Funciones fórmicas - Concurso Reina de las hormigas de la colina


104

Ver en vivo | Respuestas activas | Añadir nueva respuesta | Sala de chat | Código fuente | Tabla de clasificación

Nuevos torneos cuando sea necesario. Nuevos jugadores y nuevas actualizaciones muy bienvenidos.

Hormiga reina en una pista de baile con azulejos de colores cambiantes

No metraje real del juego.

Cada jugador comienza con una hormiga: una reina, que recoge comida. Cada pieza de comida se puede sostener o usar para producir un trabajador. Los trabajadores también recolectan comida para devolverla a la reina.

16 jugadores compiten en una arena. La ganadora es la reina que tiene la mayor cantidad de comida después de haber tomado 30,000 turnos. El problema es que las hormigas solo pueden comunicarse cambiando los colores de los cuadrados de la arena, que también pueden cambiar las hormigas rivales ...

Viendo el partido

Esta es una competencia de JavaScript, lo que significa que puede ver el juego en vivo en su navegador haciendo clic en el siguiente enlace.

Haz clic aquí para ver el juego en vivo.

Muchas gracias a Helka Homba por los concursos originales de Stack Snippet King of the Hill, Red vs. Blue - Pixel Team Battlebots y Block Building Bot Flocks , que proporcionaron la idea de un navegador web alojado en KotH e informaron en gran medida el código de este.

Muchas gracias también por todos los comentarios y las pruebas de las personas maravillosas en Sandbox y en Chat.

Tabla de clasificación

Imagen de los mejores lugares de la tabla de clasificación

(Haga clic en la imagen para ver la explicación completa de la tabla de clasificación y los lugares conjuntos; aquí solo se muestran unos pocos jugadores para ahorrar espacio).

Esta clasificación se basa en los jugadores como lo fueron el domingo 2 nd de septiembre de 2018.

Capturas de pantalla

Algunas imágenes de cómo se ve la arena hacia el final de un juego. Haga clic en las imágenes para verlas a tamaño completo.

imagen de la arena imagen de la arena imagen de la arena imagen de la arena imagen de la arena imagen de la arena imagen de la arena imagen de la arena imagen de la arena imagen de la arena imagen de la arena imagen de la arena imagen de la arena imagen de la arena imagen de la arena imagen de la arena

Para tener una idea de lo que está sucediendo en la arena y cómo se forman todos estos patrones, puedes ejecutar el juego y pasar el mouse sobre la arena para acercar y ver las hormigas en el trabajo. También vea las explicaciones fascinantes en las respuestas.

La arena

La arena es una cuadrícula toroidal (envoltura de bordes) de celdas cuadradas. Tiene un ancho de 2500 y una altura de 1000. Todas las celdas comienzan con el color 1.

Inicialmente, exactamente el 0.1% de las células contendrán alimentos. Las 2500 piezas de comida se distribuirán de manera uniforme al azar. No se introducirán nuevos alimentos durante el juego.

Las reinas se colocarán al azar en celdas vacías, sin garantía de que no serán adyacentes entre sí (aunque esto es muy poco probable).

Habilidades hormiga

  • Vista: cada hormiga ve las 9 celdas en su vecindario de 3 por 3. No tiene conocimiento de otras hormigas fuera de este vecindario. Ve el contenido de cada una de las 9 celdas (otras hormigas y alimentos), y también el color de cada celda .
  • Sin memoria: cada hormiga toma sus decisiones en función de lo que ve: no recuerda lo que hizo en el turno anterior y no tiene forma de almacenar otro estado que no sea en los colores de las celdas de la arena.
  • Sin orientación: una hormiga no sabe dónde está ni hacia dónde se enfrenta: no tiene el concepto de Norte. El vecindario 3 por 3 se le presentará en una orientación rotada al azar que cambia cada giro para que ni siquiera pueda caminar en línea recta a menos que tenga colores para guiarlo. (Hacer el mismo movimiento en cada giro dará como resultado una caminata aleatoria en lugar de una línea recta).
  • Mudanza, marcado de color y producción de trabajadores: Ver Salida a continuación.
  • Inmortalidad: Estas son hormigas de las tierras altas que no pueden morir. Puede confundir a las hormigas rivales cambiando los colores a su alrededor, o restringirlas para que no se muevan rodeándolas con 8 hormigas propias, pero no se pueden dañar aparte de esto.
  • Llevar comida: un trabajador puede transportar hasta 1 pieza de comida. Una reina puede llevar una cantidad arbitraria de comida.
  • Transferencia de alimentos: si un trabajador está adyacente a una reina (en cualquiera de las 8 direcciones), los alimentos se transferirán automáticamente de una de las siguientes maneras:
    • Un trabajador cargado adyacente a su propia reina transferirá su comida a su reina.
    • Un trabajador sin carga adyacente a una reina enemiga robará 1 pieza de comida, si está presente.

Un trabajador no puede robar a un trabajador, y una reina no puede robar a una reina. Además, un trabajador no puede tomar comida de su propia reina, y una reina no puede robar a un trabajador enemigo.

Tenga en cuenta que las hormigas se turnan secuencialmente y la transferencia de alimentos ocurre al final del turno individual de cada hormiga y no toma un turno. Ocurre independientemente de si un trabajador se mueve al lado de una reina o una reina se mueve al lado de un trabajador, y aún sucede si ambas hormigas involucradas se detienen para su movimiento.

Codificación

Proporcionar un cuerpo funcional

Cada hormiga está controlada por una función de hormiga. Cada turno, la función de hormiga del jugador se llama por separado para cada hormiga (no solo una vez por jugador, sino una vez por la reina y una por cada trabajador que controla ese jugador). Cada turno, la función hormiga recibirá su entrada y devolverá un movimiento para esa hormiga en particular.

Publique una respuesta que contenga un bloque de código que muestre el cuerpo de una función de JavaScript, y se incluirá automáticamente en el controlador (solo actualice la página del controlador). El nombre del jugador forma el título de la respuesta, en el formulario # PlayerName(que se truncará a un máximo de 40 caracteres en las tablas del controlador).

Sin estado, sin tiempo, sin azar

Una función no debe acceder a las variables globales y no debe almacenar el estado entre turnos. Puede utilizar funciones integradas que no implican el almacenamiento de estado. Por ejemplo, el uso de Math.abs()está bien, pero Date.getTime()no debe usarse.

Una función hormiga solo puede usar un generador de números pseudoaleatorios que se suministra a sí mismo, que no almacena el estado. Por ejemplo, puede usar los colores / alimentos / hormigas visibles como semilla cada turno. Math.random()está explícitamente prohibido, ya que como casi todos los generadores de números pseudoaleatorios, almacena el estado para avanzar al siguiente número en secuencia.

Todavía es posible una estrategia aleatoria simple debido a la orientación aleatoria de la entrada: una hormiga que siempre elige la misma dirección realizará una caminata aleatoria en lugar de una ruta en línea recta. Vea las respuestas de ejemplo para formas simples de usar esta aleatoriedad y evitar esta aleatoriedad .

Se permite que una función de hormiga contenga más funciones dentro de su cuerpo. Consulte las respuestas existentes para ver ejemplos de cómo esto puede ser útil.

Console.log

Puede iniciar sesión en la consola durante la prueba de un nuevo jugador retador, pero una vez publicado como respuesta aquí, el jugador no tendrá acceso console.log. Intentar usarlo resultará en un error y descalificación hasta que se edite. Esto debería ayudar a mantener rápidos los torneos de la tabla de clasificación, al tiempo que permite que el código de depuración se pegue en el nuevo área de texto del retador.

Entrada y salida

Entrada

La orientación de la entrada se elegirá al azar para cada hormiga y para cada turno. La entrada se rotará 0, 90, 180 o 270 grados, pero nunca se reflejará.

Las celdas están numeradas en orden de lectura en inglés:

0 1 2
3 4 5
6 7 8

La función ant recibirá una matriz llamada view, que contiene un objeto para cada una de las 9 celdas visibles. Cada objeto tendrá lo siguiente:

color: a number from 1 to 8
food: 0 or 1
ant: null if there is no ant on that cell, or otherwise an ant object

Si una celda contiene una hormiga, el objeto hormiga tendrá lo siguiente:

food: 0 or more (maximum 1 for a worker)
type: 1 to 4 for a worker, or 5 for a queen
friend: true or false

La hormiga puede determinar sus propios detalles examinado la hormiga en la célula central, view[4].ant. Por ejemplo, view[4].ant.typees 5 para una reina, o un número del 1 al 4 para un trabajador (indicando su tipo).

Salida

La salida se devuelve como un objeto que representa la acción a realizar. Esto puede tener cualquiera de los siguientes:

cell: a number from 0 to 8 (mandatory)
color: a number from 1 to 8 (optional)
type: a number from 1 to 4 (optional)

Si colory typese omiten o son cero, cellindica la celda a la que se moverá.

Si colorno es cero, la celda indicada se establece en ese color.

Si typeno es cero, se crea una hormiga trabajadora de ese tipo en la celda indicada. Solo una reina puede crear un nuevo trabajador, y solo si tiene comida, ya que esto cuesta una pieza de comida por trabajador.

Salidas de ejemplo:

{cell:0}: move to cell 0
{cell:4}: move to cell 4 (that is, do nothing, as 4 is the central cell)
{cell:4, color:8}: set own cell to color 8
{cell:6, type:1}: create a type 1 worker on cell 6
{cell:6, color:1}: set cell 6 to color 1
{cell:6, color:0}: equivalent to just `{cell:6}` - move rather than set color
{cell:6, type:0}: equivalent to just `{cell:6}` - move rather than create worker
{cell:6, color:0, type:0}: move to cell 6 - color 0 and type 0 are ignored

Salidas inválidas:

{cell:9}: cell must be from 0 to 8
{cell:0, color:9}: color must be from 1 to 8
{cell:0, type:5}: type must be from 1 to 4 (cannot create a new queen)
{cell:4, type:1}: cannot create a worker on a non-empty cell
{cell:0, color:1, type:1}: cannot set color and create worker in the same turn

Una hormiga que se mueve hacia una celda que contiene comida recogerá automáticamente la pieza de comida.

Tipo de trabajador

Cada trabajador tiene un tipo , un número del 1 al 4. Esto no tiene ningún significado para el controlador, y es para que el jugador haga lo que quiera. Una reina podría producir a todos sus trabajadores como tipo 1, y darles a todos el mismo comportamiento, o podría producir varios tipos de trabajadores con diferentes comportamientos, tal vez tipo 1 como forraje y tipo 2 como guardias.

Usted asigna el número de tipo de trabajador cuando se crea un trabajador, y no se puede cambiar a partir de entonces. Úselo como mejor le parezca.

Orden de giro

Las hormigas se turnan en un orden establecido. Al comienzo de un juego, a las reinas se les asigna un orden aleatorio que no cambia durante el resto del juego. Cuando una reina crea un trabajador, ese trabajador se inserta en el orden de turno en la posición antes de su reina. Esto significa que todas las demás hormigas que pertenecen a todos los jugadores se moverán exactamente una vez antes de que el nuevo trabajador tome su primer turno.

Límite en el número de jugadores.

Obviamente, un número ilimitado de jugadores no puede caber en la arena. Como ahora hay más de 16 respuestas, cada juego contará con 16 de ellas elegidas al azar. El rendimiento promedio en muchos juegos dará una tabla de clasificación con todos los jugadores, sin tener más de 16 en un solo juego.

Límite de tiempo por turno

Cada vez que se llama a la función ant, debe regresar dentro de 15 milisegundos. Dado que el límite de tiempo puede excederse debido a fluctuaciones fuera del control de la función de hormiga, se calculará un promedio. Si en algún momento el promedio es superior a 15 milisegundos y el tiempo total empleado por esa función de hormiga en particular en todas las llamadas hasta el momento es más de 10 segundos, el jugador relevante será descalificado.

Descalificación

Esto significa que el jugador no será elegible para ganar y su función de hormiga no se volverá a llamar durante ese juego. Tampoco se incluirán en ningún otro juego. Si un jugador es descalificado en la máquina del torneo durante un juego de clasificación, se excluirá de todos los futuros juegos de clasificación hasta que se edite.

Un jugador será descalificado por cualquiera de los siguientes para cualquiera de sus hormigas (reina o trabajadora):

  • Exceder el límite de tiempo como se describe (promedio de más de 10 segundos).
  • Devolver un movimiento no válido como se describe en Salida.
  • La celda para moverse contiene una hormiga.
  • La celda a la que se mudará contiene comida y la hormiga ya es una trabajadora cargada.
  • La celda para producir un trabajador no está vacía (contiene comida o una hormiga).
  • Un trabajador está tratando de producir un trabajador.

Puede parecer duro descalificar para movimientos inválidos, en lugar de simplemente interpretar esto como ningún movimiento. Sin embargo, creo que aplicar implementaciones correctas conducirá a estrategias más interesantes con el tiempo. Esto no pretende ser un desafío adicional, por lo que se mostrará una razón clara cuando un jugador sea descalificado, junto con la entrada y salida específicas para ayudar a corregir el código.

Múltiples respuestas y edición

Puede proporcionar múltiples respuestas, siempre que no se unan contra las demás. Siempre que cada respuesta funcione únicamente hacia su propia victoria, se le permite adaptar su estrategia para aprovechar las debilidades en otras estrategias específicas, incluido el cambio del color de las celdas para confundirlas o manipularlas. Tenga en cuenta que a medida que lleguen más respuestas, la probabilidad de encontrarse con un jugador en particular en un juego determinado disminuirá.

También puede editar sus respuestas cuando lo desee. Depende de usted si publica una nueva respuesta o edita una existente. Siempre que el juego no esté inundado de muchas variaciones casi idénticas, no debería haber ningún problema.

Si realiza una variación de la respuesta de otra persona, recuerde darles crédito al vincularla a su respuesta.

Puntuación

Al final de cada juego, el puntaje de un jugador es el número de otros jugadores que tienen menos comida llevada por su reina. La comida que llevan los trabajadores no se cuenta. Esta puntuación se agrega a la tabla de clasificación, que se muestra en orden de puntuación promedio por juego.

Los lugares conjuntos indican que el orden de los jugadores aún no es consistente entre 6 subconjuntos de los juegos jugados hasta ahora. La lista de juegos se divide en 6 subconjuntos porque este es el número mínimo que dará una probabilidad de menos del 5% de que a un par de jugadores se les asignarán lugares distintos en el orden incorrecto.

Charla

Para mantener la sección de comentarios clara aquí, utilice la sala de chat dedicada para cualquier pregunta y discusión. Es probable que los comentarios en esta publicación se borren después de un tiempo, mientras que los mensajes en la sala de chat se mantendrán permanentemente.

Solo para hacerle saber, me inclinaré más por votar las respuestas que incluyen una explicación clara e interesante de cómo funciona el código.


2
@DestructibleLemon por el bien de cualquiera que lea estos comentarios, he respondido eso en la sala de chat
trichoplax


77
Oye, hice una cosa ! Puede que le resulte interesante ya que está inspirado en este desafío e incluye una implementación de prueba de Formic Functions .
Dave

2
@Dave Su controlador es increíblemente rápido :), pero permítanme mencionar que su puntaje parece diferir del original en los casos en que las reinas están atadas por comida al final de un juego. El puntaje debe ser el número de otros participantes cuyas reinas tienen (estrictamente) menos comida. Por ejemplo, si tres jugadores tienen 0 alimentos al final, todos deberían anotar cero para este juego, no tres.
GNiklasch

2
@GNiklasch gracias; fijo. También veo que tu hormiga domina el juego ahora. ¡Impresionante!
Dave

Respuestas:


20

Hormigas forenses

Todas mis respuestas comparten el mismo conjunto de funciones auxiliares de bajo nivel. Busque "La lógica de alto nivel comienza aquí" para ver el código específico de esta respuesta.

// == Shared low-level helpers for all solutions ==

var QUEEN = 5;

var WHITE = 1;
var COL_MIN = WHITE;
var COL_LIM = 9;

var CENTRE = 4;

var NOP = {cell: CENTRE};

var DIR_FORWARDS = false;
var DIR_REVERSE = true;
var SIDE_RIGHT = true;
var SIDE_LEFT = false;

function sanity_check(movement) {
  var me = view[CENTRE].ant;
  if(!movement || movement.cell < 0 || movement.cell > 8) {
    return false;
  }
  if(movement.type) {
    if(movement.color) {
      return false;
    }
    if(movement.type < 1 || movement.type > 4) {
      return false;
    }
    if(view[movement.cell].ant || view[movement.cell].food) {
      return false;
    }
    if(me.type !== QUEEN || me.food < 1) {
      return false;
    }
    return true;
  }
  if(movement.color) {
    if(movement.color < COL_MIN || movement.color >= COL_LIM) {
      return false;
    }
    if(view[movement.cell].color === movement.color) {
      return false;
    }
    return true;
  }
  if(view[movement.cell].ant) {
    return false;
  }
  if(view[movement.cell].food + me.food > 1 && me.type !== QUEEN) {
    return false;
  }
  return true;
}

function as_array(o) {
  if(Array.isArray(o)) {
    return o;
  }
  return [o];
}

function best_of(movements) {
  var m;
  for(var i = 0; i < movements.length; ++ i) {
    if(typeof(movements[i]) === 'function') {
      m = movements[i]();
    } else {
      m = movements[i];
    }
    if(sanity_check(m)) {
      return m;
    }
  }
  return null;
}

function play_safe(movement) {
  // Avoid disqualification: no-op if moves are invalid
  return best_of(as_array(movement)) || NOP;
}

var RAND_SEED = (() => {
  var s = 0;
  for(var i = 0; i < 9; ++ i) {
    s += view[i].color * (i + 1);
    s += view[i].ant ? i * i : 0;
    s += view[i].food ? i * i * i : 0;
  }
  return s % 29;
})();

var ROTATIONS = [
  [0, 1, 2, 3, 4, 5, 6, 7, 8],
  [6, 3, 0, 7, 4, 1, 8, 5, 2],
  [8, 7, 6, 5, 4, 3, 2, 1, 0],
  [2, 5, 8, 1, 4, 7, 0, 3, 6],
];

function try_all(fns, limit, wrapperFn, checkFn) {
  var m;
  fns = as_array(fns);
  for(var i = 0; i < fns.length; ++ i) {
    if(typeof(fns[i]) !== 'function') {
      if(checkFn(m = fns[i])) {
        return m;
      }
      continue;
    }
    for(var j = 0; j < limit; ++ j) {
      if(checkFn(m = wrapperFn(fns[i], j))) {
        return m;
      }
    }
  }
  return null;
}

function identify_rotation(testFns) {
  // testFns MUST be functions, not constants
  return try_all(
    testFns,
    4,
    (fn, r) => fn(ROTATIONS[r]) ? ROTATIONS[r] : null,
    (r) => r
  );
}

function near(a, b) {
  return (
    Math.abs(a % 3 - b % 3) < 2 &&
    Math.abs(Math.floor(a / 3) - Math.floor(b / 3)) < 2
  );
}

function try_all_angles(solverFns) {
  return try_all(
    solverFns,
    4,
    (fn, r) => fn(ROTATIONS[r]),
    sanity_check
  );
}

function try_all_cells(solverFns, skipCentre) {
  return try_all(
    solverFns,
    9,
    (fn, i) => ((i === CENTRE && skipCentre) ? null : fn(i)),
    sanity_check
  );
}

function try_all_cells_near(p, solverFns) {
  return try_all(
    solverFns,
    9,
    (fn, i) => ((i !== p && near(p, i)) ? fn(i) : null),
    sanity_check
  );
}

function ant_type_at(i, friend) {
  return (view[i].ant && view[i].ant.friend === friend) ? view[i].ant.type : 0;
}

function friend_at(i) {
  return ant_type_at(i, true);
}

function foe_at(i) {
  return ant_type_at(i, false);
}

function foe_near(p) {
  for(var i = 0; i < 9; ++ i) {
    if(foe_at(i) && near(i, p)) {
      return true;
    }
  }
  return false;
}

function move_agent(agents) {
  var me = view[CENTRE].ant;
  var buddies = [0, 0, 0, 0, 0, 0];
  for(var i = 0; i < 9; ++ i) {
    ++ buddies[friend_at(i)];
  }

  for(var i = 0; i < agents.length; i += 2) {
    if(agents[i] === me.type) {
      return agents[i+1](me, buddies);
    }
  }
  return null;
}

function grab_nearby_food() {
  return try_all_cells((i) => (view[i].food ? {cell: i} : null), true);
}

function go_anywhere() {
  return try_all_cells((i) => ({cell: i}), true);
}

function colours_excluding(cols) {
  var r = [];
  for(var i = COL_MIN; i < COL_LIM; ++ i) {
    if(cols.indexOf(i) === -1) {
      r.push(i);
    }
  }
  return r;
}

function generate_band(start, width) {
  var r = [];
  for(var i = 0; i < width; ++ i) {
    r.push(start + i);
  }
  return r;
}

function colour_band(colours) {
  return {
    contains: function(c) {
      return colours.indexOf(c) !== -1;
    },
    next: function(c) {
      return colours[(colours.indexOf(c) + 1) % colours.length];
    }
  };
}

function random_colour_band(colours) {
  return {
    contains: function(c) {
      return colours.indexOf(c) !== -1;
    },
    next: function() {
      return colours[RAND_SEED % colours.length];
    }
  };
}

function fast_diagonal(colourBand) {
  var m = try_all_angles([
    // Avoid nearby checked areas
    (rot) => {
      if(
        !colourBand.contains(view[rot[0]].color) &&
        colourBand.contains(view[rot[5]].color) &&
        colourBand.contains(view[rot[7]].color)
      ) {
        return {cell: rot[0]};
      }
    },

    // Go in a straight diagonal line if possible
    (rot) => {
      if(
        !colourBand.contains(view[rot[0]].color) &&
        colourBand.contains(view[rot[8]].color)
      ) {
        return {cell: rot[0]};
      }
    },

    // When in doubt, pick randomly but avoid doubling-back
    (rot) => (colourBand.contains(view[rot[0]].color) ? null : {cell: rot[0]}),

    // Double-back when absolutely necessary
    (rot) => ({cell: rot[0]})
  ]);

  // Lay a colour track so that we can avoid doubling-back
  // (and mess up our foes as much as possible)
  if(!colourBand.contains(view[CENTRE].color)) {
    var prevCol = m ? view[8-m.cell].color : WHITE;
    return {cell: CENTRE, color: colourBand.next(prevCol)};
  }

  return m;
}

function follow_edge(obstacleFn, side) {
  // Since we don't know which direction we came from, this can cause us to get
  // stuck on islands, but the random orientation helps to ensure we don't get
  // stuck forever.

  var order = ((side === SIDE_LEFT)
    ? [0, 3, 6, 7, 8, 5, 2, 1, 0]
    : [0, 1, 2, 5, 8, 7, 6, 3, 0]
  );
  return try_all(
    [obstacleFn],
    order.length - 1,
    (fn, i) => (fn(order[i+1]) && !fn(order[i])) ? {cell: order[i]} : null,
    sanity_check
  );
}

function start_dotted_path(colourBand, side, protectedCols) {
  var right = (side === SIDE_RIGHT);
  return try_all_angles([
    (rot) => ((
      !protectedCols.contains(view[rot[right ? 5 : 3]].color) &&
      !colourBand.contains(view[rot[right ? 5 : 3]].color) &&
      !colourBand.contains(view[rot[right ? 2 : 0]].color) &&
      !colourBand.contains(view[rot[1]].color)
    )
      ? {cell: rot[right ? 5 : 3], color: colourBand.next(WHITE)}
      : null)
  ]);
}

function lay_dotted_path(colourBand, side, protectedCols) {
  var right = (side === SIDE_RIGHT);
  return try_all_angles([
    (rot) => {
      var ahead = rot[right ? 2 : 0];
      var behind = rot[right ? 8 : 6];
      if(
        colourBand.contains(view[behind].color) &&
        !protectedCols.contains(view[ahead].color) &&
        !colourBand.contains(view[ahead].color) &&
        !colourBand.contains(view[rot[right ? 6 : 8]].color)
      ) {
        return {cell: ahead, color: colourBand.next(view[behind].color)};
      }
    }
  ]);
}

function follow_dotted_path(colourBand, side, direction) {
  var forwards = (direction === DIR_REVERSE) ? 7 : 1;
  var right = (side === SIDE_RIGHT);

  return try_all_angles([
    // Cell on our side? advance
    (rot) => {
      if(
        colourBand.contains(view[rot[right ? 5 : 3]].color) &&
        // Prevent sticking / trickery
        !colourBand.contains(view[rot[right ? 3 : 5]].color) &&
        !colourBand.contains(view[rot[0]].color) &&
        !colourBand.contains(view[rot[2]].color)
      ) {
        return {cell: rot[forwards]};
      }
    },

