Mientras garabateaba con números, encontré una interesante permutación que puede generar a partir de una lista de números. Si repite esta misma permutación suficientes veces, siempre terminará en la matriz original. Usemos la siguiente lista:
[1, 2, 3, 4, 5]
como ejemplo
Invierte la matriz. Ahora nuestra matriz es
[5, 4, 3, 2, 1]Reordenar (intercambiar) cada par. Nuestra lista tiene 2 pares:
[5, 4]y[3, 2]. Desafortunadamente, no podemos agruparlos1en un par, así que lo dejaremos solo. Después de intercambiar cada par, la nueva matriz es:[4, 5, 2, 3, 1]Repita los pasos 1 y 2 hasta que volvamos a la matriz original. Aquí están los siguientes 4 pasos:
Step 2: Start: [4, 5, 2, 3, 1] Reversed: [1, 3, 2, 5, 4] Pairs Swapped: [3, 1, 5, 2, 4] Step 3: Start: [3, 1, 5, 2, 4] Reversed: [4, 2, 5, 1, 3] Pairs Swapped: [2, 4, 1, 5, 3] Step 4: Start: [2, 4, 1, 5, 3] Reversed: [3, 5, 1, 4, 2] Pairs Swapped: [5, 3, 4, 1, 2] Step 5: Start: [5, 3, 4, 1, 2] Reversed: [2, 1, 4, 3, 5] Pairs Swapped: [1, 2, 3, 4, 5] # No more steps needed because we are back to the original arraySi la longitud de la lista, n es impar, siempre tomará exactamente n pasos para volver a la matriz original. Si n es par, siempre tomará 2 pasos para volver a la matriz original, a menos que n sea 2, en cuyo caso tomará 1 paso (porque revertir e intercambiar es lo mismo).
Su tarea para hoy (si decide aceptarlo) es visualizar este conjunto de pasos para listas de longitudes arbitrarias. Debe escribir un programa o función que tome un solo entero positivo n como entrada y realice este conjunto de pasos para la lista [1, n]. Debe generar cada paso intermedio en el camino, ya sea que eso signifique imprimir cada paso o devolverlos todos como una lista de pasos. No soy muy exigente con el formato de salida, siempre que esté claro que estás generando cada paso. Esto significa (por ejemplo) cualquiera de estos:
Enviar cada paso como una lista a STDOUT
Devolver una lista de listas
Devolver una lista de representaciones de cadena de cada paso
Devolución / salida de una matriz
Sería aceptable.
También debe generar la matriz original, ya sea que llegue al final o al principio, depende de usted. (técnicamente, ambos son correctos)
Tendrá que manejar el caso límite de 2 dando 1 paso en lugar de 2 , así que asegúrese de que su solución funcione con una entrada de 2 (y 1 es otro caso límite potencial).
Como de costumbre, este es el código de golf , por lo que se aplican las lagunas estándar, y trata de hacer que tu solución sea más corta que cualquier otra en el idioma que elijas (o incluso tratar de superar otro idioma que generalmente es más corto que el tuyo si te sientes bien) para un desafío).
Prueba IO
1:
[1]
2:
[1, 2]
3:
[2, 3, 1]
[3, 1, 2]
[1, 2, 3]
4:
[3, 4, 1, 2]
[1, 2, 3, 4]
5:
[4, 5, 2, 3, 1]
[3, 1, 5, 2, 4]
[2, 4, 1, 5, 3]
[5, 3, 4, 1, 2]
[1, 2, 3, 4, 5]
7:
[6, 7, 4, 5, 2, 3, 1]
[3, 1, 5, 2, 7, 4, 6]
[4, 6, 2, 7, 1, 5, 3]
[5, 3, 7, 1, 6, 2, 4]
[2, 4, 1, 6, 3, 7, 5]
[7, 5, 6, 3, 4, 1, 2]
[1, 2, 3, 4, 5, 6, 7]
9:
[8, 9, 6, 7, 4, 5, 2, 3, 1]
[3, 1, 5, 2, 7, 4, 9, 6, 8]
[6, 8, 4, 9, 2, 7, 1, 5, 3]
[5, 3, 7, 1, 9, 2, 8, 4, 6]
[4, 6, 2, 8, 1, 9, 3, 7, 5]
[7, 5, 9, 3, 8, 1, 6, 2, 4]
[2, 4, 1, 6, 3, 8, 5, 9, 7]
[9, 7, 8, 5, 6, 3, 4, 1, 2]
[1, 2, 3, 4, 5, 6, 7, 8, 9]
Y por si acaso, aquí hay un caso de prueba gigante:
