - concatenate = [[1,2,3],[4,5,6],[7,8,9],[1,4,7],[2,5,8],[3,6,9],[1,5,9],[3,5,7],[3,2,1],[6,5,4],[9,8,7],[7,4,1],[8,5,2],[9,6,3],[9,5,1],[7,5,3]]
0 - literal zero (to cater for non-matches in the main link since ị, index into, is 1-based and modular the 0th index is the rightmost)
; - concatenate = [[1,2,3],[4,5,6],[7,8,9],[1,4,7],[2,5,8],[3,6,9],[1,5,9],[3,5,7],[3,2,1],[6,5,4],[9,8,7],[7,4,1],[8,5,2],[9,6,3],[9,5,1],[7,5,3],0]
© - copy the result to the register
Ahora la toma de decisiones:
...m€2iị®oµƝFQ⁼ȧȦ - left input is a list of integers e.g. [4,5,8,2,3,9,4]
µƝ - perform the chain to the left for adjacent pairs:
- i.e. for [a,b] in [[4,5],[5,8],[8,2],[2,3],[3,9],[9,4]]
... - perform the code described above = [[1,2,3],[4,5,6],[7,8,9],[1,4,7],[2,5,8],[3,6,9],[1,5,9],[3,5,7],[3,2,1],[6,5,4],[9,8,7],[7,4,1],[8,5,2],[9,6,3],[9,5,1],[7,5,3],0]
m€2 - modulo-2 slice €ach = [[1,3],[4,6],[3,9],[1,7],[2,8],[6,9],[1,9],[3,7],[3,1],[6,4],[9,7],[7,1],[8,2],[9,3],[9,1],[7,3],[0]]
i - index of [a,b] in that (or 0 if not there) e.g. [0,0,13,0,6,0]
® - recall from register = [[1,2,3],[4,5,6],[7,8,9],[1,4,7],[2,5,8],[3,6,9],[1,5,9],[3,5,7],[3,2,1],[6,5,4],[9,8,7],[7,4,1],[8,5,2],[9,6,3],[9,5,1],[7,5,3],0]
ị - index into (1-based & modular) e.g. [0,0,[8,5,2],0,[3,6,9],0]
o - OR [a,b] e.g. [[4,5],[5,8],[8,5,2],[2,3],[3,6,9],[9,4]]
F - flatten e.g. [4,5,5,8,8,5,2,2,3,3,6,9,9,4]
Q - deduplicate e.g. [4,5,8,2,3,6,9]
⁼ - equal to the input? e.g. 0 (here because 6 was introduced AND because 4 was removed from the right)
Ȧ - any and all? (0 if input is empty [or contains a falsey value when flattened - no such input], 1 otherwise)
ȧ - AND (to force an empty input to evaluate as 1 AND 0 = 0)