    // Cell ahead and behind? advance
    (rot) => {
      var passedCol = view[rot[right ? 8 : 6]].color;
      var nextCol = view[rot[right ? 2 : 0]].color;
      if(
        colourBand.contains(passedCol) &&
        nextCol === colourBand.next(passedCol) &&

        // Prevent sticking / trickery
        !colourBand.contains(view[rot[right ? 3 : 5]].color) &&
        !colourBand.contains(view[rot[right ? 0 : 2]].color)
      ) {
        return {cell: rot[forwards]};
      }
    }
  ]);
}

function escape_dotted_path(colourBand, side, newColourBand) {
  var right = (side === SIDE_RIGHT);
  if(!newColourBand) {
    newColourBand = colourBand;
  }

  return try_all_angles([
    // Escape from beside the line
    (rot) => {
      var approachingCol = view[rot[right ? 2 : 0]].color;
      if(
        !colourBand.contains(view[rot[right ? 8 : 6]].color) ||
        !colourBand.contains(approachingCol) ||
        colourBand.contains(view[rot[7]].color) ||
        colourBand.contains(view[rot[right ? 6 : 8]].color)
      ) {
        // not oriented, or in a corner
        return null;
      }
      return best_of([
        {cell: rot[right ? 0 : 2], color: newColourBand.next(approachingCol)},
        {cell: rot[right ? 3 : 5]},
        {cell: rot[right ? 0 : 2]},
        {cell: rot[right ? 6 : 8]},
        {cell: rot[right ? 2 : 0]},
        {cell: rot[right ? 8 : 6]},
        {cell: rot[right ? 5 : 3]}
      ]);
    },

    // Escape from inside the line
    (rot) => {
      if(
        !colourBand.contains(view[rot[7]].color) ||
        !colourBand.contains(view[rot[1]].color) ||
        colourBand.contains(view[CENTRE].color)
      ) {
        return null;
      }
      return best_of([
        {cell: rot[3]},
        {cell: rot[5]},
        {cell: rot[0]},
        {cell: rot[2]},
        {cell: rot[6]},
        {cell: rot[8]}
      ]);
    }
  ]);
}

function latch_to_dotted_path(colourBand, side) {
  var right = (side === SIDE_RIGHT);

  return try_all_angles([
    (rot) => {
      var approachingCol = view[rot[right ? 2 : 0]].color;
      if(
        colourBand.contains(approachingCol) &&
        view[rot[right ? 8 : 6]].color === colourBand.next(approachingCol) &&
        !colourBand.contains(view[rot[right ? 5 : 3]].color)
      ) {
        // We're on the wrong side; go inside the line
        return {cell: rot[right ? 5 : 3]};
      }
    },

    // Inside the line? pick a side
    (rot) => {
      var passedCol = view[rot[7]].color;
      var approachingCol = view[rot[1]].color;
      if(
        !colourBand.contains(passedCol) ||
        !colourBand.contains(approachingCol) ||
        colourBand.contains(view[CENTRE].color)
      ) {
        return null;
      }
      if((approachingCol === colourBand.next(passedCol)) === right) {
        return best_of([{cell: rot[3]}, {cell: rot[6]}, {cell: rot[0]}]);
      } else {
        return best_of([{cell: rot[5]}, {cell: rot[2]}, {cell: rot[8]}]);
      }
    }
  ]);
}


// == High-level logic begins here ==


var PARTNER = 1;
var SENTINEL = 2;

var COL_DANCING1 = 8;
var COL_DANCING2 = 7;
var SAFE_COLOURS = random_colour_band(colours_excluding([WHITE, COL_DANCING1]));

function pass_time() {
  // Wait patiently for the blockage to go away by setting
  // random cell colours (unless we're near the sentinel)
  for(var i = 0; i < 9; ++ i) {
    if(i !== 4 && friend_at(i) === SENTINEL) {
      return null;
    }
  }
  return {cell: 0, color: SAFE_COLOURS.next()};
}

function move_sentinel(me, buddies) {
  // Our job is to be a sentinel showing when the queen has wrapped around.
  // We are created first, so will move first.
  // We won't find any food.

  if(!buddies[QUEEN] && !buddies[PARTNER]) {
    // No ongoing dance; make sure our state is good for when they arrive
    return try_all_angles([
      {cell: CENTRE, color: WHITE},
      (rot) => ({cell: rot[1], color: COL_DANCING2}),
      (rot) => ((view[rot[0]].color === COL_DANCING1)
        ? {cell: rot[0], color: SAFE_COLOURS.next()}
        : null)
    ]);
  }

  // Dance when queen passes
  var danceStage = view[CENTRE].color;

  if(danceStage === WHITE) {
    // Dance has not begun yet, but queen & partner are nearby
    return try_all_angles((rot) => {
      if(friend_at(rot[5]) === QUEEN && friend_at(rot[8]) === PARTNER) {
        return {cell: CENTRE, color: COL_DANCING1};
      }
    });
  }

  if(danceStage === COL_DANCING1) {
    if(buddies[PARTNER]) {
      return null; // Wait for partner to see us
    }
    // Partner saw us @8 and moved down, queen followed.
    // We must also move down (will end up on a COL_DANCING2)
    return try_all_angles((rot) =>
      ((friend_at(rot[8]) === QUEEN) ? {cell: rot[7]} : null));
  }

  // Move towards queen counter-clockwise when she's diagonally connected
  return try_all_angles((rot) =>
    ((friend_at(rot[2]) === QUEEN) ? {cell: rot[1]} : null));
}

function move_partner(me, buddies) {
  // Our job is to travel with the queen and keep her oriented.
  // We are created second, so move after the sentinel.
  // Any food we find will immediately go to the queen, since
  // we are adjacent at all times.

  // Queen will be N of us; orient ourselves
  var rot = identify_rotation((rot) => friend_at(rot[1]) === QUEEN);

  if(!rot) {
    // Queen is lagging or lost;
    return null;
  }

  var danceStage = view[rot[0]].color;
  if(
    friend_at(rot[0]) === SENTINEL &&
    (danceStage === COL_DANCING1 || danceStage === COL_DANCING2)
  ) {
    // Dance down (queen will follow)
    return {cell: rot[7]};
  }

  if(view[rot[0]].ant) {
    // Queen is blocked
    return null;
  }

  // Lead queen if both can move
  return {cell: rot[3]};
}

function move_queen(me, buddies) {
  // Our job is to travel over the entire level collecting food.
  // We move last.

  if(buddies[PARTNER]) {
    // Partner will be S or SW of us; follow if they are ahead
    return try_all_angles((rot) =>
      (friend_at(rot[6]) === PARTNER) ? {cell: rot[3]} : null);
  }

  var rot = identify_rotation((rot) => friend_at(rot[3]) === SENTINEL);
  if(rot && view[rot[0]].color >= 7) {
    // Dance down (follow partner)
    return {cell: rot[7]};
  }

  // We're on our own, or the buddy strategy failed. Start again.

  rot = identify_rotation((rot) => friend_at(rot[5]) === SENTINEL);
  if(rot && me.food >= 1) {
    // Already have a sentinel; just need a partner
    return best_of([
      {cell: rot[7], type: PARTNER},
      {cell: rot[6], type: PARTNER},
    ]);
  } else if(me.food >= 2) {
    // Create sentinel first so that we'll know to create the partner next.
    // (ensure the sentinel is created on a white cell so that it won't
    // think it's dancing)
    return try_all_angles(
      (rot) => ((view[rot[5]].color === WHITE)
        ? {cell: rot[5], type: SENTINEL} : null),
      (rot) => ({cell: rot[5], color: WHITE})
    );
  }

  // Not able to start yet; fall back to lone behaviour:
  // Random-walk until we find or make a buddy
  return best_of([
    grab_nearby_food,
    fast_diagonal.bind(null, SAFE_COLOURS),
    go_anywhere
  ]);
}

return play_safe([move_agent([
  PARTNER, move_partner,
  SENTINEL, move_sentinel,
  QUEEN, move_queen,
]), pass_time]);

Las hormigas forenses adoptan un enfoque científico para barrer la red. Después de una lucha inicial frenética por la comida, se crearán 2 hormigas obreras. Los roles son:

Reina

La reina se unirá con la pareja para viajar en línea recta a la velocidad de la luz. Ninguno de los dos divergerá para buscar comida; solo están agarrando lo que sea que tropiecen.

Compañero

La compañera se mueve con la reina, manteniéndola orientada en la misma dirección. Debido a que ambas hormigas pueden moverse 1 casilla cada turno, pueden permanecer en línea recta sin perder tiempo pintando el suelo.

Si el compañero alguna vez encuentra algún alimento, irá inmediatamente a la reina, ya que son adyacentes en todo momento.

Centinela

La hormiga más importante. Este permanece fijo hasta que la reina y la pareja lo alcanzan, luego les dice que se muevan 2 píxeles a lo largo, y se mueve 2 píxeles por sí mismo. Esto hace que la reina y la pareja se deslicen gradualmente por todo el tablero (bueno, de todos modos, unos 30 píxeles). Solo se mueve cuando la reina está cerca, por lo que cualquier alimento que encuentre se entregará de inmediato.

En su tiempo libre, los pasatiempos del centinela incluyen pintar el terreno a su alrededor al azar para desordenar a cualquier competidor.


Estos funcionan de manera muy consistente; entre ellos pueden barrer 2 celdas cada cuadro, lo que supera los 30000 cuadros significa 60000 células, y con un 0.1% de alimentos que contienen, eso significa un puntaje final de 60, que logran de manera bastante consistente.


(¡y aquí está el otro que preparé mientras la pregunta era beta! - ¡Eso estoy hecho por ahora; estoy seguro de que estos serán derrotados bastante rápido!)
Dave

El puntaje es notablemente consistente. Será interesante ver cómo se ve afectado a medida que la arena se llena con más competidores ...
trichoplax

Me pregunto si sería útil agregar otro compañero al otro lado de la reina.
K Zhang

1
@KZhang, creo que lo haría (en teoría aumentaría el puntaje a ~ 90), ¡pero es bastante difícil mantener a los dos sincronizados junto con el centinela! El baile "mover a todos hacia arriba 2 píxeles" me llevó un tiempo entenderlo. Ir a 3 píxeles bloquearía uno de los trucos en los que me basé (el centinela prepara los espacios a su alrededor de antemano).
Dave

Arriba de la primera tabla de clasificación ...
trichoplax

18

Mineros deslizantes 6.4

const DEBUG = false;
const ADD = (a,b) => a + b;
var toReturn;
var me = view[4].ant;
me.me = true; // for basedOn to know
var food = me.food;
var type = me.type;
var isQueen = type == 5;

// raw directions
const UL = 0; const U  = 1; const UR = 2;
const L  = 3; const C  = 4; const R  = 5;
const DL = 6; const D  = 7; const DR = 8;

// directions from the reference point
const ul = 16; const u  = 17; const ur = 18;
const l  = 19; const c  = 20; const r  = 21;
const dl = 22; const d  = 23; const dr = 24;
const rp = 16;

function allRots (arr) {
  return [arr,
  [arr[2], arr[5], arr[8],
   arr[1], arr[4], arr[7],
   arr[0], arr[3], arr[6]],

  [arr[8], arr[7], arr[6],
   arr[5], arr[4], arr[3],
   arr[2], arr[1], arr[0]],

  [arr[6], arr[3], arr[0],
   arr[7], arr[4], arr[1],
   arr[8], arr[5], arr[2]]];
}
var allVRots = allRots(view);

function rotateCW3([[a,b,c],[d,e,f],[g,h,i]]) {
  return [[g,d,a],[h,e,b],[i,f,c]]
}

function on (where, what) {
  if (Array.isArray(where)) return where.some(c=>on(c, what));
  if (Array.isArray(what)) return what.some(c=>on(where, c));
  return basedOn(get(where), what);
}
function find (what) {
  return view.findIndex(c=>basedOn(c, what));
}
function findAll (what) {
  return view.map((c,i)=>[c,i]).filter(c=>basedOn(c[0], what)).map(c=>c[1]);
}
function count (what) {
  return findAll(what).length;
}
function findRel (what) {
  return ref(find(what));
}
function findAllRel (what) {
  return findAll(what).map(c=>ref(c));
}
function found (what) {
  return find(what) != -1;
}
function get (dir) {
  if (Array.isArray(dir)) return dir.map(c=>get(c));
  return view[raw(dir)];
}
function deq (a, b) {
  return a==b || raw(a)==raw(b);
}

// returns a random number from 0 to 4, based on the rotation. Will always have a possibility of being 0
function random4 () {
  var scores = allRots(view.map(c=>c.color)).map((c) => {
    let cscore = 0;
    c.forEach((c) => {
      cscore*= 8;
      cscore+= c-1;
    });
    return cscore;
  });
  var bestscore = -1, bestindex = 1;
  scores.forEach((score, index) => {
    if (score > bestscore) {
      bestscore = score;
      bestindex = index;
    }
  })
  return bestindex;
}

function rotate (what, times) {
  for (var i = 0; i < times; i++) what = [2,5,8,1,4,7,0,3,6][what];
  return what;
}

function raw(dir) {
  if (dir&rp) return rotate(dir&~rp, selectedRot);
  return dir;
}

function ref(dir) {
  if (dir == -1) return -1;
  if (dir&rp) return dir;
  return rotate(dir, 4-selectedRot)|rp;
}

function move(dir, force) {
  if (Array.isArray(dir)) return dir.some(c=>move(c, force));
  dir = raw(dir);
  return result({cell:dir}, force);
}

function color(dir, col) {
  if (Array.isArray(dir)) return dir.some(cdir => !color(cdir, col));
  dir = raw(dir);
  if (view[dir].color == col) return true;
  result({cell:dir, color:Math.abs(col)});
  return false;
}

function rcolOf(what) {
  return Number.isInteger(what)? what : what.color;
}

function colOf(what) {
  return Math.abs(Number.isInteger(what)? what : what.color);
}
function sees(c1,c2) {
  c1 = raw(c1);
  c2 = raw(c2);
  return Math.abs(c1%3-c2%3)<2 && Math.abs(Math.floor(c1/3)-Math.floor(c2/3))<2;
}

function spawn(dir, t) {
  if (Array.isArray(t)) return t.some(c=>spawn(dir, c));
  if (Array.isArray(dir)) return dir.some(c=>spawn(c, t));
  dir = raw(dir);
  return result({cell:dir, type:t});
}
// repairs a single cell
function correct(dir) {
  dir = raw(dir);
  let col = colOf(selectedPt[dir]);
  if (col && view[dir].color != col) {
    color(dir, col);
    return false;
  }
  return true;
}
// if pattern is repaired, returns true, otherwise fixes one cell
// firstdirs is lowercase (if you do want it to be from the patterns POV)
function repair(firstdirs, onlyThose) {
  //log("FD",firstdirs);
  var found = [];
  view.forEach((v, i) => {
    let col = colOf(selectedPt[i]);
    if (col && v.color != col) {
      found.push(i);
    }
  });
  if (found.length == 0) return true;
  if (firstdirs && (firstdirs = firstdirs.map(c=>raw(c))).some(c=>found.includes(c))) {
    let dir = firstdirs.find(c=>found.includes(c));
    let col = colOf(selectedPt[dir]);
    color(dir, col);
    return false;
  }
  if (!onlyThose) {
    let dir = found[random4() % found.length];
    let col = colOf(selectedPt[dir]);
    color(dir, col);
    return false;
  } else return true;
}

function flatten (arr) {
  return arr.reduce((a,b)=>a.concat(b));
}

var selectedHp, selectedVp, selectedPt, selectedRot;

class Pattern {
  constructor(pattern, inherit) {
    this.pt = pattern;
    if (inherit) {
      this.vp = inherit.vp;
      this.hp = inherit.hp;
      this.rot = inherit.rot;
    } else {
      this.vp = 0;
      this.hp = 0;
      this.rot = 0;
    }
  }

  rotateClockwise() {
    var arr = [];
    for (var i = 0; i < this.pt[0].length; i++) {
      var sarr = [];
      for (var j = this.pt.length-1; j >= 0; j--) {
        sarr.push(this.pt[j][i]);
      }
      arr.push(sarr);
    }
    //log(arr);
    var res = new Pattern(arr, this);
    res.rot = (this.rot+1) % 4;
    return res;
  }

  select(x, y, w, h) {
    var res = new Pattern(this.pt.slice(y, y+h).map(c=>c.slice(x, x+w)), this);
    res.hp+= x;
    res.vp+= y;
    return res;
  }

  rots(dir) {
    var pts = [];
    var pt = new Pattern(this.pt, this);
    for (let i = 0; i < this.lengthIn(dir); i++) {
      pts.push(pt);
      pt = pt.rotate(dir);
    }
    return pts;
  }

  map(fn) {
    return new Pattern(this.pt.map(ln=>ln.map(fn)), this);
  }

  lengthIn(dir) {
    if (dir == U || dir == D) return this.pt.length;
    else if (this.pt.length > 0) return this.pt[0].length;
    else return 0;
  }
  rotate(dir) { // moves the center to that direction, shifting the side
    if (dir == R) {
      var res = new Pattern(this.pt.map(c=>((h,...t)=>t.concat(h))(...c)), this);
      res.hp++;
      return res;
    }
    if (dir == L) {
      var res = new Pattern(this.pt.map(a=>a.slice(-1).concat(a.slice(0,-1))), this);
      res.hp++;
      return res;
    }
    if (dir == D) {
      var res = new Pattern(((h,...t)=>t.concat([h]))(...this.pt), this);
      res.vp++;
      return res;
    }
    throw "rotate unimplemented dir!";
  }

  center(dir) { // moves the center to that direction
    if (dir == R) {
      var res = new Pattern(this.pt.map(c=>((h,...t)=>t.concat(0))(...c)), this);
      res.hp++;
      return res;
    }
    if (dir == L) {
      var res = new Pattern(this.pt.map(a=>[0].concat(a.slice(0,-1))), this);
      res.hp++;
      return res;
    }
    if (dir == D) {
      var res = new Pattern(((h,...t)=>t.concat([new Array(h.length)]))(...this.pt), this);
      res.vp++;
      return res;
    }
    throw "center unimplemented dir!";
  }

  setSize(xs, ys) {
    var arr = [];
    for (let y = 0; y < ys; y++) {
      var ca = [];
      for (let x = 0; x < xs; x++) {
        ca.push(this.pt[y % this.pt.length][x % this.pt[0].length]);
      }
      arr.push(ca);
    }
    return new Pattern(arr, this);
  }

  static add(pattern, action, scorer, presetRot) {
    if (Array.isArray(pattern)) pattern = new Pattern(pattern);
    pattern = pattern.setSize(3,3);
    var cpt = pattern.setSize(3,3);
    var orig = cpt.pt;
    for (let i = 0; i < 4; i++) {
      cpt = cpt.rotateClockwise();
      if (!presetRot || presetRot == cpt.rot) {
        cpt.action = action;
        cpt.scorer = scorer;
        cpt.raw = orig;
        cpt.view = allVRots[cpt.rot];
        allPatterns.push(cpt);
      }
    }
  }


  static choose() {
    var maxScore = -1e307;
    var nextScore = -1e308;
    var maxPt;
    allPatterns.forEach((c) => {
      // null  = easy
      // 0     = bad queen
      // false = no match
      // >0    = score
      var falseN = 0;
      var corrects = c.raw.reduce((a,b)=>a.concat(b)).map((guess, index) => {
        var bo = basedOn(c.view[index], guess, true);
        var ant = guess.ant;
        if (ant && basedOn(c.view[index], {ant})) bo+= 1;
        if (bo === 0) return 0;
        if (bo === false) return false;
        if (bo && rcolOf(guess) > 0) return bo;
        var easy = rcolOf(guess)<=0;
        if (easy) {
          falseN++;
          return null;
        }
        return bo;
      });
      var corrstring = corrects.map((chr,i)=>chr>0? (colOf(c.raw[Math.floor(i/3)][i%3])==1? "W" : "#") : chr===null? "-" : " ").join("");
      function match(pt) {
        return new RegExp(pt.replace(/@/g, "[#-W]").replace(/C/g, "[#-]")).test(corrstring);
      }
      var score = corrects.reduce(ADD)*9/(9-falseN);
      if (match(".?(...)?##.##.*")) {
        if (match("(...)?@@@@@@.*|.?@@.@@.@@.?")) score+= foundEnemy? 5 : 3;
        else score+= foundEnemy? 3 : 1;
      } else if (!foundEnemy) score = Math.min(score/2, 5);
      if (c.scorer instanceof Function) score = c.scorer(score, c, corrects, falseN, match);
      if (DEBUG && score > -1) log(
        "scored", score,
        "corr", /*corrects.map(c =>
          (c===false?"F":c===null?"N":c===true?"T":c)
        )*/corrstring,
        "pt", c.raw.map(c=>c.ant? "A"+c.ant.type : c), c.hp, c.vp);
      if (score >= maxScore) {
        nextScore = maxScore;
        maxScore = score;
        c.corrstr = corrstring;
        maxPt = c;
      }
    });
    var flattened = maxPt.pt.reduce((a,b)=>a.concat(b));
    Pattern.hardcorr = flattened.map((guess, index) => rcolOf(guess)<2? 0 : basedOn(view[index], guess)).reduce(ADD);
    Pattern.corrstr = maxPt.corrstr;
    Pattern.corr = flattened.map((guess, index) => basedOn(view[index], guess)).reduce(ADD);
    Pattern.incorr = 9-Pattern.corr;
    Pattern.confidence = maxScore-nextScore;
    selectedRot = maxPt.rot;
    Pattern.action = maxPt.action;
    selectedPt = flattened;
    selectedHp = maxPt.hp;
    Pattern.raw = maxPt.raw;
    Pattern.view = maxPt.view;
    selectedVp = maxPt.vp;
    Pattern.score = maxScore;
    if (DEBUG) log("score", maxScore, "confidence", Pattern.confidence, "corr", Pattern.corr, "hardc", Pattern.hardcorr, "pt", maxPt.pt);//, "fn", maxPt.action+""
  }
}
var allPatterns = [];
function clear() {
  allPatterns = [];
}
function adds(raw, action, scorer, presetRot) { // must get a 3x3 arr
  var pt = raw;
  var hp = raw.hp;
  var vp = raw.vp;
  for (let rot = 0; rot < 4; rot++) {
    let view = allVRots[rot];
    allPatterns.push({pt, action, scorer, rot, hp, vp, view, raw});
    if (rot!=4) pt = rotateCW3(pt);
  }
}
function refPt(...args) {
  clear();
  if (Array.isArray(args[0])) {
    if (args[0].length != 3) args[0] = args[0].slice(0,3);
    if (args[0][0].length != 3) args[0] = args[0].map(c=>c.slice(0,3));
    adds(...args);
  }
  else Pattern.add(...args);
  Pattern.choose();
}