27:
[26, 27, 24, 25, 22, 23, 20, 21, 18, 19, 16, 17, 14, 15, 12, 13, 10, 11, 8, 9, 6, 7, 4, 5, 2, 3, 1]
[3, 1, 5, 2, 7, 4, 9, 6, 11, 8, 13, 10, 15, 12, 17, 14, 19, 16, 21, 18, 23, 20, 25, 22, 27, 24, 26]
[24, 26, 22, 27, 20, 25, 18, 23, 16, 21, 14, 19, 12, 17, 10, 15, 8, 13, 6, 11, 4, 9, 2, 7, 1, 5, 3]
[5, 3, 7, 1, 9, 2, 11, 4, 13, 6, 15, 8, 17, 10, 19, 12, 21, 14, 23, 16, 25, 18, 27, 20, 26, 22, 24]
[22, 24, 20, 26, 18, 27, 16, 25, 14, 23, 12, 21, 10, 19, 8, 17, 6, 15, 4, 13, 2, 11, 1, 9, 3, 7, 5]
[7, 5, 9, 3, 11, 1, 13, 2, 15, 4, 17, 6, 19, 8, 21, 10, 23, 12, 25, 14, 27, 16, 26, 18, 24, 20, 22]
[20, 22, 18, 24, 16, 26, 14, 27, 12, 25, 10, 23, 8, 21, 6, 19, 4, 17, 2, 15, 1, 13, 3, 11, 5, 9, 7]
[9, 7, 11, 5, 13, 3, 15, 1, 17, 2, 19, 4, 21, 6, 23, 8, 25, 10, 27, 12, 26, 14, 24, 16, 22, 18, 20]
[18, 20, 16, 22, 14, 24, 12, 26, 10, 27, 8, 25, 6, 23, 4, 21, 2, 19, 1, 17, 3, 15, 5, 13, 7, 11, 9]
[11, 9, 13, 7, 15, 5, 17, 3, 19, 1, 21, 2, 23, 4, 25, 6, 27, 8, 26, 10, 24, 12, 22, 14, 20, 16, 18]
[16, 18, 14, 20, 12, 22, 10, 24, 8, 26, 6, 27, 4, 25, 2, 23, 1, 21, 3, 19, 5, 17, 7, 15, 9, 13, 11]
[13, 11, 15, 9, 17, 7, 19, 5, 21, 3, 23, 1, 25, 2, 27, 4, 26, 6, 24, 8, 22, 10, 20, 12, 18, 14, 16]
[14, 16, 12, 18, 10, 20, 8, 22, 6, 24, 4, 26, 2, 27, 1, 25, 3, 23, 5, 21, 7, 19, 9, 17, 11, 15, 13]
[15, 13, 17, 11, 19, 9, 21, 7, 23, 5, 25, 3, 27, 1, 26, 2, 24, 4, 22, 6, 20, 8, 18, 10, 16, 12, 14]
[12, 14, 10, 16, 8, 18, 6, 20, 4, 22, 2, 24, 1, 26, 3, 27, 5, 25, 7, 23, 9, 21, 11, 19, 13, 17, 15]
[17, 15, 19, 13, 21, 11, 23, 9, 25, 7, 27, 5, 26, 3, 24, 1, 22, 2, 20, 4, 18, 6, 16, 8, 14, 10, 12]
[10, 12, 8, 14, 6, 16, 4, 18, 2, 20, 1, 22, 3, 24, 5, 26, 7, 27, 9, 25, 11, 23, 13, 21, 15, 19, 17]
[19, 17, 21, 15, 23, 13, 25, 11, 27, 9, 26, 7, 24, 5, 22, 3, 20, 1, 18, 2, 16, 4, 14, 6, 12, 8, 10]
[8, 10, 6, 12, 4, 14, 2, 16, 1, 18, 3, 20, 5, 22, 7, 24, 9, 26, 11, 27, 13, 25, 15, 23, 17, 21, 19]
[21, 19, 23, 17, 25, 15, 27, 13, 26, 11, 24, 9, 22, 7, 20, 5, 18, 3, 16, 1, 14, 2, 12, 4, 10, 6, 8]
[6, 8, 4, 10, 2, 12, 1, 14, 3, 16, 5, 18, 7, 20, 9, 22, 11, 24, 13, 26, 15, 27, 17, 25, 19, 23, 21]
[23, 21, 25, 19, 27, 17, 26, 15, 24, 13, 22, 11, 20, 9, 18, 7, 16, 5, 14, 3, 12, 1, 10, 2, 8, 4, 6]
[4, 6, 2, 8, 1, 10, 3, 12, 5, 14, 7, 16, 9, 18, 11, 20, 13, 22, 15, 24, 17, 26, 19, 27, 21, 25, 23]
[25, 23, 27, 21, 26, 19, 24, 17, 22, 15, 20, 13, 18, 11, 16, 9, 14, 7, 12, 5, 10, 3, 8, 1, 6, 2, 4]
[2, 4, 1, 6, 3, 8, 5, 10, 7, 12, 9, 14, 11, 16, 13, 18, 15, 20, 17, 22, 19, 24, 21, 26, 23, 27, 25]
[27, 25, 26, 23, 24, 21, 22, 19, 20, 17, 18, 15, 16, 13, 14, 11, 12, 9, 10, 7, 8, 5, 6, 3, 4, 1, 2]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]
Diviértete jugando al golf!
1 2 3 4 5, no 1 2 4 3 5.
array[0]solo será 1 al inicio y al final del proceso n = 999. Al observar el patrón, parece que por cada n impar , el primer elemento sube 1, n-1, 3, n - 3, 5, n - 5, 7...hasta n - 2, 3, n, 1, que siempre tomará n pasos. No veo ninguna razón para que este patrón cambie con una n mayor .
1, n, 2, n-2, 4, n-4, 6, n-6, 8, n-8, ...y es fácil mostrar por inducción que un elemento en la posición pareja x se mueve a nx después de un paso , y un elemento en la posición impar x se mueve a n-x + 2 . Entonces, si n = 2k + 1 , luego del 2k -ésimo paso 1 estará en 2k , y en el siguiente paso en n-2k = 1 .