/*
is the 2nd param a subset of the 1st param.
guess can be a number (color), or an object ({color:..,ant:..,..})
guess.ant can be "worker", "queen", "enemy", "enemyworker", "enemyqueen" with obvious meanings. Note that "friend" ≠ me
guess.ant.type can be an array, ORing

true - correct!
false - not correct
0 - notqueen doesn't match (aka very bad)

negativesEqual makes this always return true for negative colors, otherwise it treats negatives as regular colors
*/
function basedOn(real, guess, negativesEqual) {
  if (Array.isArray(real)) return real.some(c=>basedOn(c, guess, negativesEqual));
  if (Number.isInteger(guess)) guess = {color:guess};
  if (guess.notqueen && real.ant && real.ant.friend && real.ant.type==5) return 0;
  if (guess.not) {
    var bo = basedOn(real, guess.not, negativesEqual);
    if (bo) return 0;
  } 
  if (guess.color && Math.abs(guess.color) != real.color && !(negativesEqual && guess.color<0)) return false; // 0 handles itself
  if (guess.obstacle !== undefined) {
    if (guess.obstacle && !real.ant && !(food && real.food && !isQueen)) return false;
    if (!guess.obstacle && (real.ant || (food && real.food && !isQueen))) return false;
  }
  if (guess.badobstacle !== undefined) {
    if (guess.badobstacle && !(real.ant && !real.ant.friend) && !(food && real.food && !isQueen)) return false;
    if (!guess.badobstacle && ((real.ant && !real.ant.friend) || (food && real.food && !isQueen))) return false;
  }
  if (guess.ant) {
    if (!real.ant) return false;
    if (guess.ant == "worker"      &&!( real.ant.friend && real.ant.type!=5)) return false;
    if (guess.ant == "queen"       &&!( real.ant.friend && real.ant.type==5)) return false;
    if (guess.ant == "enemyqueen"  &&!(!real.ant.friend && real.ant.type==5)) return false;
    if (guess.ant == "enemyworker" &&!(!real.ant.friend && real.ant.type!=5)) return false;
    if (guess.ant == "friend" && (!real.ant.friend || real.ant.me)) return false;
    if (guess.ant == "enemy"  &&  real.ant.friend) return false;
    if (Number.isInteger(guess.ant) && real.ant.type != guess.ant) return false;
    if (guess.ant.friend !== undefined && guess.ant.friend !== real.ant.friend) return false;
    if (guess.ant.type !== undefined && !(Array.isArray(guess.ant.type)? guess.ant.type.some(c=>c == real.ant.type) : guess.ant.type == real.ant.type)) return false;
    if (guess.ant.food !== undefined && guess.ant.food !== real.ant.food) return false;
  }
  if (guess.food !== undefined && guess.food !== real.food) return false;
  // log("matched");
  return true;
}

function result (action, force) {
  if (!force) if (toReturn !== undefined) return 0;
  var color = action.color;
  var type = action.type;
  var cell = action.cell;
  if (type < 1 || type > 4) return false;
  if (!(cell >= 0 && cell <= 8)) return false;
  if (color < 1 || color > 8) return false;
  if (!color && ((view[cell].ant && cell != 4) || (isQueen? (view[cell].food && type) : (food && view[cell].food)))) return false; // can't walk onto ant, can't spawn on food, can't move to food with food
  if (!isQueen && type) return false;
  if (!isQueen && !color && food && view[cell].food) return false;
  if (isQueen && !food && type) return false;
  if (type && cell==C) return false;
  if (color && type) return false;

  toReturn = action;
  return true;
}

const WH = 1; // white   
const C1 = 6; // green   HW
const C2 = 5; // red     
const C3 = 8; // black   
const C4 = 2; // yellow  HW
const C5 = 4; // cyan    HW
const C6 = 7; // blue    HW
const C7 = 3; // purple  HW
// C1=GR,C2=BL,C4=YL,C5=DK
const ENEMY = {ant:"enemy"};
const foundEnemy = found(ENEMY);
  //-----------------------------------------------------------------------------------------------------------------------------------------------------\\
 //----------------------------------------------------------------------- MAIN CODE ---------------------------------------------------------------------\\
//---------------------------------------------------------------------------------------------------------------------------------------------------------\\

function log(...args) {
  if (!DEBUG) return;
  toLogRaw.push(args);
  // for (let i of args) {
  //   if (i === undefined) i = "undefined";
  //   var res = "";
  //   if (typeof i === 'string') res = i;
  //   else res = JSON.stringify(i);
  //   toLog+= res + " ";
  // }
  // toLog+= "\n";
}
if (DEBUG) {
  var toLog = "";
  var logMyLogs = false;
  var toLogRaw = [];
  log(type, view.map(c=>c.ant? "A"+c.ant.type : c.color));
}

const Ut = 1;
const Dt = 2;
const Ht = 4;
const Uo = {ant:{type:Ut,friend:true}};
const Do = {ant:{type:Dt,friend:true}};
const Ho = {ant:{type:Ht,friend:true}};
const Mo = {ant:{type:[Ut,Dt],friend:true}};
const Fo = {food:1};
const Qo = {ant:{type:5,friend:true}};
const EQo = {ant:{type:5,friend:false}};
const FRIEND = {ant:"friend"};
const OBSTACLE = {obstacle:true};
const FREE = {obstacle:false};
const BADOBSTACLE = {badobstacle:true};
const STARTINGFOOD = 6;
const LESSENFOOD = 160;
const ENDINGFOOD = 160;
const isMiner = type==Ut || type==Dt;
var friendCount = count(FRIEND);
if (isMiner) {
  var Mu = type==Ut? u : d;
  var Md = type==Ut? d : u;
  var Mur = Mu+1;
  var Mul = Mu-1;
  var Mdr = Md+1;
  var Mdl = Md-1;
}

const foodExt = [C3, C7, WH];
const rawRail = [
  [WH,-1,C7,-1], // 43 03 13 23
  [C6,WH,WH,-1], // 42 02 12 22

  [C4,C1,C2,C2],
  [C2,C4,C5,C5],
  [C3,C5,C1,C3],


//[C3,C1,C4,C4],
//[C4,C4,C5,C2],
//[C5,C2,C1,C3],

//[C3,C1,C2,C5],
//[C3,C3,C1,C5],
//[C2,C4,C5,C2],


//[C2,C1,C3,C5], // 41 01 11 21
//[C1,C5,C5,C4], // 40 00 10 20
//[C5,C4,C2,C3], // 41 01 11 21
  [C6,WH,WH,-1], // 42 02 12 22
  [WH,-1,C7,-1]  // 43 03 13 23
]
.map((ln,row)=>(row<2||row>4)? ln.map(c=>({not:{ant:{friend:true, type:[Ht, 5]}},color:c})) : ln); // queen can't be in the top & bottom 2 rows

function section(ln, action, scorer) {
  if (ln > 0) section(-ln, action, scorer);
  var sct = rawRail.slice(ln+2, ln+5);
  var parts;
  if (Math.abs(ln) != 2) {
    parts = [];
    for (let i = 0; i < 4; i++) {
      var cpt = sct.map(([a,b,c,d])=>[a,b,c]);
      cpt.hp = i;
      cpt.vp = ln;
      parts.push(cpt);
      if (i!=4) sct = sct.map(([a,b,c,d])=>[b,c,d,a]);
    }
  } else {
    var o = sct.map(c=>c.slice(0,3));
    o.vp = ln;
    o.hp = 0;
    parts = [o];
  }
  parts.map(c=>adds(c, action, scorer));
}

function sabotage(where) {
  if (on(where, 1)) repair([where], true);
  else color(where, 1);
}


section(0, ()=>{
  if (isMiner) {
    if (on([r,ur,dr], Fo)  ||  on([u,d], Fo) && on([l,ul,dl], Mo)) { // FAKE RAIL
      color(on([dr,d],Fo)? [dr,u,ul] : [dr,d,dl], C7);
    }
    else if ([l,ul,dl].every(c=>on(c,{ant:{}})) && !random4()) move([r,u,d,ur,dr]); // peer pressure
    /* AV */ else if (found(EQo)) sabotage(find(EQo));
    else if (repair()) {
      if (on(r,Mo) && (random4() > 1 || random4() && friendCount > 3)) move([l,Mul,Mu,Mdl,Md]);
      if (on([Mu,Mur], ENEMY)) move([R, D, DR]); // move somewhere away from enemy
      else if (on(r, Qo) && on([l,ul,dl], {ant:{type:[Ut,Dt],food:1,friend:true}})) move([Mu, Mul, l, Mdl]); // make place for miners with food; Possibly stuck
      else if (on(r, Qo)) move([Mu, Mul]); // don't do stupid things around queen
      else if (on(l, Qo) && !foundEnemy) move([Mul, Mdl, Mu, Md]); //.. I've done stupid things around queen
      else if (on([Mu,Mur], OBSTACLE)) { // up is blocked :/
        if (random4()) move(on(Mu, FRIEND)? [Mur, r] : r);
        else move([r, Mul, Md, Mul, l, Mdl]);
      }
      else move([Mu, r, Mur, Md, Mdr]); // move along
    }
  } else if (isQueen) {
    var HM = Pattern.view.map(c=>+basedOn(c, Ho));
    var helperRows = [HM.slice(0,3),HM.slice(6,9)].map(c=>c.lastIndexOf(1)).map((c,i) => (c==0 && on(i==0? u : d, OBSTACLE)) ? -1 : c);
    var minH = Math.min(helperRows[0],helperRows[1]);
    var maxH = Math.max(helperRows[0],helperRows[1]);
    if (on(r, FRIEND) && [ur,dr].every(c=>on(c, ENEMY))) move([l,ul,dl]);
    if (found(EQo)) { // vampire?
      move(random4()%2? [ur,dr] : [dr,ur]);
      var eQueenRel = (findRel(EQo)-rp)%3;
      if (eQueenRel == 0) move(r,ur,dr);
      spawn(Mu, [u,d,r,ur,dr]);
    }
    if (foundEnemy) // spawn helpers against enemies
      if (food && minH == -1 && count(Ho) < 2) {
        if (helperRows[0] == -1) spawn([u,ur,ul],Ht);
        else                     spawn([d,dr,dl],Ht);
      }
    if ([r,ur,dr].every(c=>on(c, ENEMY))) move([ul,dl,l,u,d]); // OH GOD NO WHY
    if ((minH == -1 || maxH == 2) && on(r, [ENEMY,Ho]) && Pattern.incorr < 2 && count({ant:{}})-1 != count(Ho))
      move(on(ur, ENEMY)? [d,u,dr,ur,ul,dl,l] : [u,d,ur,dr,ul,dl,l]); // initialize transporting around enemy
    if ((!random4() && on(l, OBSTACLE) && on([ul, dl], OBSTACLE)) && Pattern.corr >= 7) move(r); // move forward sometimes if left is 2/3s full
    else if ([r,ur,dr].every(c=>c.ant && !c.ant.friend)) move([l,ul,dl]);
    else if (food && minH > 0 && (
        count(Mo) == 0 && selectedHp != 1 && Pattern.corr != 9 && food < LESSENFOOD
      ||
        //Pattern.corr === 9 && [u,d].every(c=>on(c,Ho)) && selectedHp === 1 && food >= LESSENFOOD && food < ENDINGFOOD && random4() < 2
        Pattern.corr === 9 && selectedHp == 0 && count(Mo) === 0 && food >= LESSENFOOD && food < ENDINGFOOD && random4() < 2
      )) { // spawn miners
      if (random4()%2) spawn([u,ul], Ut);
      else             spawn([d,dl], Dt);
    } else if (repair()) {
      if (food && minH == -1 && count(Ho) < 2) { // spawn helpers
        if (helperRows[0] == -1) spawn([u,ur,ul],Ht);
        else                     spawn([d,dr,dl],Ht);
      }
      else if (selectedHp != 1  ||  selectedHp==1 && /*(*/(maxH==2 || minH == -1 && helperRows.includes(2)) && (!random4() || food < LESSENFOOD || found(Mo))  ||  foundEnemy) move(r); // move forwards
      else if (on(ul, Do) && on(dl,Uo) && on(l, {ant:{}})) move(r); // miners are in wrong places
    }
  } else { // helper
    var repaired = repair();
    var queenRel = (findRel(Qo)-rp)%3;
    var dir = queenRel==0? 0 : 1;
    if (repair()) {
      if (on(r, EQo) && [u,d,ur,dr].map(c=>on(c, ENEMY)? 1 : 0).reduce(ADD) >= 3) move(c); // protect the queen from the evils ahead
      else if (on(r, Qo)) move([u,d,ur,dr,ul,dl,l]);
      else move((on([d,dr,dl], Ho)? [u+dir,d+dir] : [d+dir,u+dir]).concat([u+(1-dir), d+(1-dir)]), !random4());
    }
  }
})

section(1, ()=>{
  const A = selectedVp > 0? d : u; // away
  const I = selectedVp > 0? u : d; // in
  const AR = A+1;
  const AL = A-1;
  const IR = I+1;
  const IL = I-1;

  if (isMiner) {
    var queenRel = (findRel(Qo)-rp)%3;
    if (on([r,IR], Fo)) color([r,IR, I], C7); // FAKE RAIL
    else if ([l,IL].every(c=>on(c,{ant:{}})) && !random4()) move([r,IR]); // peer pressure
    /* AV */ else if (found(EQo)) sabotage(find(EQo));
    else if ((found(EQo) && random4() && Pattern.dist <= 1 && on(find(EQo), 1)) || repair()) {
      if (on(I, Qo)) move(l); // what am I doing here?
      else if (A == Mu) { // my dir!
        if (!food && selectedHp == 0 && (on(r,Ho) && on(IR, Qo)  ||  count(Mo) >= 6)) move(A); // move out!
        else if (on(IR,Qo) && on([l,IL], {ant:{type:[Mu,Md],friend:true,food:1}})) move(C); // waiting in line :D
        else if (on(IR,Qo)) move(C); // waiting in line :D
        else if (random4()) move([r, I, IR]);
        else move([r, I, IR, l, IL]);
      } else { // not my dir
        // TODO fix \\ if (selectedHp == 0 && count(Mo) >= 6 && food) move(A); // fake rail escape
        if (random4()) {
          move([I, IR, IL, l]);
        } else {
          move([r, I, IR, IL, l]);
        }
      }
    }
  } else if (isQueen) {
    if (found(EQo)) { // vampire?
      var eQueenRel = (findRel(EQo)-rp)%3;
      if (eQueenRel==0) move(r, IR);
      spawn(Mu, [r,IR]);
      spawn(Md, I);
    }
    /* AV */ if (food > 70 && (
      [IR,IL,I,l,r].every(c=>on(c,ENEMY)) // completely encased
      || on(IR, EQo) && [r,I].every(c=>on(c, ENEMY)) // getting leeched
      || on(I, EQo) && [r,l,IL,IR].map(c=>get(c)).map(c=>c.ant? (c.ant.friend? 1 : -1) : 0).reduce(ADD) < 0 // leeched
    )) move([A,AR,AL]); // BAD NEWS COMPLETELY DEAD
    if (!random4() || found(EQo) || repair())
      move(random4()? [IR,r,I,l] : [IR,r,I]);
  } else { // helper
    var queenRel = (findRel(Qo)-rp)%3;
    /* AV */ if (on(r,Qo) && on([I,IR], EQo)) move([IR,I,l,IL]);
    if (on(l, Qo)) { if (!random4() || repair()) move(r) } // queen's transporting
    if (on(I, Qo) && on(IR, {ant:"enemyworker"})) { if (!random4() || repair()) move(r) } // queen needs to transport
    // what was this? if ([l,IL,I].every(c=>on(c,OBSTACLE)) && (count(ENEMY) > 1 || find(EQo)) && !random4()) move([r,ur]);
    if ((selectedVp < 0? /...[#-W]{6}/ : /[#-W]{6}.../).test(Pattern.corrstr) && queenRel == 2 && count(Ho) == 1) move(r); // move forward without repairing
    if (!random4() && queenRel == 1 && selectedHp == 1 && on(AL, {ant:{}})) move(r); // something is out; don't repair
    else if (repair([r,l,A,AR,AL])) {
      if (on(r, ENEMY) && on(I, Qo) && [l,IL].every(c=>on(c,FRIEND))) move(IR); // protect from vampire
      if (on(r, ENEMY) && on(IL, Qo) && [l,IR].every(c=>on(c,FRIEND))) move(I);
      if (on(r, ENEMY) && !get(r).ant.food && on(I, Qo)) move(IR);
      if (queenRel == 1 && selectedHp == 1 && on(AL, {ant:{}})) move(r); // something is out
      else if (on([l,r], Ho)) { // move to the other side
        if (found(Qo)) move([I]); // TODO integrate ,IL,IR
        else move([l,r]);
      }
      else if (queenRel == 2) move(r); // move forward
    }
  }
}, (pscore, pt, corrects, falseN, match) => {
  if (match(".?(...)?@@.@@.*") && !foundEnemy) {
    if (!match(pt.vp>0? ".?@@.@@.*" : ".?...@@.@@.*")) pscore/=2;
  }
  return pscore;
})

if (isMiner) {
  section(2, () => {
    const A = selectedVp > 0? d : u; // away
    const I = selectedVp > 0? u : d; // in
    if (on(A,OBSTACLE)) move(I);
    else if (repair()) move(food? I: Mu);
  }, (pscore, pt, corrects, falseN, match) => match(pt.vp>0? "@@@.@...." : "....@.@@@")? match("@@@@@@@@@")? 100 : ((pt.vp>0) == (type==Dt)? 13 : 10) : 0);
  if (type==Dt) foodExt.reverse();
  if (!found(Ho) && !found(Qo)) {
    var lns = [rawRail[0], rawRail[1]].map(c=>c.slice(0,3));
    [[lns[0],lns[1],lns[0]], [lns[1],lns[0],lns[1]]].map(c=>{
      adds(c, () => {
        var onL;
        if (!food && ((onL = on(l, Fo)) || on(r, Fo))) {
          var foodpt = Pattern.raw.map((ln, i) => [ln[0], foodExt[i], ln[2]]);
          refPt(foodpt,undefined,undefined,selectedRot);
          if (repair()) move(onL? l : r);
        }
        else if (repair([l,r,ul,ur,dl,dr], on([Mul, Mur, Mdl, Mdr, l, r], {ant:{friend:true,type:[Ut,Dt],food:1}}) ||  on([Mu, Md], Mo))) {
          move(food? [Md, Mu] : [Mu, Md]);
        }
      }, (pscore, pt, corrects, falseN, match) => {
        var score = 0;
        var dMatch = match("...@.@@@@");
        var uMatch = match("@.@@.@...");
             if ((type==Ut ^ food) && dMatch) score = 15;
        else if ((type==Dt ^ food) && uMatch) score = 15;
        else if (uMatch || dMatch) score = 6;
        if ([0,2,3,5,6,8].some(c=>basedOn(pt.view[c], FRIEND) && !pt.view[c].ant.food)) score = 0;
        return score;
      });
      if (food) {
        var extp = c.map((ln, i) => [ln[0], foodExt[i], ln[2]]);
        [extp.map(([a,b,c])=>[0,a,b]), extp.map(([a,b,c])=>[b,c,0])].forEach((pt,i) => adds(pt, () => {
          move(i? l : r);
        }, (pscore, pt, corrects, falseN, match) => match("@@@@@@@@@")? 100 : 0));
      }
    });
  }
}

Pattern.choose();
var confident = ((Pattern.confidence >= 1 && (Pattern.score > 4 || Pattern.corr >= 4)) || (Pattern.score >= 9 && Pattern.confidence > 0.05)); // && (selectedHp !=  || !found(Qo));
var failAction = () => {
  if (foundEnemy) {
    log(view);
    log("dead around enemy :/");
    logMyLogs = true;
  }
  if (isQueen) {
    if (found(EQo)) {
      move([8-(find(EQo)-rp) + rp]);
      move(random4()%2? U : UR);
    }
    if (foundEnemy) move(random4()%2? U : UR);
  } else {
    // if (!found(Qo) && found(Fo)) move(find(Fo));
    var enemyPlace = find(ENEMY);
    if (enemyPlace !== -1) color(enemyPlace, get(enemyPlace).color==1? C3 : WH);
  }
}
if (!confident) Pattern.action = failAction;

if (isMiner) {
  if ((Pattern.hardcorr >= 4 || Pattern.score > 5) && confident) Pattern.action();
  else {
    failAction();
  }
} else if (isQueen) {
  if ((Pattern.hardcorr >= 6 || food > STARTINGFOOD+2 || friendCount>1 || found(Mo) || Pattern.score > 6 || (false)) && confident) Pattern.action();
  else if (food >= STARTINGFOOD && friendCount == 1) {
    clear();
    Pattern.add([[1,{ant:Ho.ant,color:1},1],
                 [1,1,1],
                 [1,1,1]], ()=>spawn([ur,ul],Ht));
    Pattern.add([[1,1,{ant:Ho.ant,color:1}],
                 [1,1,1],
                 [1,1,1]], ()=>spawn([ur,u],Ht));
    Pattern.choose();
    if (repair()) Pattern.action();
  } else if (food == 0 && friendCount == 0) { // diagonal search
    if (found(Fo)) {
      move(find(Fo));
    } else {
      clear();
      Pattern.add([[WH,WH,WH],
                   [WH,C1,WH],
                   [C1,WH,WH]], ()=>move(ur));
      Pattern.add([[WH,WH,WH],
                   [WH,WH,WH],
                   [C1,WH,WH]], ()=>color(C, C1));
      Pattern.add([[WH,WH,WH],[WH,WH,WH],[WH,WH,WH]], ()=>color(DL, C1));
      Pattern.choose();
      if (Pattern.corr == 9) Pattern.action();
      else move(random4()? [DL,UL,DR,UL] : [D,L,U,R]);
    }
  } else if (food == 1 && friendCount == 0) spawn([U,L,D,R,UL,DL,UR,DR], Ht);
  else if (friendCount == 1) lightSpeed();
  else if (friendCount > 0) {
    var pt = new Pattern(rawRail).select(0,2,4,3).rotate(L).rotate(L).pt;
    pt[1][2] = {color:pt[1][2], ant:{type:Ht, friend:true}};
    refPt(pt);
    repair([c,u,d,ur,dr]);
  } // TODO wtf to do after this
  else Pattern.action(); // eh fuck it
} else if (type == Ht) {
  if (confident && (Pattern.score >= 4 || Pattern.hardcorr >= 5 || friendCount>1)) Pattern.action();
  else if (found(Qo)) lightSpeed();
  else if (Pattern.hardcorr >= 3 && confident) repair();
}

function lightSpeed() {
  var other = find(isQueen? Ho : Qo);
  var orth = other%2;
  if (isQueen || (view[other].ant.food < STARTINGFOOD && count(Ho) == 1)) { // LS
    if (orth && found(Fo)) { // grab easy food
      var fp = find(Fo);
      if (sees(other, fp)) move(fp);
      else {
        refPt([[0,FRIEND,0],
                     [0,0,0],
                     [0,0,0]]);
        move(l);
      }
    }
    clear();
    // Pattern.when(U,find(FRIEND), ()=>isQueen? move(ul) : move(ur)); when I'm not lazy imma make this a replacement of the below
    Pattern.add([[0,FRIEND,0],
                 [0,0,0],
                 [0,0,0]], ()=>isQueen? move(ul) : move(ur));
    Pattern.add([[0,0,FRIEND],
                 [0,0,0],
                 [0,0,0]], ()=>move(u));
    Pattern.choose();
    Pattern.action();
  }
}

if (DEBUG) log("END", type, view.map(c=>c.ant? "A"+c.ant.type : c.color));
if (DEBUG && logMyLogs) {
  //for (let i = 0; i < toLog.length; i+=800)
  //  console.log(toLog.substring(i,i+800));
  for (let i of toLogRaw) console.log(...i);
}
if (toReturn) return toReturn;
else return {cell:4};

Anteriormente, se trataba de Mineros en un ferrocarril (ver el historial de revisiones), pero se ha cambiado a Mineros deslizantes, ya que funciona mejor y MoaR solo se interpondría en su éxito si esta fuera otra entrada.


Primero en la clasificación de nuevo esta vez ...
trichoplax

14

Planeador

Planeador en acciónPlaneador girando a la izquierdaPlaneador girando a la derecha

//console.log(JSON.stringify(view))
var TRAIL = 6;
var SPAWN = 3;
var IDLE = 4;
var FOOD_THRESHOLD = 150;
var SPAWN_MIN = 3;
var HIGHWAY_COLORS = [7,6,4,2,3];
var HIGHWAY_THRESHOLD = 70;
var ret = {cell:4};
if(isOnHighway()) {
    var cont = true;
    //== Make best guess to if in a glider formation ==//
    if(view[4].ant.type == 5) {
        if((findWorker(1) >= 0 && findWorker(4) >= 0) || view[4].ant.food < HIGHWAY_THRESHOLD) {
            cont = false;
        }
    }
    else if(view[4].ant.type == 4) {
        if(findWorker(1) >= 0 && findWorker(5) >= 0) {
            cont = false;
        }
    }
    else if(view[4].ant.type == 3) {
        if(findWorker(2) >= 0 && findWorker(5) >= 0) {
            cont = false;
        }
    }
    else if(view[4].ant.type == 2) {
        if(findWorker(5) < 0) {
            var pos3 = findWorker(3);
            if(pos3 >= 0 && view[pos3].ant.food == 0) {
                cont = false;
            }
        }
        else if(findWorker(3) >= 0 || (findWorker(1) >= 0 && view[findWorker(5)].color == SPAWN))
            cont = false;
    }
    else if(view[4].ant.type == 1) {
        if(findWorker(5) < 0) {
            var pos4 = findWorker(4);
            if(pos4 >= 0 && view[pos4].ant.food == 0) {
                cont = false;
            }
        }
        else if(!isHighwayCenter())
            cont = false;
    }
    if(findWorker(5) >= 0) {
        for(var i=0;i<9;i++) {
            if(view[i].ant != null && !view[i].ant.friend && view[i].ant.type == 5) {
                if(view[i].ant.food > 10 || view[i].ant.food == 0)
                    cont = true;
                else
                    cont = false;
            }
        }
    }
    //== End guesswork ==//
    if(cont) {
        ret = highwayRobbery();
        if(view[4].ant.type == 1) {
            //try to repair
            var curIndex = HIGHWAY_COLORS.indexOf(view[4].color);
            var prvCol = HIGHWAY_COLORS[(curIndex+1)%HIGHWAY_COLORS.length];
            var nxtCol1 = HIGHWAY_COLORS[(curIndex+HIGHWAY_COLORS.length-1)%HIGHWAY_COLORS.length];
            var nxtCol2 = HIGHWAY_COLORS[(curIndex+HIGHWAY_COLORS.length-2)%HIGHWAY_COLORS.length];
            var nxtCol3 = HIGHWAY_COLORS[(curIndex+HIGHWAY_COLORS.length-3)%HIGHWAY_COLORS.length];
            var prevAt = -1;
            for(var i=0;i<9;i++) {
                if(i%2 == 1 && view[i].color == prvCol && view[deRotate(i,1)].color == nxtCol1 && view[deRotate(i,-1)].color == nxtCol1) prevAt = i;
            }
            if(prevAt >= 0) {
                // yep, brute force it. Because I'm lazy.
                var goNxt = 8-prevAt;
                if(view[deRotate(goNxt,1)].color == nxtCol3 && view[deRotate(goNxt,-1)].color == prvCol) ret = {cell:goNxt};
                else if(view[deRotate(goNxt,1)].color == prvCol && view[deRotate(goNxt,-1)].color == nxtCol3) ret = {cell:goNxt};
                else if(view[goNxt].color != nxtCol1) ret = {cell:goNxt,color:nxtCol1};
                else if(view[deRotate(goNxt,2)].color != nxtCol2) ret = {cell:deRotate(goNxt,2),color:nxtCol2};
                else if(view[deRotate(goNxt,-2)].color != nxtCol2) ret = {cell:deRotate(goNxt,-2),color:nxtCol2};
                else if(view[deRotate(goNxt,1)].color != nxtCol3) ret = {cell:deRotate(goNxt,1),color:nxtCol3};
                else if(view[deRotate(goNxt,-1)].color != nxtCol3) ret = {cell:deRotate(goNxt,-1),color:nxtCol3};
                else ret = {cell:goNxt};
                ret = sanityCheck(ret);
                return ret;
            }
        }
        if(view[4].ant.type == 5 && isHighwayCenter()) {
            if(ret.cell >= 0) {
                ret = {cell:8-ret.cell};
                if(view[4].color == SPAWN && (view[4].ant.food > 90 || view[4].ant.food % 7 == 0) && getHighestWorker() == 0 && (view[4].ant.food < 140 || view[4].ant.food % 9 == 0) && view[0].color == 2 && view[4].ant.food > 50 && view[4].ant.food < 200) {
            //fine
                    if(view[4].ant.food % 10 < 5)
                        ret = {cell:deRotate(ret.cell,3),type:3};
                }
                if(view[ret.cell].ant != null && !view[ret.cell].ant.friend && view[ret.cell].ant.food == 0 && view[4].ant.food > 0) {
                    if(view[deRotate(ret.cell,1)].ant == null)
                        ret = {cell:deRotate(ret.cell,1),type:3};
                    if(view[deRotate(ret.cell,-1)].ant == null)
                        ret = {cell:deRotate(ret.cell,1),type:3};
                }
            }
            for(var i=0;i<9;i++) {
                if(view[i].ant != null && !view[i].ant.friend && view[i].ant.type == 5) {
                    ret = {cell:8-i};
                }
            }
        }
        if(ret.cell >= 0) {
            for(var i=0;i<9;i++) {
                if(view[i].ant != null && !view[i].ant.friend && view[i].ant.type == 5) {
                    var rr = basicHighwayMove();
                    if(rr.cell >= 0 && view[4].ant.type != 5)
                        ret = {cell:deRotate(rr.cell,-2)};
                }
            }
            if(view[ret.cell].ant != null) {
                var n = HIGHWAY_COLORS.indexOf(view[4].color) + 1;
                var nextMove = HIGHWAY_COLORS[n % HIGHWAY_COLORS.length];
                for(var i=0;i<9;i++) {
                    if(view[i].color == nextMove) {
                        if(view[i].ant == null) {
                            ret = {cell:i};
                            break;
                        }
                    }
                }
                if(view[4].ant.type == 5) ret = {cell:8-ret.cell};
            }
        }
        if(view[4].ant.type == 5) {
            var foodedEnemy = false;
            for(var i=0;i<9;i++) {
                if(getNumWorkers(3) >= 2) break;
                if(i != 4 && view[i].ant != null && view[i].ant.type == 5 && view[i].ant.food > 25) {
                    if(view[deRotate(i,1)].ant == null) {
                        ret = {cell:deRotate(i,1),type:3};
                    }
                    else if(view[deRotate(i,-1)].ant == null) {
                        ret = {cell:deRotate(i,-1),type:3};
                    }
                    else if(i%2 == 1 && view[deRotate(i,2)].ant == null) {
                        ret = {cell:deRotate(i,2),type:3};
                    }
                    else if(i%2 == 1 && view[deRotate(i,-2)].ant == null) {
                        ret = {cell:deRotate(i,-2),type:3};
                    }
                }
                if(view[i].ant != null && !view[i].ant.friend && view[i].ant.type == 3 && view[8-i].ant == null) {
                    if(i == ret.cell) {
                        ret = {cell:deRotate(i,1)}
                    }
                    else {
                        return {cell:8-i};
                    }
                }
                if(view[i].ant != null && !view[i].ant.friend && view[i].ant.food == 0) {
                    foodedEnemy = true;
                }
            }
        }
        var numAnts = 0;
        for(var i=0;i<9;i++) {
            if(view[i].ant != null)
                numAnts++;
        }
        if(numAnts > 2 && sanityCheck(ret).cell == 4) {
            ret = {cell:findOpenSpace(0,1)};
        }
        if(view[4].ant.type == 3) {
            if(getNumWorkers(5) > 0) {
                for(var i=0;i<9;i++) {
                    if(view[i].ant != null && !view[i].ant.friend && view[i].ant.type == 5) {
                        ret = {cell:4};
                    }
                }
            }
        }
        if(view[4].ant.type == 4 && getNumWorkers(1) && isHighwayCenter()) {
            var workerPos = findWorker(1);
            for(var i=0;i<9;i++) {
                if(!areAdjacent(i,workerPos)) ret = {cell:i};
            }
        }
        if(ret.cell == -1) {
            if(isHighwayCenter()) {
                for(var i=0;i<9;i++) {
                    var p1 = deRotate(i,3);
                    var p2 = deRotate(i,-3);
                    if(view[i].color == view[p1].color && view[i].color == view[p2].color) {
                        ret = {cell:8-i};
                    }
                }
                if(view[4].ant.type == 1 || view[4].ant.type == 5) {
                    ret = {cell:8-ret.cell};
                }
            }
        }
        if(ret.cell >= 0)
            return sanityCheck(ret);
    }
}

switch(view[4].ant.type) {
    case 5:
        ret = doQueen();
        break;
    case 1:
    case 2:
        ret = doSweep();
        break;
    case 3:
    case 4:
        ret = doGuide();
        break;
    default:
        break;
}
//basic sanity check
ret = sanityCheck(ret);
return ret;

function sanityCheck(ret) {
    if(!ret || ret.cell < 0 || ret.cell > 8) {
        return {cell:4};
    }
    if(ret.color) {
        return ret;
    }
    if((ret.cell != 4 && view[ret.cell].ant != null) || (view[ret.cell].food > 0 && (view[4].ant.food > 0 && view[4].ant.type < 5))) {
        return {cell:4};
    }
    if(ret.type && (view[ret.cell].ant != null || view[ret.cell].food > 0 || view[4].ant.food == 0 || view[4].ant.type < 5)) {
        return {cell:4};
    }
    return ret;
}

function doQueen() {
    if((view[4].ant.food == SPAWN_MIN || (view[4].ant.food >= SPAWN_MIN && view[4].ant.food < FOOD_THRESHOLD && (view[4].ant.food % 3 == 1 || isOnHighway()))) && getHighestWorker() <= 1 ) {
        //prep for first ant
        var s0 = view[0].ant;
        var s1 = view[1].ant;
        var s2 = view[2].ant;
        var s3 = view[3].ant;
        var s5 = view[5].ant;
        var s6 = view[6].ant;
        var s7 = view[7].ant;
        var s8 = view[8].ant;
        var nullCount = 0 + (s0 == null?1:0) + (s1 == null?1:0) + (s2 == null?1:0) + (s3 == null?1:0) + (s5 == null?1:0) + (s6 == null?1:0) + (s7 == null?1:0) + (s8 == null?1:0);
        var nullCount2 = 0 + (s0 == null || s0.friend?1:0) + (s1 == null || s1.friend?1:0) + (s2 == null || s2.friend?1:0) + (s3 == null || s3.friend?1:0) + (s5 == null || s5.friend?1:0) + (s6 == null || s6.friend?1:0) + (s7 == null || s7.friend?1:0) + (s8 == null || s8.friend?1:0);
        if(nullCount >= 7 && nullCount2 >= 8 && view[1].food == 0 && view[3].food == 0 && view[5].food == 0 && view[7].food == 0) {
            var high = getHighestWorker();
            if (high <= 1 && view[4].color != SPAWN && !isOnHighway()) {
                // 50% chance of delaying the respawn by 1 additional move away from where we exploded
                // reduces the chance of a second, immediate explosion
                var pos1 = findWorker(1);
                if(findFirstTrail() < 2 && view[4].ant.food > SPAWN_MIN+1 && pos1 < 0) return foreverAlone();
                if(pos1 >= 0) {
                    var space = deRotate(pos1,2);
                    if(view[space].ant != null) return {cell:findOpenSpace(0,1)};
                }
                return {cell:4,color:SPAWN};
            }
            //spawn first ant
            else if(view[4].color == SPAWN) {
                var pos1 = findWorker(1);
                if(pos1 < 0)  {
                    pos1 = findFirstTrail();
                    if(pos1 % 2 == 0) pos1 = deRotate(pos1,1);
                    else pos1 = deRotate(pos1,4);
                }
                var space = findOpenSpace(pos1,2);
                var high = getHighestWorker();
                if(space < 0) return {cell:4,color:TRAIL}
                if(high == 0) { //no workers
                    return {cell:space,type:1};
                }
                else if(high < 4) { //1 worker of type:high
                    return {cell:space,type:high+1};
                }
                else { //1 worker of type 4
                    //we have all workers, skip!
                }
            }
        }
        else {
            return foreverAlone();
        }
    }
    else if(view[4].ant.food == 1 && getHighestWorker() == 0 ) {
        var space = findOpenSpace(1,2);
        return {cell:space,type:1};
    }
    else if(view[4].ant.food >= 1 && getHighestWorker() < 4 && findWorker(1) >= 0) {
        //spawn remaining ants
        if(view[4].color == SPAWN && !isHighwayCenter()) {
            var pos1 = findWorker(getHighestWorker());
            var space = deRotate(pos1,2);
            var high = getHighestWorker();
            if(space < 0 || view[space].ant != null) return {cell:findOpenSpace(0,1)};
            if(high == 0) { //no workers
                return {cell:space,type:1};
            }
            else if(high < 4) { //1 worker of type:high
                return {cell:space,type:high+1};
            }
            else { //1 worker of type 4
                //we have all workers, skip!
            }
        }
    }
    if(view[4].color == SPAWN && getNumWorkers(3) == 1 && getNumWorkers(4) == 1) {
        var one = getNumWorkers(1);
        var two = getNumWorkers(2);
        if((one ^ two) == 1 && (findWorker(1) % 2 == 0 || findWorker(2) % 2 == 0))
            return {cell:4,color:1};
    }
    if(getNumWorkers(1) == 0 && getNumWorkers(2) == 0) {
        if(getNumWorkers(4) == 1 && getNumWorkers(3) == 0) {
            var pos4 = findWorker(4);
            if(view[deRotate(pos4,1)].ant == null && view[deRotate(pos4,2)].ant == null && findWorker(4) % 2 == 1) {
                //finish rotate with only one glider arm
                return {cell:4};
            }
        }
        return foreverAlone();
    }
    else if(getNumWorkers(1) >= 1 && getNumWorkers(2) >= 1 && getNumWorkers(3) >= 1 && getNumWorkers(4) >= 1) {
        if(view[4].color != 2 && findWorker(1)%2 == 1 && findWorker(2)%2 == 1) {
            return {cell:4,color:TRAIL};
        }
        //move diagonally
        var pos = findWorker(4);
        pos = deRotate(pos,1);
        var checkpos = view[deRotate(pos,4)];
        if(checkpos.ant != null && checkpos.ant.friend) {
            if(checkpos.ant.type == 2)
                return {cell:4};
            if(checkpos.ant.type == 1)
                return {cell:4};
        }
        if(view[pos].ant) return {cell:4,color:1};
        return {cell:pos};
    }
    else {
        var pos = findWorker(4);
        if(pos < 0) {
            //if gliding along with only a buddy
            pos = findWorker(1);
            if(pos >= 0 && view[deRotate(pos,2)].food > 0 && view[deRotate(pos,1)].food == 0) {
                return {cell:4};
            }
        }
        if(pos < 0) {
            var s1 = view[1].ant;
            var s3 = view[3].ant;
            var s5 = view[5].ant;
            var s7 = view[7].ant;
            //return {cell:999}
            if(s1 == null) {
                if(s3 == null) {
                    return {cell:0};
                }
                if(s5 == null) {
                    return {cell:2};
                }
            }
            if(s7 == null) {
                if(s3 == null) {
                    return {cell:6};
                }
                if(s5 == null) {
                    return {cell:8};
                }
            }
            return {cell:4};
        }
        pos = deRotate(pos,1);
        var checkpos1 = view[pos];
        for(var i=0;i<9;i++) {
            if(i != 4 && view[i].ant != null && view[i].ant.type == 5 && view[i].ant.food > 2) {
                if(i%2==0) {
                    if(view[deRotate(i,1)].ant == null) return {cell:deRotate(i,1),type:3};
                    if(view[deRotate(i,-1)].ant == null) return {cell:deRotate(i,-1),type:3};
                }
                else {
                    if(view[deRotate(i,1)].ant == null) return {cell:deRotate(i,1),type:3};
                    if(view[deRotate(i,-1)].ant == null) return {cell:deRotate(i,-1),type:3};
                    if(view[deRotate(i,2)].ant == null) return {cell:deRotate(i,2),type:3};
                    if(view[deRotate(i,-2)].ant == null) return {cell:deRotate(i,-2),type:3};
                }
                return {cell:4};
            }
        }
        if(checkpos1.ant != null && view[deRotate(pos,1)].ant != null && !view[deRotate(pos,1)].ant.friend) {
            return foreverAlone();
        }

        var checkpos2 = view[deRotate(pos,4)];
        var checkpos3 = view[deRotate(checkpos,1)];
        if(checkpos1.ant != null && checkpos1.ant.friend && checkpos1.ant.type == 1 && checkpos2.ant != null && checkpos2.ant.friend && checkpos2.ant.type == 2 && checkpos3.ant != null && checkpos3.ant.friend && checkpos3.ant.type == 3) {
            //move out of spawn orientation
            return {cell:4};
        }
        if(view[pos].ant != null) {
            if(checkpos2.ant == null && checkpos1.ant == null) {
                return {cell:8-pos};
            }
            if(!view[pos].ant.friend) {
                return foreverAlone();
            }
            if(view[4].color == TRAIL) return foreverAlone();
            return {cell:4,color:TRAIL};
        }
        if(8 - findWorker(3) == findWorker(4)) {
            //finish rotate to the right
            return {cell:4};
        }
        if((view[deRotate(pos,1)].food > 0 || view[deRotate(pos,2)].food > 0) && view[deRotate(pos,1)].ant == null && view[4].color != TRAIL) {
            if(findWorker(1) < 0 || view[deRotate(findWorker(1),1)].food == 0) {
                return {cell:4};
            }
        }
        return {cell:pos};
    }
    return {cell:100+view[4].ant.type}; //oh god
}

//guides sit next to the queen
function doGuide() {
    var queenPos = findWorker(5);
    var ty = view[4].ant.type==3?2:1;
    var dir = view[4].ant.type==3?1:-1;
    if(queenPos >= 0 && queenPos%2 == 1 && view[queenPos].color == SPAWN) {
        if(view[deRotate(queenPos,dir*2)].ant == null) {
            return {cell:4};
        }
    }
    if(queenPos < 0 || findWorker(ty) < 0) {
        if(findWorker(ty) >= 0 && view[0].color != IDLE) return {cell:0,color:IDLE}
        return firebreak();
    }
    var checkpos = view[deRotate(queenPos,-2*dir)];
    if(view[4].ant.type==4 && checkpos.ant != null && checkpos.ant.friend && checkpos.ant.type == 1) {
        //attempt rotate
        return {cell:deRotate(queenPos,-dir)};
    }
    checkpos = view[deRotate(queenPos,4)];
    if(checkpos.ant != null && checkpos.ant.friend && checkpos.ant.type == ty) {
        //attempt rotate
        if(getNumWorkers(ty) == 1) {
            return {cell:4};
        }
    }
    var pos = deRotate(queenPos,dir);
    if(pos >= 0 && view[4].ant.type==3 && findWorker(4) < 0) {
        //wait for rotate
        if(view[4].color == TRAIL) {
            return {cell:4};
        }
    }
    if(pos >= 0 && findWorker(2) >= 0 && view[deRotate(findWorker(2),1)].ant != null) {
        //rotate
        return {cell:4,color:TRAIL};
    }
    if(pos < 0) pos = 4;
    else if(view[pos].ant != null) return {cell:deRotate(queenPos,4)};
    if(pos == 4 && view[queenPos].color == TRAIL) return {cell:queenPos,color:1};
    return {cell:pos};
}

//sweepers sit next to guides
function doSweep() {
    var queenPos = findWorker(5);
    var followType = view[4].ant.type==1?4:3;
    var pos = findWorker(followType);
    if(pos % 2 == 0 && getNumWorkers(followType) > 1) {
        //if there's more than one worker #4, we want to use the best one
        for(var i=pos+1;i<9;i++) {
            if(i != 4 && view[i].ant != null) {
                if(view[i].ant.friend && view[i].ant.type == followType) {
                    pos = i;
                    break;
                }
            }
        }
    }
    if(queenPos >= 0 && queenPos%2 == 1 && view[queenPos].color == SPAWN) {
        var p = findWorker(view[4].ant.type);
        if(p >= 0 && (deRotate(p,1) == queenPos || deRotate(p,-1) == queenPos)) {
            return {cell:8-queenPos};
        }
        return {cell:4};
    }
    if(queenPos >= 0 && pos < 0) {
        //if Worker #1 is the only ant besides the queen:
        //TODO
    //good
        if(view[queenPos].ant.food <= SPAWN_MIN || !(view[queenPos].ant.food < FOOD_THRESHOLD && view[queenPos].ant.food % 3 == 1 && !isOnHighway())) {
            var go = deRotate(queenPos,-1);
            if((view[deRotate(queenPos,-2)].food > 0 || view[deRotate(queenPos,-3)].food > 0 || (queenPos %2 == 1 && view[deRotate(queenPos,-3)].food > 0)) && view[go].food == 0) {
                go = deRotate(queenPos,2);
                //return {cell:4};
            }
            return {cell:go};
        }
        else if(view[queenPos].ant.food < FOOD_THRESHOLD && view[queenPos].ant.food % 3 == 1) {
            return {cell:4};
        }
    }
    if(queenPos >= 0) {
        var dir = view[4].ant.type==1?1:-1;
        //var checkpos = view[deRotate(pos,-dir)];
        var moveTo = deRotate(pos,dir);
        if(moveTo >= 0 && view[moveTo].ant != null && view[moveTo].ant.friend && view[moveTo].ant.type == 5) {
            moveTo = deRotate(pos,-dir);
        }
        if(view[4].ant.type == 2 && findWorker(1) < 0 && view[queenPos].color != TRAIL) {
            moveTo = 4;
        }
        return {cell:moveTo};
    }
    else {
        if(pos < 0) return {cell:4}; //firebreak();
        var dir = view[4].ant.type==1?-1:1;
        var moveTo = deRotate(pos,dir);
        if(view[4].ant.food > 0 && view[moveTo].food > 0) {
            //have food, attempt to give to queen
            moveTo = deRotate(pos,-dir);
        }
        if(view[4].ant.type==1 && pos >= 0 && (view[deRotate(pos,dir*2)].food > 0 || view[deRotate(pos,dir*3)].food > 0)) {
            //attempt rotate
            moveTo = deRotate(pos,-dir);
        }
        if(view[4].ant.type==2 && pos >= 0 && (view[deRotate(pos,dir*2)].food > 0 || view[deRotate(pos,dir*3)].food > 0)) {
            //attempt rotate
            moveTo = deRotate(pos,-dir);
        }
        if(moveTo >= 0 && view[moveTo].ant != null && view[moveTo].ant.type == 5) {
            if(view[moveTo].ant.friend)
                moveTo = deRotate(moveTo,dir*2);
            else
                moveTo = deRotate(pos,-dir);
        }
        return {cell:moveTo};
    }
    return {cell:100+view[4].ant.type};//oh god
}

function foreverAlone() {
    var s0 = view[0].ant;
    var s1 = view[1].ant;
    var s2 = view[2].ant;
    var s3 = view[3].ant;
    var s5 = view[5].ant;
    var s6 = view[6].ant;
    var s7 = view[7].ant;
    var s8 = view[8].ant;
    //good
    if(!(s0 == null && s1 == null && s2 == null && s3 == null && s5 == null && s6 == null && s7 == null && s8 == null) && view[4].color == TRAIL) {
        if (view[0].color == TRAIL && !view[8].ant && view[8].color != TRAIL) return {cell: 8};
        else if (view[2].color == TRAIL && !view[6].ant && view[6].color != TRAIL) return {cell: 6};
        else if (view[6].color == TRAIL && !view[2].ant && view[2].color != TRAIL) return {cell: 2};
        else if (view[8].color == TRAIL && !view[0].ant && view[0].color != TRAIL) return {cell: 0};
        //Can't find color, or path is blocked? try diagonals regardless of color
        else if (!view[0].ant) return {cell: 0};
        else if (!view[2].ant) return {cell: 2};
        else if (!view[6].ant) return {cell: 6};
        else if (!view[8].ant) return {cell: 8};
        //Everything else failed? Stay put.
        else return {cell: 4};
    }
    //good
    if (view[4].color == TRAIL) { //If on colored square, try to move
        var totGreen = 0;
        for (var i = 0; i < 9; i++) { //Look for food
            if (view[i].food) {
                return {cell: i};
            }
            if(view[i].color == TRAIL) totGreen++;
        }
        var ret = getTrailMove();
        if(view[deRotate(ret.cell,1)].color == TRAIL && totGreen <= 4) ret.cell = deRotate(ret.cell,-1);
        else if(view[deRotate(ret.cell,-1)].color == TRAIL && totGreen <= 4) ret.cell = deRotate(ret.cell,1);
        return ret;
    } else { //If not on colored square, look for food, or set current color to 2.
        for (var i = 0; i < 9; i++) { //Look for enemies
            if (i != 4 && view[i].ant != null && !view[i].ant.friend) {
                var r = findOpenSpace(8-i,1);
                if(view[r].color == TRAIL) r = deRotate(r,1);
                return {cell: r};
            }
        }
        return {cell: 4, color:TRAIL};
    }
}

function getTrailMove() {
    if (view[0].color == TRAIL && !view[8].ant && view[8].color != TRAIL) return {cell: 8};
    else if (view[2].color == TRAIL && !view[6].ant && view[6].color != TRAIL) return {cell: 6};
    else if (view[6].color == TRAIL && !view[2].ant && view[2].color != TRAIL) return {cell: 2};
    else if (view[8].color == TRAIL && !view[0].ant && view[0].color != TRAIL) return {cell: 0};
    //Can't find color, or path is blocked? try diagonals regardless of color
    else if (!view[0].ant) return {cell: 0};
    else if (!view[2].ant) return {cell: 2};
    else if (!view[6].ant) return {cell: 6};
    else if (!view[8].ant) return {cell: 8};
    //Everything else failed? Stay put.
    else return {cell: 4};
}

function firebreak() {
    var ret = -1;
    if(findWorker(5) >= 0) {
        return {cell:8-findWorker(5)};
    }
    if(view[4].color != 5) {
        var myView = [0,0,0,0,0,0,0,0,0]
        for(var i=0; i < 9; i++) {
            myView[i] = view[i].color
            if(view[4].ant.food > 0 && view[i].food > 0) {
                myView[i] = 8;
            }
            if(view[i].ant != null && !view[i].ant.friend) return {cell:findOpenSpace(deRotate(i,2),1)};
        }
        var ret = clearAhead(myView);
        if(ret == null)
            return {cell:4,color:5};
        else {
            if(!(view[ret.cell].ant != null && view[ret.cell].ant.friend == false) && (view[4].ant.food == 0 || view[ret.cell].food == 0))
                return ret;
            return {cell:4,color:5};
        }
    }
    if(view[1].color == 5 && view[3].color == 5 && view[5].color == 5 && view[7].color == 5) {
        if(view[0].color != 8) return {cell:0,color:8};
        if(view[1].color != 8) return {cell:1,color:8};
    }
    if(view[1].color == 5 && view[7].color != 5) ret = {cell:7};
    if(view[3].color == 5 && view[5].color != 5) ret = {cell:5};
    if(view[5].color == 5 && view[3].color != 5) ret = {cell:3};
    if(view[7].color == 5 && view[1].color != 5) ret = {cell:1};
    if(view[1].color != 5 && view[3].color != 5 && view[5].color != 5 && view[7].color != 5) ret = {cell:1};
    if((view[1].color == 5 && view[7].color == 5) || (view[3].color == 5 && view[5].color == 5)) ret = {cell:0};
    var loop = 0;
    while(ret.cell >= 0 && ((view[ret.cell].food > 0 && view[4].ant.food > 0) || view[ret.cell].ant != null) && loop < 9) {
        loop++;
        ret.cell = (ret.cell + 2) % 9;
    }
    if(loop < 9 && ret.cell >= 0) return ret;
    return {cell:4};
}

//7,6,4,2,3
//O7,D2

function highwayRobbery() {
    var move = basicHighwayMove();
    if(move.cell >= 0 && view[move.cell].ant != null) {
        var n = HIGHWAY_COLORS.indexOf(view[4].color) + (view[4].color%2==0?1:HIGHWAY_COLORS.length);
        var nextMove = HIGHWAY_COLORS[n % HIGHWAY_COLORS.length];
        for(var i=0;i<9;i++) {
            if(view[i].color == nextMove) {
                return {cell:i};
            }
        }
    }
    return move;
}

function basicHighwayMove() {
    var isQueen = view[4].ant.type == 5;
    if(isHighwayCenter()) {
        var n = HIGHWAY_COLORS.indexOf(view[4].color) + 1;
        var nextMove = HIGHWAY_COLORS[n % HIGHWAY_COLORS.length];
        for(var i=0;i<9;i++) {
            if(view[i].color == nextMove) {
                if(view[i].ant == null)
                    return {cell:i};
                else {
                    return {cell:deRotate(i,1)};
                }
            }
        }
    }
    else {
        if(view[4].color == 7) {
            //move diagonal to yellow (2)
            for(var i=0;i<9;i++) {
                if(i != 4 && i % 2 == 0 && view[i].color == 2) {
                    return {cell:i};
                }
            }
        }
        else {
            //move orthogonal to blue (7)
            for(var i=0;i<9;i++) {
                if(i % 2 == 1 && view[i].color == 7) {
                    //try ortho yellow first
                    for(var j=0;j<9;j++) {
                        if(j % 2 == 1 && view[j].color == 2 && areAdjacent(i,j))
                            return {cell:j};
                    }
                    return {cell:i};
                }
            }
            //if orthogonal blue doens't exist...
            //...try diagonal to magenta
            for(var i=0;i<9;i++) {
                if(i != 4 && i % 2 == 0 && view[i].color == 3) {
                    return {cell:i};
                }
            }
            if(view[4].color != 2) {
                //...try diagonal blue
                for(var i=0;i<9;i++) {
                    if(i % 2 == 0 && view[i].color == 7)
                        return {cell:i};
                }
            }
            //...and orthogonal yellow
            for(var i=0;i<9;i++) {
                if(i % 2 == 1 && view[i].color == 2)
                    return {cell:i};
            }
        }
        var n = HIGHWAY_COLORS.indexOf(view[4].color) + 1;
        var nextMove = HIGHWAY_COLORS[n % HIGHWAY_COLORS.length];
        for(var i=0;i<9;i++) {
            if(view[i].color == nextMove) {
                return {cell:i};
            }
        }
    }
    return {cell:-1};
}

function isOnHighway() {
    var match = 0;
    var nxt = HIGHWAY_COLORS[(HIGHWAY_COLORS.indexOf(view[4].color)+1) % HIGHWAY_COLORS.length];//4
    var prv = HIGHWAY_COLORS[(HIGHWAY_COLORS.indexOf(view[4].color)+HIGHWAY_COLORS.length-2) % HIGHWAY_COLORS.length];//6
    for(var i=0;i<9;i++) {
        if(HIGHWAY_COLORS.indexOf(view[i].color) >=0 && (i == 4 || view[i].color != view[4].color))
            match++;
    }
    if(match >= 5) {
        //7,6,4,2,3


        if((view[1].color == nxt && view[7].color == prv)||(view[1].color == prv && view[7].color == nxt) || 
            (view[3].color == nxt && view[5].color == prv)||(view[3].color == prv && view[5].color == nxt)) {
            return true;
        }
        if((view[1].color == view[8].color && (view[1].color == nxt || view[1].color == prv))||(view[1].color == view[6].color && (view[1].color == nxt || view[1].color == prv)) || 
            (view[3].color == view[2].color && (view[3].color == nxt || view[3].color == prv))||(view[3].color == view[8].color && (view[3].color == nxt || view[3].color == prv))) {
            return true;
        }
        if((view[0].color == view[7].color && (view[0].color == nxt || view[0].color == prv))||(view[2].color == view[7].color && (view[2].color == nxt || view[2].color == prv)) || 
            (view[0].color == view[5].color && (view[0].color == nxt || view[0].color == prv))||(view[6].color == view[5].color && (view[6].color == nxt || view[6].color == prv))) {
            return true;
        }
        if(isHighwayCenter()) {
            return true;
        }
    }
    return false;
}

function isHighwayCenter() {
    if(HIGHWAY_COLORS.indexOf(view[4].color) >=0 && (((view[0].color != view[8].color || view[2].color != view[6].color) && view[4].ant.type == 1) || (view[0].color != view[8].color && view[2].color != view[6].color))){
        var m1 = view[1].color == view[7].color;
        var m2 = view[2].color == view[8].color;
        var m3 = view[0].color == view[6].color;
        var m4 = view[0].color != 1 && view[2].color != 1;
        if((m1?1:0)+(m2?1:0)+(m3?1:0) >= 2 && m4) {
            if(view[3].color != view[5].color && ((view[2].color != view[5].color && view[8].color != view[5].color) || view[4].ant.type == 1) && ((view[3].color != view[0].color && view[3].color != view[6].color) || view[4].ant.type == 1)) {
                return true;
            }
        }
        m1 = view[3].color == view[5].color;
        m2 = view[0].color == view[2].color;
        m3 = view[6].color == view[8].color;
        m4 = view[0].color != 1 && view[6].color != 1;
    //good
        if((m1?1:0)+(m2?1:0)+(m3?1:0) >= 2 && m4) {
            m1 = view[1].color != view[7].color;
            m2 = (view[0].color != view[1].color && view[1].color != view[2].color);
            m3 = (view[6].color != view[7].color && view[7].color != view[8].color);
            if(m1 && m2 && m3) {
                return true;
            }
            if(view[4].ant.type == 1 && ((m1?1:0)+(m2?1:0)+(m3?1:0)) >= 2) {
                return true;
            }
        }
    }
    return false;
}

function deRotateSide(m, amt) {
    return deRotate(m,amt*2);
}

/**Positive amount is clockwise**/
function deRotate(m, amt) {
    var rotationsCW = [1,2,5,8,7,6,3,0];
    var rotationsCCW = [3,6,7,8,5,2,1,0];
    if(m == 4 || m < 0 || m > 8 || amt == 0) return m;
    if(amt > 0)
        return rotationsCW[(rotationsCW.indexOf(m)+amt)%8];
    amt = -amt;
    return rotationsCCW[(rotationsCCW.indexOf(m)+amt)%8];
}

function areAdjacent(A, B) {
    if(A == 4 || B == 4 || A == B) return true;
    if(A % 2 == 0 && B % 2 == 0) return false;
    if(A % 2 == 1 && B % 2 == 0) return areAdjacent(B,A);
    if(A % 2 == 1 && B % 2 == 1) return !(8-A == B || 8-B == A);
    if(A == 0 && (B == 1 || B == 3)) return true;
    if(A == 2 && (B == 1 || B == 5)) return true;
    if(A == 6 && (B == 3 || B == 7)) return true;
    if(A == 8 && (B == 5 || B == 7)) return true;
    return false;
}

function findFirstTrail() {
    var pos = 0;
    var b = 0;
    while(view[pos].color != TRAIL && b < 8) {
        pos=deRotate(pos,1);
        b++;
    }
    return pos;
}

function clearAhead(sides) {
    var c=0;
    for(var i=0;i<9;i++) {
        if(view[i].color == 5) c++;
        if(view[i].color == 5 && i%2 == 0) c+=10;
    }
    if(c == 2) {
        if(view[0].color == 5 || view[2].color == 5 || view[6].color == 5 || view[8].color == 5) {
            return {cell:4,color:5};
        }
        if(view[0].ant == null)
            return {cell:0};
        if(view[2].ant == null)
            return {cell:2};
        if(view[6].ant == null)
            return {cell:6};
        if(view[8].ant == null)
            return {cell:8};
    }
    c = 0;
    sides[4] = 0;
    var toMatch =[{state:[1,1,1,
                          2,0,2,
                          0,1,0]},
                 {state:[0,2,1,
                         1,0,1,
                         0,2,1]},
                 {state:[0,1,0,
                         2,0,2,
                         1,1,1]},
                 {state:[1,2,0,
                         1,0,1,
                         1,2,0]}];
    for(var m=0;m<4;m++) {
        var score=0;
        for(var j=0;j<9;j++) {
            if(j!=4) {
                if(sides[j] == 5 && toMatch[m].state[j] == 1) {
                    score++;
                }
                if(sides[j] != 5 && (toMatch[m].state[j] == 0 || toMatch[m].state[j] == 2)) {
                    score++;
                }
                if(sides[j] == 5 && toMatch[m].state[j] == 2) {
                    score--;
                }
            }
        }
        if(score >= 6) {
            var clearOrder=[1,0,2];
            for(var r=0;r<clearOrder.length;r++) {
                var s = deRotateSide(clearOrder[r],m);
                if(view[s].color == 5) {
                    if(view[s].ant == null)
                        return {cell:s,color:8};
                    else
                        return {cell:4};
                }
            }
        }
    }
    return null;
}

function findOpenSpace(pos, dir) {
    if(pos > 8 || pos < 0) return pos;
    var b = 0;
    while(view[pos].ant != null && b < 8) {
        pos=deRotate(pos,dir);
        b++;
    }
    return pos;
}

function getHighestWorker() {
    var r=0;
    for(var i=0;i<9;i++) {
        if(i != 4 && view[i].ant != null) {
            if(view[i].ant.friend && view[i].ant.type > r) r = view[i].ant.type;
        }
    }
    return r;
}

function getNumWorkers(type) {
    var r=0;
    for(var i=0;i<9;i++) {
        if(i != 4 && view[i].ant != null) {
            if(view[i].ant.friend && view[i].ant.type == type) r++;
        }
    }
    return r;
}

function findWorker(type) {
    for(var i=0;i<9;i++) {
        if(i != 4 && view[i].ant != null) {
            if(view[i].ant.friend && view[i].ant.type == type) return i;
        }
    }
    return -1;
}

422% Completado
422% porque la actualización fue el 22/04 Esta broma ha durado demasiado

Detección de movimiento inválido: verificar
Turning: verificar
Respawning trabajadores cuando son recortados: principalmente check
Evitar atascarse en otras hormigas sanguijuelas: ...

Actualización 8/1

Gira el doble de veces, lo que resulta en ~ 15% más de alimentos recolectados

Actualización 8/2

Mayor robustez frente a quedarse atascado.

Actualización 9/9

Código agregado para reaparecer a los trabajadores 2 y 3 cuando falta ese brazo.

Actualización 9/12

Revertir actualización previa. El planeador podría avanzar con el brazo recién engendrado, pero los trabajadores actuarían fuera de orden al tratar de girar y se volaría.

Además de arreglar eso, reconfiguró el código de reaparición de todos los trabajadores para que sea más discriminatorio: reduce las colisiones con los trabajadores "perdidos" cercanos y evita la reaparición completamente por encima de 60 alimentos: 60 alimentos son suficientes para anotar en los 3 primeros lugares la mayoría de las veces, lo que es mejor que gastar 4 alimentos en trabajadores que probablemente serán despojados nuevamente en poco tiempo: muy pocas hormigas logran más de 60, excepto cuando de todos modos superan las capacidades de Glider. También agregué un código para permitir que los trabajadores perdidos corrieran por arruinar los rastros de otras hormigas.

Algunas otras correcciones relacionadas con situaciones en las que el planeador podría atascarse incluso cuando hubiera un movimiento válido que pudiera hacer (por ejemplo, hacer que la reina abandone un brazo atascado y los reaparezca más tarde).

Reconfiguró el color para usar una variable definida y cambió el color del rastro de amarillo a verde para evitar quedar "atrapado" en Mineros en el sistema ferroviario de un Riel (la reina solista sería redirigida constantemente).

Parte del nuevo código se incorpora desde mi otra entrada, Black Hole .

Actualización 9/13

Se corrigió un error en el código de orientación para moverse fuera de la generación. Un par de 2s mangos se convirtieron en TRAILs.

Actualización 1/21

  • Glider ahora puede girar a la izquierda (animación pendiente).
  • El juego temprano se aceleró al generar un trabajador tan pronto como haya comida disponible.
  • El deslizamiento con un solo brazo también puede girar en ambas direcciones.
  • Se elevó el umbral de "No reaparecer trabajadores"
  • "No desperdicies alimentos tratando de reaparecer y fallando" reducido de %5a%3

Actualización 1/25

  • Se corrigieron algunos escenarios de punto muerto, lo que aumentó la eficiencia algunos puntos en algunos partidos.

Actualización 2/20

  • Se abordaron varios escenarios de explosión de punto muerto / punto muerto, haciendo que las configuraciones de 5 y 3 hormigas sean más estables. Varios arreglos de alimentos pueden hacer que el planeador se confunda y se bloquee (gire repetidamente hacia adelante y hacia atrás) o explote.
    • Una explosión fue el resultado de que la hormiga barredora se moviera hacia la comida durante el último paso de una rotación, y luego asumió "mierda, tengo comida, me sacrifiqué para llevarla a la reina" cuando no era necesario (el movimiento estándar era válido )
    • Una explosión fue el resultado de que la celda debajo de la reina ya estaba TRAIL(verde), causando uno de los movimientos de "quedarse quieto" de la reina (manejado por el retroceso para foreverAlone()hacer que la reina se aleje del grupo. Se corrigió haciendo una modificación de guardia estacionaria el color de la celda de la reina justo antes de que la reina tome su acción.
    • Es más deseable que arreglar el código de la reina, ya que esto nos permite escapar de los callejones sin salida que de otro modo podrían ocurrir al retener la reserva foreverAlone(), sacar a la reina, incluso si no podemos salvar sus alas.
  • foreverAlone()función actualizada para moverse solo a la comida si la celda debajo de la reina es TRAIL(verde). Muy ligera pérdida de eficiencia.
  • La reconstrucción del planeador más mejor localiza una celda verde adyacente, un cambio findFirstYellow()y su uso. Esto, combinado con los resultados anteriores de la bala, evita mejor las células vistas anteriormente y / o el sitio de una explosión reciente: un planeador recién formado, en la gran mayoría de los casos, se moverá en una dirección no a lo largo de la llegada de la reina. trayectoria.
    • Función renombrada: el amarillo no ha sido el color del rastro de la reina en mucho, mucho tiempo.
    • La función también estaba localizando incorrectamente la "primera celda del camino" debido a una verificación lógica invertida: en while ==lugar dewhile !=

Actualización 2/25

  • Más correcciones de casos extremos de explosión / bloqueo / punto muerto, mejorando en general el rendimiento.
  • Algunas modificaciones al comportamiento similar a LightSpeed, sugerido por Alion (a partir del comportamiento de su propia entrada ). Generalmente aumenta la recolección de alimentos, pero también evita ciertos escenarios de punto muerto.

Actualización 3/11: Alas de planeador rotas que se encuentran en el comportamiento de cambio de autopista a un sistema de "robo de comida" tipo vampiro. Predominantemente, esto no significará mucho a menos que la reina misma esté sola dentro de la Carretera, que con sus grandes cantidades de verde, hace de este un espacio imposible para escapar.

El trabajador 1 intentará realizar reparaciones en el corredor central de la autopista y realizar un aborto con la mejor estimación si se encuentra en un lugar de la autopista que NO es ferroviario (en lugar de reparar un centro falso). Viaja en la misma dirección que la reina (en contra de los trabajadores 2, 3 y 4).

Los trabajadores 2, 3 y 4 intentan realizar robo de vehículos en la reina de la autopista, luego regresan a su propia reina, que genera trabajadores cuando ella ...

  • no puede ver a ninguno de sus propios trabajadores
  • está sentado en magenta
  • tiene comida entre umbrales (con límites suaves en ambos lados)
  • modificado por un simple azar

Esto evita crear demasiados trabajadores (funciona a ~ 100) y cuando una cadena de trabajadores cargados regresa, hay un ingreso neto de alimentos (debido al no desove mientras se ven los propios trabajadores) eventualmente empujando a Glider por encima del umbral superior y el desove (masivamente reducido) nuevos trabajadores.

Esta era una táctica que había planeado escribir en Vampire, pero el primer intento de Vampire de bloquear a la reina de la autopista y simplemente desangrarla funcionó, por lo que no había ningún incentivo para crear este comportamiento. El código de detección en carretera se escribe desde cero y es distinto de Vampire, aunque la detección de espejo (IsHighwayCenter) es muy similar, solo por la simplicidad del patrón.

Actualización 3/16

Además de dos correcciones de errores menores (ver el historial de edición), se realizó una optimización de la función Forever Alone (robada originalmente ...) para evitar el seguimiento, lo que permite a la reina observar más celdas en promedio cuando está sola.

Se agregó el método de movimiento highwayRobbery()de retroceso cuando la función no pudo devolver un movimiento válido cuando la hormiga está en el centro de la carretera (y ninguna otra lógica lo había ajustado a un valor razonable). Si eso falla, las hormigas realizan su lógica de deslizamiento estándar.

Ajustes menores

  • Queen ya no intenta comenzar a desovar cuando detecta que está en la carretera
  • Queen ya no quema Calorías al intentar completar una formación de planeador que nunca se completará (genera un trabajador 4, el trabajador 4 no ve al trabajador 1, el trabajador 4 se aleja, repite)
  • Se ajustaron los valores del módulo de alimentos para que sean coprimos con el ciclo de color Highway.
  • Se corrigió un "terminar de rotar con 1 brazo" que causaba un punto muerto
  • Pequeñas correcciones al isOnHighway()cheque
  • Las hormigas hechas se mueven a un amarillo ortogonal antes de pasar a una celda azul ortogonal cuando están en la carretera (ahorra 1 turno para encontrar el centro después de despegarse).

Actualización 26/03

Más ajustes menores.

Actualización 4/21

Correcciones menores.


Basado libremente en Steamroller .

Recoge 4 alimentos dejando un rastro amarillo. Una vez que tiene cuatro alimentos, produce uno de cada tipo de trabajador a su alrededor. Luego comienza a deslizarse con el máximo empuje. La animación en movimiento en la parte superior requiere 1 turno de juego para completarse: como el trabajador 1 se produce primero, se ejecuta primero, luego 2, 3 y 4, antes de terminar el turno con la reina. La animación de giro toma 2 turnos, las pausas cortas son cuando la reina realiza {cell:4}y la comida se mueve cuando las trabajadoras 3, 4 y la reina actúan {cell:4}para prepararse para el deslizamiento continuo.


Me gusta esta idea de bot
Destructible Lemon

1
@DestructibleLemon ¡Gracias! Estaba pensando en Steamroller / Piercer y pensé "espera, la reina es la última, seguramente puedo conseguir que cinco hormigas jueguen bien ..." agarró un trozo de papel, arrancó algunos cuadrados y comenzó a moverlos. Funcionó, así que escribí un código. Tuve que hacer un montón de manejo de errores y corrección de errores para casos extremos (el bot inicial se atascaba o consumía toda la comida que podía y se hacía, agregando que la operación de giro introdujo muchos escenarios de casos extremos donde rompería la formación y se estrellaría )
Draco18s

@trichoplax hasta que choca con otra hormiga?
Destructible Lemon

@DestructibleLemon eeeehhhh ... tal vez. No se descalifica al menos ...
Draco18s

3
@KZhang Oh, lo hice. Busque los comentarios "// intento de rotación"
Draco18s

13

Molino

Aquí hay un molino de viento ... esperando al Hombre de la Mancha (¿o Vampiro de la Mancha?) Que subirá para derribarlo.

Molino de viento, etapa intermedia temprana del juego

Traté de explorar hasta qué punto el diseño de Mineros en un riel , ahora relegado al historial de edición de esa respuesta, podría ser impulsado, impulsado por la observación de que los escalones deberían pintarse mejor en las paredes alternativas de los pozos de la mina. Y luego creció y evolucionó ...

Mientras que nuestro riel de peso pesado más la geometría del eje liviano es casi el mismo y los patrones de riel se ven lo suficientemente similares como para hacer que algunas hormigas confundan una con la otra, la implementación está escrita desde cero y es mucho más peatonal en el estilo de codificación, e introduce una nueva clave idea. Zoom en el centro para verlo fresar .

var AJM=1;var ASM=2;var AE=3;var ASF=4;var AQ=5;var RW=true;var EFCO=false;var THC=1;var TH0=0;var TH1=15;var TH2=17;var TH3=67;var TH4=120;var TH5=390;var THX=15;var THFCO1=9;var THFCO2=26;var THFCO3=75;var RM1=7;var RD1=4;var RM2=19;var RD2=THX;var PW=1;var PY=2;var PP=3;var PC=4;var PR=5;var PG=6;var PB=7;var PK=8;var LN=0;var LCLR=PW;var LT=PB;var LLSF=PP;var LA=PP;var LRL0=PC;var LRL1=PG;var LRL2=LRL0;var LRM0=PR;var LRM1=PB;var LRM1_WRP=PK;var LRM2=PG;var LRR0=PG;var LRR1=PW;var LRR1U=PR;var LRR1V=PY;var LRR1X=PK;var LRR2=PY;var LMX_M0=LCLR;var LMX_M1IN=PC;var LMX_M1OUT=PY;var LMX_M2IN=PP;var LMX_M2OUT=PR;var LMX_M3IN=PB;var LMX_M3OUT=PK;var LMS_WRP=PK;var LMR0=PK;var LML1=PY;var LMR2=PR;var LML3=PC;var LMMF=PG;var LMMH=PP;var LG3=PK;var LG4=PR;var LG5=PK;var LG6=PB;var LP0=LCLR;var LPB=PC;var LPG=PY;var LPG1=PR;var LPX=PP;var FALSE_X9=[false,false,false,false,false,false,false,false,false];
var UNDEF_X9=[undefined,undefined,undefined,undefined,undefined,undefined,undefined,undefined,undefined];
var QCPERD=6;var LCL_QC_RESET=LCLR;var LCRQC=[PY,PP,PC,PR,PG,PK];var LCRQCVAL=Array.from(FALSE_X9);var LCRQC_VALUE=Array.from(UNDEF_X9);for (var i=0; i<QCPERD; i++){LCRQCVAL[LCRQC[i]]=true;LCRQC_VALUE[LCRQC[i]]=i;}var SCPERD=7;var LCL_SC_RESET=LCLR;var LCRSC=[PY,PP,PC,PR,PG,PB,PK];var LCRSCVAL=Array.from(FALSE_X9);var LCRSC_VALUE=Array.from(UNDEF_X9);for (i=0; i<SCPERD; i++){LCRSCVAL[LCRSC[i]]=true;LCRSC_VALUE[LCRSC[i]]=i;}var LCRPHR=Array.from(FALSE_X9);LCRPHR[LPG]=true;LCRPHR[LPG1]=true;var LCRPHASES=Array.from(LCRPHR);LCRPHASES[LPX]=true;var LCRGRM1=Array.from(FALSE_X9);LCRGRM1[LRM1]=true;LCRGRM1[LRM1_WRP]=true;var LCRGRM_ALL=Array.from(FALSE_X9);LCRGRM_ALL[LRM0]=true;LCRGRM_ALL[LRM1]=true;LCRGRM_ALL[LRM1_WRP]=true;LCRGRM_ALL[LRM2]=true;var LCRGRR1_OUT=Array.from(FALSE_X9);LCRGRR1_OUT[LRR1V]=true;LCRGRR1_OUT[LRR1X]=true;var LCRGRR1B=Array.from(LCRGRR1_OUT);LCRGRR1B[LRR1U]=true;var LCRGRR1=Array.from(LCRGRR1B);LCRGRR1[LRR1]=true;var LCRMX_IO=Array.from(FALSE_X9);LCRMX_IO[LMX_M1IN]=true;LCRMX_IO[LMX_M1OUT]=true;LCRMX_IO[LMX_M2IN]=true;LCRMX_IO[LMX_M2OUT]=true;LCRMX_IO[LMX_M3IN ]=true;LCRMX_IO[LMX_M3OUT]=true;var LCRMX=Array.from(LCRMX_IO);LCRMX[LMX_M0]=true;var LCRMX_IN=Array.from(FALSE_X9);LCRMX_IN[LMX_M1IN]=true;LCRMX_IN[LMX_M2IN]=true;LCRMX_IN[LMX_M3IN ]=true;var LCRMX_OUT=Array.from(FALSE_X9);LCRMX_OUT[LMX_M1OUT]=true;LCRMX_OUT[LMX_M2OUT]=true;var LCRMM_FOOD=Array.from(FALSE_X9);LCRMM_FOOD[LCLR]=true;LCRMM_FOOD[LMMF]=true;var LCRMM_HOME=Array.from(FALSE_X9);LCRMM_HOME[LCLR]=true;LCRMM_HOME[LMMH]=true;var LCRMS=Array.from(FALSE_X9);LCRMS[LCLR]=true;LCRMS[LMS_WRP]=true;var LCRFRLL0=Array.from(FALSE_X9);LCRFRLL0[LCLR]=true;LCRFRLL0[LMR0]=true;LCRFRLL0[LMR2]=true;LCRFRLL0[LRM0]=true;LCRFRLL0[LRM2]=true;var LCRFRLL1=Array.from(FALSE_X9);LCRFRLL1[LCLR]=true;LCRFRLL1[LMR0]=true;LCRFRLL1[LMR2]=true;LCRFRLL1[LRR0]=true;LCRFRLL1[LRM1]=true;LCRFRLL1[LRR2]=true;var LCRFRLL2=Array.from(FALSE_X9);LCRFRLL2[LCLR]=true;LCRFRLL2[LMR0]=true;LCRFRLL2[LMR2]=true;LCRFRLL2[LRM0]=true;LCRFRLL2[LRR1V]=true;var TN=8;var POSC=4;var NOP={cell:POSC};var AIMU=1;var AIML=3;var AIMR=5;var AIMD=7;var FWD_CELLS=[[ true,true,false,true,true,false,false,false,false ],[ true,true,true,true,true,true,false,false,false ],[ false,true,true,false,true,true,false,false,false ],[ true,true,false,true,true,false,true,true,false ],[ true,true,true,true,true,true,true,true,true ],[ false,true,true,false,true,true,false,true,true ],[ false,false,false,true,true,false,true,true,false ],[ false,false,false,true,true,true,true,true,true ],[ false,false,false,false,true,true,false,true,true ]];var PTNOM=-9;var PTHOME=[LRM0,LRL0,LRM0,LRL0,LN,LRL0,LN,LN,LRM0];var PTGARDEN=[LG6,LG5,LG4,LN,LN,LG3,LN,LRL0,LRL1];var PTFRM0=[LRL1,LRM1,LCRGRR1,LRL0,LRM0,LRR0,LRL2,LRM2,LRR2];var PTFRM1=[LRL2,LRM2,LRR2,LRL1,LCRGRM1,LCRGRR1,LRL0,LRM0,LRR0];var PTFRM2=[LRL0,LRM0,LRR0,LRL2,LRM2,LRR2,LRL1,LCRGRM1,LCRGRR1];var PTGRM0=[LRL1,LCRGRM1,LCRGRR1,LRL0,LRM0,LRR0,LRL2,LRM2,LRR2];var PTGRM1=PTFRM1;var PTGRM2=PTFRM2;var PTGRM2B=[LRL0,LRM0,LRR0,LRL2,LRM2,LRR2,LRL1,LCRGRM1,LCRGRR1B];var PTGRM1_WRP=[LRL2,LRM2,LRR2,LRL1,LRM1_WRP,LRR1X,LRL0,LRM0,LRR0];var PTFRL0=[LCRFRLL1,LRL1,LRM1,LCRFRLL0,LRL0,LRM0,LCRFRLL2,LRL2,LRM2];var PTFRL1=[LCRFRLL2,LRL2,LRM2,LCRFRLL1,LRL1,LCRGRM1,LCRFRLL0,LRL0,LRM0];var PTFRL0H=[LN,LRL1,LRM1,LN,LRL0,LRM0,LN,LN,LN];var PTFRL1G=[LCRFRLL2,LRL2,LRM2,LG3,LRL1,LCRGRM1,LCRPHASES,LRL0,LRM0];var PTFRL2=[LCRFRLL0,LRL0,LRM0,LCRFRLL2,LRL2,LRM2,LCRFRLL1,LRL1,LCRGRM1];var PTGRL0=[LCRFRLL1,LRL1,LCRGRM1,LCRFRLL0,LRL0,LRM0,LCRFRLL2,LRL2,LRM2];var PTGRL1=PTFRL1;var PTGRL2=PTFRL2;var PTGRR0=[LCRGRM1,LCRGRR1,LCLR,LRM0,LRR0,LMR0,LRM2,LRR2,LCRMX];var PTGRR2=[LRM0,LRR0,LMR0,LRM2,LRR2,LCRMX,LCRGRM1,LCRGRR1,LCLR];var PTGRR1=[LRM0,LCRGRM1,LRM2,LRR0,LCRGRR1,LRR2,LMR0,LCLR,LCRMX];var PTMS0R_IN=[LRR0,LRR1U,LRR2,LMR0,LCLR,LCRMX_IN,LCLR,LCLR,LML1];var PTMS0R_OUT=[LRR0,LRR1U,LRR2,LMR0,LCLR,LCRMX_IO,LCLR,LCLR,LML1];var PTMS0R_OUT1=[LRR0,LCRGRR1_OUT,LRR2,LMR0,LCLR,LCRMX,LCLR,LCLR,LML1];var PTMS0=[LCLR,LCRMM_HOME,LML3,LMR0,LCRMM_FOOD,LCLR,LCLR,LCLR,LML1];var PTMS1=[LMR0,LCRMM_HOME,LCLR,LCLR,LCRMM_FOOD,LML1,LMR2,LCLR,LCLR];var PTMS2=[LCLR,LCRMM_HOME,LML1,LMR2,LCRMM_FOOD,LCLR,LCLR,LCLR,LML3];var PTMS3=[LMR2,LCRMM_HOME,LCLR,LCLR,LCRMM_FOOD,LML3,LMR0,LCLR,LCLR];var PTMS1_IN=[LMR0,LCRMM_HOME,LCRMX_IN,LCLR,LCRMM_FOOD,LML1,LMR2,LCLR,LCLR];var PTMS1_IO=[LMR0,LCRMM_HOME,LCRMX_IO,LCLR,LCRMM_FOOD,LML1,LMR2,LCLR,LCLR];var PTMS0_OUT=[LCLR,LCLR,LML3,LMR0,LCLR,LCRMX_IO,LCLR,LCLR,LML1];var PTMS0_WRAPPING=[LCLR,LCRMM_HOME,LML3,LMR0,LCRMM_FOOD,LCRMS,LRL0,LRL1,LRL2];var PTGRL1_WRP=[LMR0,LCLR,LMS_WRP,LRL0,LRL1,LRL2,LRM0,LRM1_WRP,LRM2];var PTMS0FL=[LMMH,LML3,LN,LMMF,LCLR,LN,LCLR,LML1,LN];var PTMS1FL=[LMMH,LCLR,LN,LMMF,LML1,LN,LCLR,LCLR,LN];var PTMS2FL=[LMMH,LML1,LN,LMMF,LCLR,LN,LCLR,LML3,LN];var PTMS3FL=[LMMH,LCLR,LN,LMMF,LML3,LN,LCLR,LCLR,LN];var PTMS0FR=[LN,LCLR,LMMH,LN,LMR0,LMMF,LN,LCLR,LCLR];var PTMS1FR=[LN,LMR0,LMMH,LN,LCLR,LMMF,LN,LMR2,LCLR];var PTMS2FR=[LN,LCLR,LMMH,LN,LMR2,LMMF,LN,LCLR,LCLR];var PTMS3FR=[LN,LMR2,LMMH,LN,LCLR,LMMF,LN,LMR0,LCLR];var CCW=[6,7,8,5,2,1,0,3,6,7,8,5,2,1,0,3,6,7,8,5,2,1];
var xn=-1;var fwdWrong=[];var rearWrong=[];var here=view[POSC];var mC=here.color;var myself=here.ant;var mT=myself.type;var mF=myself.food;var mS=(mT==AE||(mT!=AQ&&mF>0));if (EFCO&&(mT==AQ)){if (mF<=THFCO1){QCPERD=5;} else if (mF<=THFCO2){QCPERD=4;} else if (mF<=THFCO3){QCPERD=5;}}var dOK=[true,true,true,true,true,true,true,true,true];
var uo=true;var sL=[0,0,0,0,0,0,0,0,0];var sD=[0,0,0,0,0,0,0,0,0];var sN=[0,0,0,0,0,0,0,0,0];var sT=[0,0,0,0,0,0,0,0,0];var fdL=0;var fdD=0;var fdT=0;sT[mC]++;for (i=0; i<TN; i+=2){var cell=view[CCW[i]];sD[cell.color]++;sN[cell.color]++;sT[cell.color]++;if (cell.food>0){fdD++;fdT++;if (mS){dOK[CCW[i]]=false;uo=false;}}}for (i=1; i<TN; i+=2){var cell=view[CCW[i]];sL[cell.color]++;sN[cell.color]++;sT[cell.color]++;if (cell.food>0){fdL++;fdT++;if (mS){dOK[CCW[i]]=false;uo=false;}}}var aF=[0,0,0,0,0,0];var aLF=[0,0,0,0,0,0];var aUF=[0,0,0,0,0,0];var fT=0;var mQ=0;var aE=[0,0,0,0,0,0];var aLE=[0,0,0,0,0,0];var aUE=[0,0,0,0,0,0];var eT=0;for (i=0; i<TN; i++){var cell=view[CCW[i]];if (cell.ant){if (cell.ant.friend){aF[cell.ant.type]++;fT++;if (cell.ant.type==AQ){xn=i&6;mQ=i&1;}if (cell.ant.food>0){aLF[cell.ant.type]++;} else {aUF[cell.ant.type]++;}} else {aE[cell.ant.type]++;eT++;if (cell.ant.food>0){aLE[cell.ant.type]++;} else {aUE[cell.ant.type]++;}}dOK[CCW[i]]=false;uo=false;}}switch (mT){case AQ:return (rQSs());case ASF:if (mQ==1){return (rSSs());} else if (aF[AQ]>0){return (rGSs());} else {return (rLSSy());}case AE:return (rESs());case AJM:case ASM:if (aE[AQ]>0){return (rDSs());} else if (mF>0){return (rLSs());} else {return (rUSs());}default:return NOP;}function rQSs (){switch (aF[ASF]){case 0:return (rQScrSy());case 1:for (var i=0; i<TN; i++){var cell=view[CCW[i]];if (cell.ant&&cell.ant.type==ASF){xn=i&6;if (i&1){if (mF<=THX){return (rQLsSy());} else {return (rQLvSy());}} else {return (rQSgSy());}}}break;case 2:for (i=0; i<TN; i+=2){var cell0=view[CCW[i]];var cell1=view[CCW[i+1]];if ((cell0.ant&&(cell0.ant.type==ASF))&&(cell1.ant&&(cell1.ant.type==ASF))){xn=i;return (rQOSy());}}return (rQCSy());default:return (rQCSy());}return NOP;}function rSSs (){if (view[CCW[xn+3]].ant&&view[CCW[xn+3]].ant.friend&&(view[CCW[xn+3]].ant.type==ASF)){return (rSOSy());} else if (view[CCW[xn+1]].ant.food<=THX){return (rSLSy());} else {return (rSESy());}}function rGSs (){var secCell=view[CCW[xn+7]];if (secCell.ant&&(secCell.ant.friend==1)&&(secCell.ant.type==ASF)){return (rGOSy());} else {return (rGSSy());}return NOP;}function rESs (){if (aF[AQ]>0){return (rEHyS());} else if (aF[AJM] +aF[ASM]>0){return (rEBRSy());} else {return (rEASy());}return NOP;}function rDSs(){if (aF[AQ]>0){return (rDHSy());} else {for (var i=0; i<TN; i++){if (view[CCW[i]].ant&&(view[CCW[i]].ant.type==AQ)){if (i&1){if ((view[CCW[i+1]].ant&&view[CCW[i+1]].ant.friend&&view[CCW[i+2]].ant&&view[CCW[i+2]].ant.friend)||(view[CCW[i-1]].ant&&view[CCW[i-1]].ant.friend&&view[CCW[i+6]].ant&&view[CCW[i+6]].ant.friend)||(view[CCW[i+2]].ant&&view[CCW[i+2]].ant.friend&&view[CCW[i+6]].ant&&view[CCW[i+6]].ant.friend)){if (dOK[CCW[i+4]]){return {cell:CCW[i+4]};} else if (dOK[CCW[i+3]]){return {cell:CCW[i+3]};} else if (dOK[CCW[i+5]]){return {cell:CCW[i+5]};}}} else {if (view[CCW[i+1]].ant&&view[CCW[i+1]].ant.friend&&
view[CCW[i+7]].ant&&view[CCW[i+7]].ant.friend){if (dOK[CCW[i+4]]){return {cell:CCW[i+4]};} else if (dOK[CCW[i+3]]){return {cell:CCW[i+3]};} else if (dOK[CCW[i+5]]){return {cell:CCW[i+5]};} else if (dOK[CCW[i+6]]){return {cell:CCW[i+6]};} else if (dOK[CCW[i+2]]){return {cell:CCW[i+2]};}}if ((i<=2)&&dOK[CCW[i+7]]){return {cell:CCW[i+7]};}if ((i>=4)&&dOK[CCW[i+1]]){return {cell:CCW[i+1]};}}if (fT==0){if (view[CCW[i]].color!=PP){return {cell:CCW[i],color:PP};} else if (mC!=LCLR){return {cell:POSC,color:LCLR};}}}}}return NOP;}function rUSs (){if ((aF[AQ]>0)&&!LCRQCVAL[view[CCW[xn+mQ]].color]){return (rUHSy());} else if ((fT+eT>=4)&&(aF[AJM]+aF[ASM] +aF[AE]>=3)){return (rUCRSy());} else if (aF[AQ]>0){return (rUHSy());} else if (aF[ASF]>0){if (aF[ASF]>1){return (rM2R1Sy());} else {return (rURHSy());}} else if (aF[AE]>0){return (rUBRSy());} else if (spcRL1()){return (rULRL1Sy());} else if (spcRR0()){return (rULRR0Sy());} else if (spcRR2()){return (rULRR2Sy());} else if (spcMS()){return (rUDSSy());} else if (spcRL02()){return (rULRL02Sy());} else if (spcRM()){return (rUTRRSy());} else if (spcRR1()){return (rUPSSy());} else if (spcMS0R()){return (rUESSy());} else if (spcMS0W()){return (rUSWSy());}return (rLostMSy(true));}function rLSs (){if ((fT>=3)&&(fT+eT>=4)){return (rLCRSy());} else if (aF[ASF]>0){if (aF[ASF]>1){return (rM2R1Sy());} else {return (rLRHSy());}} else if (spcMFL()){return (rLLLWSy());} else if (spcMFR()){return (rLLRWSy());} else if (spcRL1()){return (rLLRL1Sy());} else if (spcRR0()){return (rLLRR0Sy());} else if (spcRR2()){return (rLLRR2Sy());} else if (spcMS0R()){return (rLLSSy());} else if (spcMS0ROut()){return (rLLVSSy());} else if (spcMS()&&(aF[AE]==0)){return (rLASSy());} else if (spcRL02()){return (rLLRL02Sy());} else if (spcRM()){return (rLTRRSy());} else if (spcRR1()){return (rLDSSy());} else if (aF[AE]>0){return (rLFRSy());}return (rLostMSy(true));}function rQScrSy(){if (uo){if (fdT>0){return (rQSETc());} else if (mF>=THC){for (var i=0; i<TN; i+=2){if ((view[CCW[i]].color==LT)||(view[CCW[i+1]].color==LT)){return {cell:CCW[i+1],type:ASF};}}return {cell:1,type:ASF};} else if (mC!=LT){if ((mC==LCLR)||(sN[LCLR]>=TN-1)){return {cell:POSC,color:LT};} else {return (rQSTCTc());}} else if ((sN[LCLR]>=4)&&(sN[LT]==1)){for (var i=0; i<TN; i+=2){if ((view[CCW[i]].color==LT)||(view[CCW[i+1]].color==LT)){return {cell:CCW[i+4]};}}} else if (sN[LCLR]==TN){return {cell:0};} else {return (rQSATc());}} else {if ((fdT>0)&&(eT>0)&&(eT==aE[AQ])){return (rQSSTc());} else {return (rQSEvTc());}}return NOP;}function rQSgSy(){if (fdT>0){if (dOK[CCW[xn+1]]){return {cell:CCW[xn+1]};} else {for (var i=2; i<TN-1; i++){if (dOK[CCW[xn+i]]&&(view[CCW[xn+i]].food>0)){return {cell:CCW[xn+i]};}}for (var i=2; i<TN-1; i++){if (dOK[CCW[xn+i]]){     return {cell:CCW[xn+i]};}}return NOP;}} else if ((mF>TH0)&&(mC==LCL_QC_RESET)){if (dOK[CCW[xn+7]]){return { cell:CCW[xn+7],type:AE};} else if (view[CCW[xn]].color==LPB){if (dOK[CCW[xn+3]]){return { cell:CCW[xn+3],type:AE};} else if (dOK[CCW[xn+5]]){return { cell:CCW[xn+5],type:AE};} else if (dOK[CCW[xn+6]]){return { cell:CCW[xn+6],type:AJM};} else if (dOK[CCW[xn+2]]){return { cell:CCW[xn+2],type:AJM};} else if (dOK[CCW[xn+4]]){return { cell:CCW[xn+4],type:AJM};} else if (dOK[CCW[xn+1]]){return { cell:CCW[xn+1],type:ASF};}}}return NOP;}function rQOSy(){if ((aE[AQ]>0)&&(mF>0)){for (var i=2; i<TN; i++){if (view[CCW[xn+i]].ant&&(view[CCW[xn+i]].ant.type==AQ)&&!view[CCW[xn+i]].ant.friend){var j=(xn&4) ? 1 : -1;if (dOK[CCW[xn+i-j]]){return {cell:CCW[xn+i-j],type:AJM};} else if (dOK[CCW[xn+i+j]]){return {cell:CCW[xn+i+j],type:AJM};} else if (i==5){var i1=5-2*j;var i2=5+2*j;if (dOK[CCW[xn+i1]]&&!(view[CCW[xn+4]].ant&&view[CCW[xn+4]].ant.friend&&
view[CCW[xn+6]].ant&&view[CCW[xn+6]].ant.friend&&
view[CCW[xn+i2]].ant&&view[CCW[xn+i2]].ant.friend)){return {cell:CCW[xn+i1],type:AJM};} else if (dOK[CCW[xn+i2]]&&!(view[CCW[xn+4]].ant&&view[CCW[xn+4]].ant.friend&&
view[CCW[xn+6]].ant&&view[CCW[xn+6]].ant.friend&&
view[CCW[xn+i1]].ant&&view[CCW[xn+i1]].ant.friend)){return {cell:CCW[xn+i2],type:AJM};}} else if ((i==3)&&dOK[CCW[xn+5]]&&!(view[CCW[xn+2]].ant&&view[CCW[xn+2]].ant.friend&&
view[CCW[xn+4]].ant&&view[CCW[xn+4]].ant.friend)){return {cell:CCW[xn+5],type:AJM};} else if ((i==7)&&dOK[CCW[xn+5]]&&!(view[CCW[xn+6]].ant&&view[CCW[xn+6]].ant.friend)){return {cell:CCW[xn+5],type:AJM};}}}} else if ((mF>0)&&(view[CCW[xn+7]].color==LA)&&dOK[CCW[xn+7]]){return {cell:CCW[xn+7],type:AJM};} else if (view[CCW[xn+1]].ant.food>0){if ((mF>0)&&dOK[CCW[xn+2]]){return {cell:CCW[xn+2],type:AJM};}} else if ((aLF[AJM]+aLF[ASM]>0)&&(mF>0)&&(sN[LA]>0)){for (var i=2; i<TN; i++){var c=CCW[xn+i];if (dOK[c]&&(view[c].color==LA)){return {cell:c,type:AJM};}}} else if (eT>0){var bandits=aUE[1]+aUE[2]+aUE[3]+aUE[4];if ((mF>THX)&&((bandits>=2)||((bandits>=1)&&view[CCW[xn+5]].ant&&view[CCW[xn+5]].ant.friend&&(view[CCW[xn+5]].color==LA)&&(view[CCW[xn+7]].ant&&view[CCW[xn+7]].ant.friend&&
(view[CCW[xn+7]].color==LA))||(view[CCW[xn+3]].ant&&view[CCW[xn+3]].ant.friend&&
(view[CCW[xn+3]].color==LA))))){if (dOK[CCW[xn+2]]){return {cell:CCW[xn+2]};}}if (mF<RD1){if (dOK[CCW[xn+2]]){return {cell:CCW[xn+2]};}} else if ((bandits>=1)&&(mF>0)){if ((mF>THX)&&(mF % RM2==RD2+xn/2)){if (dOK[CCW[xn+2]]){return {cell:CCW[xn+2]};}}for (var i=2; i<TN; i++){var c=CCW[xn+i];var c1,c2;if ((xn==2)||isSc0(view[CCW[xn+1]].color)){c1=CCW[xn+i-1];c2=CCW[xn+i+1];} else if ((xn==6)||isSc1(view[CCW[xn+1]].color)){c1=CCW[xn+i+1];c2=CCW[xn+i-1];} else {break;}if (view[c].ant&&!view[c].ant.friend&&(view[c].ant.food==0)){if (dOK[c1]&&!(view[c2].ant&&view[c2].ant.friend&&view[c2].ant.food>0)){return {cell:c1,type:AJM};} else if (dOK[c2]&&!(view[c1].ant&&view[c1].ant.friend&&view[c1].ant.food>0)){return {cell:c2,type:AJM};}break;}}}}if (!(LCRQCVAL[mC])){return {cell:POSC,color:LCRQC[1]};} else if ((view[CCW[xn]].color==LPX)&&isSc0(view[CCW[xn+1]].color)){if ((mF<=TH0)||(mF % RM1==RD1)){return (rQHTc());} else if (mF<=TH2){if (dOK[CCW[0]]){return {cell:CCW[0],type:AJM};} else {return (rQHTc());}} else {var destCycle=[2,4,6,4,6,2,6,2,4];var destination=destCycle[mF % 9];if (!dOK[CCW[xn+destination]]){destination=destination % 6+2;}if (!dOK[CCW[xn+destination]]){destination=destination % 6+2;}if (!dOK[CCW[xn+destination]]){return (rQHTc());}if (mF<=TH3){if (xn<=2){return {cell:CCW[xn+destination],type:AJM};} else {return (rQHTc());}} else if (mF<=TH4){if (xn<=2){return {cell:CCW[xn+destination],type:((xn>0) ? AJM : ASM)};} else {return (rQHTc());}} else if (mF<=TH5){if (xn==0){return {cell:CCW[xn+destination],type:ASM};} else {return (rQHTc());}} else {return (rQHTc());}}} else {return {cell:POSC,color:incQc(mC)};}return NOP;}function rQLsSy(){if (mF>=TH1){if (mC!=LCLR){return {cell:POSC,color:LCLR};} else {for (var i=0; i<TN; i+=2){if (view[CCW[i]].color!=LCLR){return {cell:CCW[i],color:LCLR};}}}if ((eT==0)&&(fT==1)){return {cell:CCW[xn+3]};}}if ((eT==0)&&(fT==1)){if (view[CCW[xn+2]].food>0){return {cell:CCW[xn+2]};} else if ((view[CCW[xn+3]].food +view[CCW[xn+4]].food>0)&&(view[CCW[xn+1]].color!=LLSF)){return NOP;} else {return {cell:CCW[xn+2]};}} else if (dOK[CCW[xn+2]]&&(dOK[CCW[xn+3]]||(view[CCW[xn+3]].ant&&view[CCW[xn+3]].ant.friend))){return {cell:CCW[xn+2]};} else if (dOK[CCW[xn]]&&dOK[CCW[xn+7]]){return {cell:CCW[xn]};} else if (dOK[CCW[xn+6]]){return {cell:CCW[xn+6]};} else if (dOK[CCW[xn+5]]){return {cell:CCW[xn+5]};} else if (dOK[CCW[xn+4]]){return {cell:CCW[xn+4]};} else {return NOP;}}function rQLvSy(){if (dOK[CCW[xn+2]]){return {cell:CCW[xn+2]};}return NOP;}function rQCSy(){return NOP;}function rSOSy(){if (!(LCRSCVAL[mC])){return {cell:POSC,color:LCRSC[1]};} else if (isSc0(mC)&&isQc0(view[CCW[xn+1]].color)&&
(view[CCW[xn+3]].color==LPG)){return {cell:CCW[xn+3],color:LPX};} else {return {cell:POSC,color:incSc(mC)};}return NOP;}function rSLSy(){if ((eT==0)&&(fT==1)){if (view[CCW[xn]].food>0){return {cell:CCW[xn]};} else if (view[CCW[xn+7]].food +view[CCW[xn+6]].food>0){return {cell:POSC,color:LLSF};} else {return {cell:CCW[xn]};}} else if ((eT>0)&&view[CCW[xn+2]].ant&&!view[CCW[xn+2]].ant.friend){return {cell:POSC,color:LLSF};} else {if (dOK[CCW[xn]]){return {cell:CCW[xn]};} else if (dOK[CCW[xn+2]]){return {cell:CCW[xn+2]};}}return NOP;}function rSESy(){if (view[CCW[xn+5]].ant&&view[CCW[xn+5]].ant.friend&&(view[CCW[xn+5]].ant.type==ASF)){if (dOK[CCW[xn]]){return {cell:CCW[xn]};}} else if ((mC==LRR0)&&(view[CCW[xn+5]].color==LG6)){if (dOK[CCW[xn]]){return {cell:CCW[xn]};}} else {if (dOK[CCW[xn+3]]){return {cell:CCW[xn+3]};} else if (dOK[CCW[xn]]){return {cell:CCW[xn]};}}return NOP;}function rGSSy(){if (view[CCW[xn]].color!=LCL_QC_RESET){return {cell:CCW[xn],color:LCL_QC_RESET};}if (mC!=LPB){return {cell:POSC,color:LPB};}return (rGGTc());}function rGOSy(){if (aE[AQ]>0){var c=CCW[xn+2];if (view[c].ant&&!view[c].ant.friend&&(view[c].ant.type==AQ)&&(view[c].ant.food>0)&&!view[CCW[xn+1]].ant){return {cell:CCW[xn+1],color:LA};}c=CCW[xn+3];if (view[c].ant&&!view[c].ant.friend&&(view[c].ant.type==AQ)&&(view[c].ant.food>0)&&!view[CCW[xn+1]].ant){return {cell:CCW[xn+1],color:LA};}}if (!LCRPHR[mC]){if ((mC==LPX)&&isSc0(view[CCW[xn+7]].color)){return NOP;} else if (eT==0){return {cell:POSC,color:LPG};}} else if (isSc1(view[CCW[xn+7]].color)&&isQc2(view[CCW[xn]].color)){switch (mC){case LPG:return {cell:POSC,color:LPG1};case LPG1:return {cell:POSC,color:LPG};default:return {cell:POSC,color:LPG};}}if ((eT>0)&&!LCRPHR[mC]&&(xn&4)){return {cell:POSC,color:LPG};} else {return (rGGTc());}}function rLSSy(){if (mC!=LCLR){return {cell:POSC,color:LCLR};}return NOP;}function rEHyS(){if (mQ==1){var ptrn=PTFRL0H;var msm=patC(ptrn,AIMU,0,1);if (msm<0){var cc=fwdWrong[0];return {cell:cc.v,color:fixup(ptrn[cc.p])};} else if (LCRQCVAL[view[CCW[xn+mQ]].color]&&dOK[CCW[xn+5]]){return {cell:CCW[xn+5]};}}return NOP;}function rEBRSy(){if (aF[ASF]>0){return (rELGTc());} else {return (rEBRTc());}}function rEASy(){return NOP;}function rUHSy(){if ((mQ==0)&&(view[CCW[xn]].ant.food<RD1)&&view[CCW[xn+1]].ant&&view[CCW[xn+1]].ant.friend&&(view[CCW[xn+1]].ant.type==ASF)){var cc=[5,6,7,4,2];for (var i=0; i<cc.length; i++){var c=CCW[xn+cc[i]];if (dOK[c]){return {cell:c};}}return NOP;}if ((eT>0)&&(aE[AQ]+aUE[1]+aUE[2] +aUE[3]+aUE[4]>0)){var common;if (mQ==0){common=[1,7];} else {common=[0,2,3,7];}for (var i=0; i<common.length; i++){var c=CCW[xn+common[i]];if (view[c].ant&&!view[c].ant.friend&&((view[c].ant.type==AQ)||(view[c].ant.food==0))){if ((aE[AQ]==0)&&(mC!=LA)){return {cell:POSC,color:LA};} else {return NOP;}}}}if (mQ==0){if (mC!=LRM0){return {cell:POSC,color:LRM0};} else if (view[CCW[xn+3]].color!=LRR0){return {cell:CCW[xn+3],color:LRR0};} else if (view[CCW[xn+7]].color!=LRL0){return {cell:CCW[xn+7],color:LRL0};} else if (view[CCW[xn+5]].color!=LRM1){return {cell:CCW[xn+5],color:LRM1};} else if (view[CCW[xn+6]].color!=LRL1){return {cell:CCW[xn+6],color:LRL1};} else if ((!LCRGRR1[view[CCW[xn+4]].color])&&!(view[CCW[xn+4]].ant&&view[CCW[xn+4]].ant.friend)){return {cell:CCW[xn+4],color:LRR1};}if (LCRQCVAL[view[CCW[xn]].color]||(view[CCW[xn+5]].ant&&view[CCW[xn+5]].ant.friend&&
(view[CCW[xn+5]].ant.food>0))||(view[CCW[xn+6]].ant&&view[CCW[xn+6]].ant.friend&&
(view[CCW[xn+6]].ant.food>0))){if (dOK[CCW[xn+5]]){return {cell:CCW[xn+5]};} else if (dOK[CCW[xn+4]]){return {cell:CCW[xn+4]};}}} else {var ptrn=PTFRL0H;var msm=patC(ptrn,AIMU,0,1);if (msm<0){var cc=fwdWrong[0];return {cell:cc.v,color:fixup(ptrn[cc.p])};} else if (LCRQCVAL[view[CCW[xn+mQ]].color]){if (dOK[CCW[xn+3]]){return {cell:CCW[xn+3]};} else if (view[CCW[xn+3]].ant&&view[CCW[xn+3]].ant.friend&&dOK[CCW[xn+4]]){return {cell:CCW[xn+4]};} else if (dOK[CCW[xn+5]]){return {cell:CCW[xn+5]};}}}return NOP;}function rUBRSy(){if (spcRL1()){return (rULRL1Sy());} else if (spcRL02()){return (rULRL02Sy());} else if (spcRM()){return (rUFCRTc());}for (var i=TN-1; i>=0; i--){if (view[CCW[i+1]].ant&&view[CCW[i+1]].ant.friend&&
(view[CCW[i+1]].ant.type==AE)&&dOK[CCW[i]]){return {cell:CCW[i]};}}return NOP;}function rUTRRSy(){return (rUCRTc());}function rULRL1Sy(){var ptrn=PTGRL1;var msm=patC(ptrn,AIMR,0,1);if (xn>=0){if ((view[CCW[xn+6]].color==LMS_WRP)&&(view[CCW[xn+7]].color==LCLR)&&(view[CCW[xn]].color==LMR0)&&(view[CCW[xn+3]].color!=LRM1_WRP)){return {cell:CCW[xn+3],color:LRM1_WRP};} else if ((view[CCW[xn+3]].color!=LRM1_WRP)&&view[CCW[xn+3]].ant&&view[CCW[xn+3]].ant.friend&&dOK[CCW[xn+4]]){return {cell:CCW[xn+4]};} else if (dOK[CCW[xn+3]]){return {cell:CCW[xn+3]};} else if (dOK[CCW[xn+5]]){return {cell:CCW[xn+5]};} else {return NOP;}} else if (spcRM()){return (rUTRRSy());}return (rLostMSy(false));}function rULRL02Sy(){var ptrn;var msm;if (sL[LRM0]>0){ptrn=PTGRL0;msm=patC(ptrn,AIMR,1,1);}if (xn<0){ptrn=PTGRL2;msm=patC(ptrn,AIMR,1,1);}if (xn>=0){if (view[CCW[xn+3]].ant&&view[CCW[xn+3]].ant.friend&&dOK[CCW[xn+4]]){return {cell:CCW[xn+4]};} else if (dOK[CCW[xn+3]]){return {cell:CCW[xn+3]};} else if (dOK[CCW[xn+5]]){return {cell:CCW[xn+5]};} else {return NOP;}} else if (spcRM()){return (rUTRRSy());}return (rLostMSy(false));}function rULRR0Sy(){var ptrn=PTGRR0;var msm=patC(ptrn,AIML,2,1);if (xn>=0){return (runUMLeaveRRTactic());} else if (spcRM()){return (rUTRRSy());}return (rLostMSy(false));}function rULRR2Sy(){var ptrn=PTGRR2;var msm=patC(ptrn,AIML,2,1);if (xn>=0){return (runUMLeaveRRTactic());}    return (rLostMSy(false));}function rUPSSy(){var ptrn=PTGRR1;var msm=patC(ptrn,AIMD,3,2);if (xn>=0){var c=CCW[xn+1];if (view[c].ant&&view[c].ant.friend&&(view[c].ant.food>0)){if (dOK[CCW[xn+5]]){return {cell:CCW[xn+5]};} else {return NOP;}}if ((view[CCW[xn+2]].color==LMX_M3OUT)&&(view[CCW[xn]].color==LMR0)&&(view[CCW[xn+1]].color==LCLR)&&(mC!=LRR1X)){return {cell:POSC,color:LRR1X};} else if ((mT==AJM)&&(mC==LRR1U)&&(view[CCW[xn]].color==LMR0)&&(view[CCW[xn+1]].color==LCLR)&&LCRMX_OUT[view[CCW[xn+2]].color]){return {cell:POSC,color:LRR1V};} else if ((mC==LRR1X)||((mT==AJM)&&(mC==LRR1V))||((mC==LRR1U)&&(view[CCW[xn]].color==LMR0)&&(view[CCW[xn+1]].color==LCLR)&&LCRMX_IN[view[CCW[xn+2]].color])){if (dOK[CCW[xn+5]]){return {cell:CCW[xn+5]};} else if (dOK[CCW[xn+4]]){return {cell:CCW[xn+4]};} else if (view[CCW[xn+4]].ant&&view[CCW[xn+4]].ant.friend&&dOK[CCW[xn+3]]){return {cell:CCW[xn+3]};} else if (dOK[CCW[xn+6]]){return {cell:CCW[xn+6]};} else {return NOP;}} else if (mC!=LRR1U){return {cell:POSC,color:LRR1U};} else if (msm<0){var cc=fwdWrong[0];return {cell:cc.v,color:fixup(ptrn[cc.p])};} else {if (dOK[c]){return {cell:c};} else if (view[c].ant&&view[c].ant.friend){if (dOK[CCW[xn+5]]){return {cell:CCW[xn+5]};} else if (dOK[CCW[xn+4]]){return {cell:CCW[xn+4]};} else if (dOK[CCW[xn+6]]){return {cell:CCW[xn+6]};} else {return NOP;}} else {return NOP;}}}return (rLostMSy(false));}function rUESSy(){var ptrn=PTMS0R_IN;var msm=patC(ptrn,AIMD,4,2);if (xn>=0){return (rUESTc(ptrn,msm));}return (rLostMSy(false));}function rUDSSy(){var ptrn;var msm;if ((sL[LML3]>=1)&&(sD[LMR2]+sD[LMR0]>=1)){ptrn=PTMS3;msm=patC(ptrn,AIMD,3,2);}if ((xn<0)&&(sL[LMR2]>=1)&&(sD[LML1]+sD[LML3]>=1)){ptrn=PTMS2;msm=patC(ptrn,AIMD,3,2);}if (xn>=0){if ((msm<0)&&(view[CCW[xn]].color==LRM0)&&(view[CCW[xn+1]].color==LRR0)&&(view[CCW[xn+2]].color==LMR0)){if (dOK[CCW[xn]]){return {cell:CCW[xn]};} else if (dOK[CCW[xn+1]]){return {cell:CCW[xn+1]};} else {return NOP;}}return (rUDSTc(ptrn,msm));}if ((xn<0)&&(sL[LML1]>=1)&&(sD[LMR0]+sD[LMR2]>=1)){ptrn=PTMS1_IN;msm=patC(ptrn,AIMD,3,4);if (xn<0){ptrn=PTMS1;msm=patC(ptrn,AIMD,3,2);}}if (xn>=0){return (rUDSTc(ptrn,msm));}if ((sD[LML3]+sL[LMR0]>=2)&&(sD[LRL0] >=2)&&(sD[LML1]==0)){ptrn=PTMS0_WRAPPING;msm=patC(ptrn,AIMD,0,1);if (xn>=0){return (rUWRTc(ptrn,msm));}}if ((sL[LMR0]>=1)&&(sD[LML3]+sD[LML1]>=1)){ptrn=PTMS0;msm=patC(ptrn,AIMD,3,2);if (xn>=0){return (rUDSTc(ptrn,msm));}}if (spcRR1()){ptrn=PTGRR1;msm=patC(ptrn,AIMD,3,2);if (xn>=0){if (mC==LRR1){return {cell:POSC,color:LRR1U};}return NOP;}}if (spcMS0R()){ptrn=PTMS0R_IN;msm=patC(ptrn,AIMD,4,2);if (xn>=0){return (rUESTc(ptrn,msm));}}return (rLostMSy(false));}function rUSWSy(){var ptrn=PTMS0_WRAPPING;var msm=patC(ptrn,AIMD,0,1);if (xn>=0){return (rUWRTc(ptrn,msm));}return (rLostMSy(false));}function rURHSy(){return (rMNGTc());}function rUCRSy(){for (var i=TN; i>=1; i--){if (view[CCW[i]].ant&&dOK[CCW[i-1]]){return {cell:CCW[i-1]};}}return NOP;}function rLLLWSy(){var ptrn;var msm;if (mC==LML1){ptrn=PTMS1FL;msm=patC(ptrn,AIML,0,1);if (xn>=0){return (rLLLWTc());}} else if (mC==LML3){ptrn=PTMS3FL;msm=patC(ptrn,AIML,0,1);if (xn>=0){return (rLLLWTc());}} else if (sL[LML1]+sL[LML3]>=2){ptrn=PTMS0FL;msm=patC(ptrn,AIML,0,1);if (xn<0){ptrn=PTMS2FL;msm=patC(ptrn,AIML,0,1);}if (xn>=0){return (rLLLWTc());}} else if (spcMFR()){return (rLLRWSy());} else if (spcMS()){return (rLASSy());}return (rLostMSy(false));}function rLLRWSy(){var ptrn;var msm;if (mC==LMR0){ptrn=PTMS0FR;msm=patC(ptrn,AIMR,0,1);if (xn>=0){return (rLLRWTc());}} else if (mC==LMR2){ptrn=PTMS2FR;msm=patC(ptrn,AIMR,0,1);if (xn>=0){return (rLLRWTc());}} else if (sL[LMR0]+sL[LMR2]>=2){ptrn=PTMS1FR;msm=patC(ptrn,AIMR,0,1);if (xn<0){ptrn=PTMS3FR;msm=patC(ptrn,AIMR,0,1);}if (xn>=0){return (rLLRWTc());}} else if (spcMS()){return (rLASSy());}return (rLostMSy(false));}function rLASSy(){var ptrn;var msm;if ((sL[LML3]>=1)&&(sD[LMR2]+sD[LMR0]>=1)){ptrn=PTMS3;msm=patC(ptrn,AIMU,3,2);}if ((xn<0)&&(sL[LMR2]>=1)&&(sD[LML1]+sD[LML3]>=1)){ptrn=PTMS2;msm=patC(ptrn,AIMU,3,2);}if ((xn<0)&&(sL[LML1]>=1)&&(sD[LMR0]+sD[LMR2]>=1)){ptrn=PTMS1_IO;msm=patC(ptrn,AIMU,0,1);if (xn<0){ptrn=PTMS1;msm=patC(ptrn,AIMU,3,2);}}if (xn>=0){return (rLASTc(ptrn,msm));}if ((sD[LML3]+sL[LMR0]>=2)&&(sD[LRL0] >=2)&&(sD[LML1]==0)){ptrn=PTMS0_OUT;msm=patC(ptrn,AIMU,0,1);if (xn>=0){return {cell:CCW[xn+3],color:LCLR};}ptrn=PTMS0_WRAPPING;msm=patC(ptrn,AIMD,0,1);if (xn>=0){return (rLWRTc(ptrn,msm));}}if ((sL[LMR0]>=1)&&(sD[LML3]+sD[LML1]>=1)){ptrn=PTMS0;msm=patC(ptrn,AIMU,3,2);if (xn>=0){return (rLASTc(ptrn,msm));}}if (spcRM()){return (rLTRRSy());}return (rLostMSy(false));}function rLLSSy(){var ptrn=PTMS0R_OUT;var msm=patC(ptrn,AIMU,0,1);if (xn>=0){} else {ptrn=PTMS0R_IN;msm=patC(ptrn,AIMU,4,2);if (xn>=0){ptrn=PTMS0R_OUT;msm=patC(ptrn,AIMU,0,1);}}if (xn>=0){return (rLLSTc(ptrn,msm));} else if (spcMS()){return (rLASSy());} else {return (rLostMSy(false));}return NOP;}function rLLVSSy(){var ptrn=PTMS0R_OUT1;var msm=patC(ptrn,AIMU,0,1);if (xn>=0){if (view[CCW[xn+3]].color==LCLR){return {cell:CCW[xn+3],color:((mT==ASM) ? LMX_M2OUT : LMX_M1OUT)};
} else if (dOK[CCW[xn+5]]){return {cell:CCW[xn+5]};} else if (view[CCW[xn+5]].ant&&view[CCW[xn+5]].ant.friend&&
dOK[CCW[xn+6]]){return {cell:CCW[xn+6]};} else {return NOP;}} else if (spcMS()){return (rLASSy());}return (rLostMSy(false));}function rLDSSy(){var ptrn=PTGRR1;var msm=patC(ptrn,AIMU,1,1);if (xn>=0){if ((view[CCW[xn]].color==LMR0)&&(view[CCW[xn+1]].color==LCLR)){if ((mC==LRR1X)&&(view[CCW[xn+2]].color!=LMX_M3OUT)){return {cell:CCW[xn+2],color:LMX_M3OUT};}if ((view[CCW[xn+2]].color==LMX_M3OUT)&&(mC!=LRR1X)){return {cell:POSC,color:LRR1X};} else if ((LCRMX_OUT[view[CCW[xn+2]].color])&&
(mC!=LRR1V)){return {cell:POSC,color:LRR1V};} else if ((LCRMX_IN[view[CCW[xn+2]].color])&&(mC!=LRR1U)){return {cell:POSC,color:LRR1U};} else if (msm<0){var cc=fwdWrong[0];return {cell:cc.v,color:fixup(ptrn[cc.p])};}}if (dOK[CCW[xn+5]]){return {cell:CCW[xn+5]};} else if (dOK[CCW[xn+6]]){return {cell:CCW[xn+6]};} else {return NOP;}}return (rLostMSy(false));}function rLTRRSy(){return (rLCRTc());}function rLFRSy(){for (var i=1; i<TN; i+=2){if (view[CCW[i]].ant&&view[CCW[i]].ant.friend&&
(view[CCW[i]].ant.type==AE)&&dOK[CCW[i+2]]){return {cell:CCW[i+2]};}}return NOP;}function rLRHSy(){var ptrn=PTFRL1G;var msm=patC(ptrn,AIMR,0,1);if (xn>=0){return (rLRLTc());}return (rMNGTc());}function rLLRL1Sy(){var ptrn=PTGRL1;var msm=patC(ptrn,AIMR,0,1);if (xn>=0){return (rLRLTc());} else if (spcRM()){return (rLTRRSy());}return (rLostMSy(false));}function rLLRL02Sy(){var ptrn;var msm;if (sL[LRM0]>0){ptrn=PTGRL0;msm=patC(ptrn,AIMR,1,1);}if (xn<0){ptrn=PTGRL2;msm=patC(ptrn,AIMR,1,1);}if (xn>=0){return (rLRLTc());}return (rLostMSy(false));}function rLLRR0Sy(){var ptrn=PTGRR0;var msm=patC(ptrn,AIML,2,1);if (xn>=0){return (rLRRTc());} else if (spcRM()){return (rLTRRSy());}return (rLostMSy(false));}function rLLRR2Sy(){var ptrn=PTGRR2;var msm=patC(ptrn,AIML,2,1);if (xn>=0){return (rLRRTc());} else if (spcRM()){return (rLTRRSy());}return (rLostMSy(false));}function rLCRSy(){for (var i=TN; i>=1; i--){if (!dOK[CCW[i]]&&dOK[CCW[i-1]]){return {cell:CCW[i-1]};}}return NOP;}function rM2R1Sy(){for (var i=0; i<TN; i++){if (view[CCW[i]].ant&&view[CCW[i]].ant.friend&&
(view[CCW[i]].ant.type==ASF)&&view[CCW[i+1]].ant&&view[CCW[i+1]].ant.friend&&
(view[CCW[i+1]].ant.type==ASF)){if (i&1){} else {}if (dOK[CCW[i+7]]){return {cell:CCW[i+7]};} else {return NOP;}}}return (rLostMSy(true));}function rLostMSy(totally){if ((fdT>0)&&(mF==0)){for (var i=0; i<TN; i++){if ((view[CCW[i]].food>0)&&dOK[CCW[i]]){return {cell:CCW[i]};}}}if (totally&(fT==0)){if (((mC==PY)&&(sN[PY]==0))||((mC==PR)&&(sN[PR]==0))){return {cell:POSC,color:PP};}if (((mC==PG)&&(sN[PG]==0))||((mC==PC)&&(sN[PC]==0))||((mC==PB)&&(sN[PB]==0))||((mC==PP)&&(sN[PP]==0))){return {cell:POSC,color:PW};} else if ((sT[PG]==0)&&(((mC==PK)&&(sN[PK]==0))||((mC==PY)&&(sN[PY]==0))||((mC==PR)&&(sN[PR]==0)))){return {cell:POSC,color:PW};} else if ((mC!=PW)&&(sN[mC]>=4)){return {cell:POSC,color:PW};}}if ((mC==PG)&&(sL[PG]>=2)){return {cell:POSC,color:PW};} else if (((mC==PK)||(mC==PR))&&(sN[PK]+sN[PR]>=3)){return {cell:POSC,color:PW};}if (sN[PW]<=4){var preferredColors =[PG,PB,PC,PP,PY,PR,PK];for (var ci=0; ci<preferredColors.length; ci++){var c=preferredColors[ci];if (mC==c){break;}if (sN[c]>0){for (var i=1; i<TN; i++){if ((view[CCW[i]].color==c)&&dOK[CCW[i]]){return {cell:CCW[i]};}}}}}if (RW){for (var i=1; i<TN; i+=2){if (dOK[CCW[i]]){return {cell:CCW[i]};}}for (i=0; i<TN; i+=2){if (dOK[CCW[i]]){return {cell:CCW[i]};}}return NOP;} else {return NOP;}}function rDHSy(){if (mQ==0){var c=CCW[xn+2];if (view[c].ant&&!view[c].ant.friend&&(view[c].ant.type==AQ)&&(view[c].ant.food>0)&&!view[CCW[xn+1]].ant){return {cell:CCW[xn+1],color:LA};}c=CCW[xn+6];if (view[c].ant&&!view[c].ant.friend&&(view[c].ant.type==AQ)&&(view[c].ant.food>0)&&!view[CCW[xn+7]].ant){return {cell:CCW[xn+7],color:LA};}} else {var c=CCW[xn+4];if (view[c].ant&&!view[c].ant.friend&&(view[c].ant.type==AQ)&&(view[c].ant.food>0)&&!view[CCW[xn+3]].ant){return {cell:CCW[xn+3],color:LA};}c=CCW[xn+6];if (view[c].ant&&!view[c].ant.friend&&(view[c].ant.type==AQ)&&(view[c].ant.food>0)&&!view[CCW[xn+7]].ant){return {cell:CCW[xn+7],color:LA};}c=CCW[xn+5];if (view[c].ant&&!view[c].ant.friend&&(view[c].ant.type==AQ)&&(view[c].ant.food>0)){if (!view[CCW[xn+3]].ant){return {cell:CCW[xn+3],color:LA};} else if (!view[CCW[xn+7]].ant){return {cell:CCW[xn+7],color:LA};}}}return NOP;}function rQSETc(){if (mC!=LT){return {cell:POSC,color:LT};}for (var i=0; i<TN; i++){if (view[CCW[i]].food>0){return {cell:CCW[i]};}}return NOP;}function rQSSTc(){for (var i=0; i<TN; i++){if ((view[CCW[i]].food>0)&&(dOK[CCW[i]])){return {cell:CCW[i]};}}return NOP;}function rQSTCTc(){if ((mC!=LCLR)&&(sN[mC]>=4)){if (sN[LT]==0){return {cell:POSC,color:LT};} else if (sN[LT]>=3){return {cell:POSC,color:LT};} else {for (var i=0; i<TN; i++){if ((view[CCW[i]].color==LT)&&(view[CCW[i+2]].color!=LT)){return {cell:CCW[i+2],color:LT};}}return NOP;}} else if (sN[LT]==1){for (var i=0; i<TN; i++){if ((view[CCW[i]].color==LT)&&(view[CCW[i+4]].color!=LCLR)){if (view[CCW[i+1]].color==LCLR){return { cell:CCW[i+1]};} else if (view[CCW[i+7]].color==LCLR){return { cell:CCW[i+7]};} else {return {cell:POSC,color:LT};}}}return {cell:POSC,color:LT};} else {return {cell:POSC,color:LT};}return NOP;}function rQSATc(){for (var i=0; i<TN; i++){if ((view[CCW[i]].color==LCLR)&&(view[CCW[i+1]].color==LCLR)&&(view[CCW[i+2]].color==LCLR)){if ((view[CCW[i+3]].color==LCLR)&&(view[CCW[i+4]].color==LCLR)){return {cell:CCW[i+2]};}return {cell:CCW[i+1]};}}for (i=TN-1; i>=0; i--){if (view[CCW[i]].color!=LT){return {cell:CCW[i]};}}for (i=0; i<TN; i++){if (view[CCW[i]].color!=LT){return {cell:CCW[i],color:LCLR};}}return {cell:0,color:LCLR};}function rQSEvTc(){if (sN[LT]>0){for (var i=0; i<TN; i++){if (view[CCW[i]].color==LT){xn=i&6;}}if ( dOK[CCW[xn+7]]&&dOK[CCW[xn]]&&dOK[CCW[xn+1]]&&dOK[CCW[xn+2]]&&dOK[CCW[xn+3]] ){return {cell:CCW[xn+1]};} else if (dOK[CCW[xn+5]]&&dOK[CCW[xn+6]]&&dOK[CCW[xn+7]]&&dOK[CCW[xn]]&&dOK[CCW[xn+1]]){return {cell:CCW[xn+7]};} else if (dOK[CCW[xn+3]]&&dOK[CCW[xn+4]]&&dOK[CCW[xn+5]]){return {cell:CCW[xn+4]};} else if (dOK[CCW[xn+5]]&&dOK[CCW[xn+6]]&&dOK[CCW[xn+7]]){return {cell:CCW[xn+6]};} else if (dOK[CCW[xn+1]]&&dOK[CCW[xn+2]]&&dOK[CCW[xn+3]]){return {cell:CCW[xn+2]};} else if (dOK[CCW[xn+7]]&&dOK[CCW[xn]]&&dOK[CCW[xn+1]]){return {cell:CCW[xn]};} else {for (i=0; i<TN; i++){if (dOK[CCW[i]]){return {cell:CCW[i]};}}return NOP;}} else {for (var i=0; i<TN; i++){if (dOK[CCW[i]]&&dOK[CCW[i+1]]&&dOK[CCW[i+2]]&&dOK[CCW[i+3]]&&dOK[CCW[i+4]]){return {cell:CCW[i+2]};}}for (i=0; i<TN; i++){if (dOK[CCW[i]]&&dOK[CCW[i+1]]&&dOK[CCW[i+2]]){return {cell:CCW[i+1]};}}for (i=0; i<TN; i++){if (dOK[CCW[i]]){return {cell:CCW[i]};}}return NOP;}return NOP;}function rQHTc(){var ptrn=PTHOME;var msm=patC(ptrn,POSC,0,1);if (msm!=0){var cc=fwdWrong[0];return {cell:cc.v,color:ptrn[cc.p]};} else {return NOP;}}function rGGTc(){var ptrn=PTGARDEN;var msm=patC(ptrn,POSC,0,1);if (msm!=0){var cc=fwdWrong[0];return {cell:cc.v,color:ptrn[cc.p]};} else {return NOP;}}function rUFCRTc(){var ptrn;var msm;if (mC==LRM0){ptrn=PTFRM0;msm=patC(ptrn,AIMU,4,1);if ((xn<0)&&(eT>0)){ptrn=PTFRM1;msm=patC(ptrn,AIMU,4,1);}if ((xn<0)&&(eT>0)){ptrn=PTFRM2;msm=patC(ptrn,AIMU,4,1);}} else if (mC==LRM2){ptrn=PTFRM2;msm=patC(ptrn,AIMU,4,1);if ((xn<0)&&(eT>0)){ptrn=PTFRM0;msm=patC(ptrn,AIMU,4,1);}if ((xn<0)&&(eT>0)){ptrn=PTFRM1;msm=patC(ptrn,AIMU,4,1);}} else if (mC==LRM1){ptrn=PTFRM1;msm=patC(ptrn,AIMU,4,1);if ((xn<0)&&(eT>0)){ptrn=PTFRM2;msm=patC(ptrn,AIMU,4,1);}if ((xn<0)&&(eT>0)){ptrn=PTFRM0;msm=patC(ptrn,AIMU,4,1);}} else if (mC==LRM1_WRP){ptrn=PTGRM1_WRP;msm=patC(ptrn,AIMR,1,1);}if ((xn<0)&&spcRR1()){return (rUPSSy());}if (xn<0){return (rLostMSy(false));}if (msm==0){if (fdL>0){if ((view[CCW[xn+7]].food>0)&&dOK[CCW[xn+7]]){return {cell:CCW[xn+7]};} else if ((view[CCW[xn+3]].food>0)&&dOK[CCW[xn+3]]){return {cell:CCW[xn+3]};}}if ((mC==LRM1)&&(view[CCW[xn+3]].color!=LRR1X)&&(view[CCW[xn+3]].color!=LRR1U)&&!((mT==AJM)&&(view[CCW[xn+3]].color==LRR1V))&&dOK[CCW[xn+3]]){return {cell:CCW[xn+3]};}if (dOK[CCW[xn+5]]){return {cell:CCW[xn+5]};}return NOP;}for (var i=0; i<TN; i++){var ce=CCW[xn+i];if (view[ce].ant&&view[ce].ant.friend&&(view[ce].ant.type==AE)){if ((2<=i)&&(i<=4)){var msmSaved=msm;var fwdWrongSaved=Array.from(fwdWrong);var rearWrongSaved=Array.from(rearWrong);xn=xn % 4+4;msm=patC(ptrn,POSC,0,1);if (msm<msmSaved){xn=xn % 4+4;msm=msmSaved;fwdWrong=fwdWrongSaved;rearWrong=rearWrongSaved;} else {}break;}}}if (msm<0){var cc=fwdWrong[0];return {cell:cc.v,color:fixup(ptrn[cc.p])};} else {var cc=rearWrong[0];return {cell:cc.v,color:fixup(ptrn[cc.p])};}return NOP;}function rUCRTc(){var ptrn;var msm;if (mC==LRM0){ptrn=PTGRM0;msm=patC(ptrn,AIMU,4,2);if ((xn<0)&&spcRR1()){return (rUPSSy());}if ((xn<0)&&(eT>0)){ptrn=PTGRM1;msm=patC(ptrn,AIMU,4,2);}if ((xn<0)&&(eT>0)){ptrn=PTGRM2;msm=patC(ptrn,AIMU,4,2);}} else if (mC==LRM2){ptrn=PTGRM2;msm=patC(ptrn,AIMU,4,2);if ((xn<0)&&(eT>0)){ptrn=PTGRM0;msm=patC(ptrn,AIMU,4,2);}if ((xn<0)&&(eT>0)){ptrn=PTGRM1;msm=patC(ptrn,AIMU,4,2);}} else if (mC==LRM1){ptrn=PTGRM1;msm=patC(ptrn,AIMU,4,2);if ((xn<0)&&(eT>0)){ptrn=PTGRM2;msm=patC(ptrn,AIMU,4,2);}if ((xn<0)&&(eT>0)){ptrn=PTGRM0;msm=patC(ptrn,AIMU,4,2);}} else if (mC==LRM1_WRP){ptrn=PTGRM1_WRP;msm=patC(ptrn,AIMR,1,1);}if ((xn<0)&&spcRR1()){return (rUPSSy());}if (xn<0){return (rLostMSy(true));}if (msm==0){if (fdL>0){if ((view[CCW[xn+7]].food>0)&&dOK[CCW[xn+7]]){return {cell:CCW[xn+7]};} else if ((view[CCW[xn+3]].food>0)&&dOK[CCW[xn+3]]){return {cell:CCW[xn+3]};}}if ((mC==LRM1)&&(view[CCW[xn+3]].color!=LRR1X)&&(view[CCW[xn+3]].color!=LRR1U)){if ((((mT==AJM)&&(view[CCW[xn+3]].color==LRR1))||((mT==ASM)&&(view[CCW[xn+3]].color==LRR1V)))&&dOK[CCW[xn+3]]){return {cell:CCW[xn+3]};}}if (mC==LRM0&&(view[CCW[xn+5]].color==LRM1_WRP)&&!(view[CCW[xn+5]].ant&&view[CCW[xn+5]].ant.friend)){return {cell:CCW[xn+5],color:LRM1};}var c=CCW[xn+5];if (dOK[c]){return {cell:c};} else if (view[c].ant&&view[c].ant.friend){var evade=false;if (view[c].ant.food>0){evade=true;} else if (view[CCW[xn+1]].ant&&view[CCW[xn+1]].ant.friend&&(view[CCW[xn+1]].ant.food==0)){evade=true;}if (evade){if (dOK[CCW[xn+4]]){return {cell:CCW[xn+4]};} else if (dOK[CCW[xn+3]]){return {cell:CCW[xn+3]};} else {return NOP;}} else {return NOP;}}} else if (msm<0){var cc=fwdWrong[0];return {cell:cc.v,color:fixup(ptrn[cc.p])};} else {var cc=rearWrong[0];return {cell:cc.v,color:fixup(ptrn[cc.p])};}return NOP;}function rUESTc(ptrn,msm){switch (view[CCW[xn+3]].color){case LMX_M0:return {cell:CCW[xn+3],color:LMX_M1IN};case LMX_M1OUT:if (mT==ASM){return {cell:CCW[xn+3],color:LMX_M2IN};}break;case LMX_M2OUT:if (mT==ASM){return {cell:CCW[xn+3],color:LMX_M3IN};}break;case LMX_M3OUT:break;case LMX_M1IN:case LMX_M2IN:case LMX_M3IN:if (msm<0){var cc=fwdWrong[0];return {cell:cc.v,color:fixup(ptrn[cc.p])};} else if ((msm==0)&&dOK[CCW[xn+1]]){return {cell:CCW[xn+1]};} else {break;}default:break;}if (dOK[CCW[xn+5]]){return {cell:CCW[xn+5]};}return NOP;}function runUMLeaveRRTactic(){if (view[CCW[xn+7]].ant&&view[CCW[xn+7]].ant.friend&&dOK[CCW[xn+6]]){return {cell:CCW[xn+6]};} else if (dOK[CCW[xn+7]]){return {cell:CCW[xn+7]};} else if (dOK[CCW[xn+5]]){return {cell:CCW[xn+5]};} else {return NOP;}}function rUDSTc(ptrn,msm){var c=CCW[xn+1];if ((msm==0)&&(fdL>0)&&(view[CCW[xn+3]].food+view[CCW[xn+7]].food>0)){if (mC!=LMMF){return {cell:POSC,color:LMMF};} else if (view[CCW[xn+5]].color!=LMMH){return {cell:CCW[xn+5],color:LMMH};} else if ((view[CCW[xn+3]].food>0)&&dOK[CCW[xn+3]]){return {cell:CCW[xn+3]};} else if ((view[CCW[xn+7]].food>0)&&dOK[CCW[xn+7]]){return {cell:CCW[xn+7]};}} else if ((msm<0)&&!(view[c].ant&&view[c].ant.friend)){var cc=fwdWrong[0];return {cell:cc.v,color:fixup(ptrn[cc.p])};} else if (msm>=0){if (dOK[c]){return {cell:c};} else {if (view[c].ant&&view[c].ant.friend){if (view[c].ant.food>0){if ((view[CCW[xn]].color==LCLR)&&dOK[CCW[xn]]){return {cell:CCW[xn]};} else if ((view[CCW[xn+2]].color==LCLR)&&dOK[CCW[xn+2]]){return {cell:CCW[xn+2]};} else {return NOP;}} else {var c=CCW[xn+5];if (view[c].ant&&view[c].ant.friend&&(view[c].ant.food==0)){if (view[c].color==LMMH){if (dOK[CCW[xn+2]]){return {cell:CCW[xn+2]};} else if (dOK[CCW[xn+3]]){return {cell:CCW[xn+3]};} else if (dOK[CCW[xn+4]]){return {cell:CCW[xn+4]};} else if (dOK[CCW[xn]]){return {cell:CCW[xn]};} else {return NOP;}} else if (mC!=LMMH){return {cell:POSC,color:LMMH};} else {return NOP;}} else {return NOP;}}} else {return NOP;}}}return NOP;}function rUWRTc(ptrn,msm){if (view[CCW[xn+3]].color!=LMS_WRP){return {cell:CCW[xn+3],color:LMS_WRP};} else if (msm<0){var cc=fwdWrong[0];return {cell:cc.v,color:fixup(ptrn[cc.p])};} else if (dOK[CCW[xn+1]]){return {cell:CCW[xn+1]};}return NOP;}function rLLLWTc(){if (dOK[CCW[xn+7]]){return {cell:CCW[xn+7]};} else {return NOP;}}function rLLRWTc(){if (dOK[CCW[xn+3]]){return {cell:CCW[xn+3]};} else {return NOP;}}function rLWRTc(ptrn,msm){if (msm<0){var cc=fwdWrong[0];return {cell:cc.v,color:fixup(ptrn[cc.p])};} else if (dOK[CCW[xn+1]]){return {cell:CCW[xn+1]};} else if (dOK[CCW[xn]]){return {cell:CCW[xn]};} else {return NOP;}}function rLASTc(ptrn,msm){var c=CCW[xn+5];if ((msm<0)&&!(view[c].ant&&view[c].ant.friend)){var cc=fwdWrong[0];return {cell:cc.v,color:fixup(ptrn[cc.p])};} else if (mC==LMMF){return {cell:POSC,color:LCLR};} else if (view[CCW[xn+5]].color==LMMH){return {cell:CCW[xn+5],color:LCLR};} else if (msm>=0){if (dOK[c]){return {cell:c};} else if ((view[c].food>0)&&(eT==0)){if (dOK[CCW[xn+4]]){return {cell:CCW[xn+4]};} else if (dOK[CCW[xn+3]]){return {cell:CCW[xn+3]};} else if (dOK[CCW[xn+6]]){return {cell:CCW[xn+6]};} else if (dOK[CCW[xn+7]]){return {cell:CCW[xn+7]};}}}return NOP;}function rLLSTc(ptrn,msm){if (msm<0){if (view[CCW[xn+5]].ant&&view[CCW[xn+5]].ant.friend){return NOP;}var cc=fwdWrong[0];return {cell:cc.v,color:fixup(ptrn[cc.p])};}switch (view[CCW[xn+3]].color){case LMX_M1IN:return {cell:CCW[xn+3],color:LMX_M1OUT};case LMX_M2IN:return {cell:CCW[xn+3],color:LMX_M2OUT};case LMX_M3IN:default:return {cell:CCW[xn+3],color:LMX_M3OUT};case LMX_M1OUT:case LMX_M2OUT:case LMX_M3OUT:if (dOK[CCW[xn+5]]){return {cell:CCW[xn+5]};}break;}return NOP;}function rLCRTc(){var ptrn;var msm;var trust=(aF[AE]>0 ? 1 : 0);if (mC==LRM0){ptrn=PTGRM0;msm=patC(ptrn,AIMD,3,2-trust);if ((xn<0)&&(eT>0)){ptrn=PTGRM1;msm=patC(ptrn,AIMD,3,2);}if ((xn<0)&&(eT>0)){ptrn=PTGRM2B;msm=patC(ptrn,AIMD,3,2);}} else if (mC==LRM2){ptrn=PTGRM2B;msm=patC(ptrn,AIMD,3,2-trust);if ((xn<0)&&(eT>0)){ptrn=PTGRM0;msm=patC(ptrn,AIMD,3,2);}if ((xn<0)&&(eT>0)){ptrn=PTGRM1;msm=patC(ptrn,AIMD,3,2);}} else if (mC==LRM1){ptrn=PTGRM1;msm=patC(ptrn,AIMD,3,2-trust);if ((xn<0)&&(eT>0)){ptrn=PTGRM2B;msm=patC(ptrn,AIMD,3,2);}if ((xn<0)&&(eT>0)){ptrn=PTGRM0;msm=patC(ptrn,AIMD,3,2);}} else if (mC==LRM1_WRP){ptrn=PTGRM1;msm=patC(ptrn,AIMD,3,2);if (xn>=0){if (view[CCW[xn+3]].color!=LRR1X){return {cell:CCW[xn+3],color:LRR1X};} else if (!(view[CCW[xn+7]].ant&&view[CCW[xn+7]].ant.friend)){return {cell:POSC,color:LRM1};}}}if (xn<0){if (spcRR1()){return (rLDSSy());}return (rLostMSy(true));}if (msm==0){var c=CCW[xn+1];if (dOK[c]){return {cell:c};} else if (view[c].ant&&view[c].ant.friend){var evade=false;if (view[c].ant.food==0){evade=true;} else if (view[CCW[xn+5]].ant&&view[CCW[xn+5]].ant.friend&&(view[CCW[xn+5]].ant.food>0)){evade=true;}if (evade){if (dOK[CCW[xn]]){return {cell:CCW[xn]};} else if (dOK[CCW[xn+7]]){return {cell:CCW[xn+7]};} else {return NOP;}} else {return NOP;}}} else if (msm<0){var cc=fwdWrong[0];return {cell:cc.v,color:fixup(ptrn[cc.p])};} else {var cc=rearWrong[0];return {cell:cc.v,color:fixup(ptrn[cc.p])};}return NOP;}function rLRLTc(){if (view[CCW[xn+3]].ant&&view[CCW[xn+3]].ant.friend&&
dOK[CCW[xn+2]]){return {cell:CCW[xn+2]};} else if (dOK[CCW[xn+3]]){return {cell:CCW[xn+3]};} else if (dOK[CCW[xn+1]]){return {cell:CCW[xn+1]};} else {return NOP;}}function rLRRTc(){if (view[CCW[xn+7]].ant&&view[CCW[xn+7]].ant.friend&&dOK[CCW[xn]]){return {cell:CCW[xn]};} else if (dOK[CCW[xn+7]]){return {cell:CCW[xn+7]};} else if (dOK[CCW[xn+1]]){return {cell:CCW[xn+1]};} else {return NOP;}}function rMNGTc(){for (var i=0; i<TN; i++){if (view[CCW[i]].ant&&view[CCW[i]].ant.friend&&
(view[CCW[i]].ant.type==ASF)){if (view[CCW[i]].color==LCLR){if (i&1){if ((view[CCW[i+3]].color==LG5)&&dOK[CCW[i+3]]){return {cell:CCW[i+3]};}} else {if ((view[CCW[i+4]].color==LG6)&&dOK[CCW[i+4]]){return {cell:CCW[i+4]};} else if ((view[CCW[i+3]].color==LG5)&&dOK[CCW[i+3]]){return {cell:CCW[i+3]};}}return (rLostMSy(true));} else if (dOK[CCW[i+1]]){return {cell:CCW[i+1]};}}}return NOP;}function rELGTc(){var ptrn=PTFRL1G;var msm;for (var i=0; i<TN; i+=2){if (view[CCW[i]].ant&&view[CCW[i]].ant.friend&&
(view[CCW[i]].ant.type==ASF)){xn=i;break;}}msm=patC(ptrn,AIMU,0,1);if (xn<0){return NOP;} else if ((msm==0)&&dOK[CCW[xn+5]]&&((view[CCW[xn+3]].ant&&view[CCW[xn+3]].ant.friend)||
(view[CCW[xn+4]].ant&&view[CCW[xn+4]].ant.friend))){return {cell:CCW[xn+5]};} else if (msm<0){var cc=fwdWrong[0];return {cell:cc.v,color:fixup(ptrn[cc.p])};} else if (msm>0){var cc=rearWrong[0];return {cell:cc.v,color:fixup(ptrn[cc.p])};} else {return NOP;}return NOP;}function rEBRTc(){var ptrn;var msm;if (mC==LRL0){for (var i=0; i<TN; i+=2){var c=CCW[i];if ((view[c].color==LRM0)&&view[c].ant&&view[c].ant.friend&&((view[CCW[i]].ant.type==AJM)||(view[CCW[i]].ant.type==ASM))){ptrn=PTFRL2;msm=patC(ptrn,AIMU,1,1);if (xn>=0){break;}}}if (xn<0){ptrn=PTFRL0;msm=patC(ptrn,AIMU,1,1);}if (xn<0){ptrn=PTFRL2;msm=patC(ptrn,AIMU,1,1);}if ((xn<0)&&(eT>0)){ptrn=PTFRL1;msm=patC(ptrn,AIMU,1,1);}if (xn<0){return rECLRETc();}} else if (mC==LRL1){ptrn=PTFRL1;msm=patC(ptrn,AIMU,1,1);if ((xn<0)&&(eT>0)){ptrn=PTFRL2;msm=patC(ptrn,AIMU,1,1);}if ((xn<0)&&(eT>0)){ptrn=PTFRL0;msm=patC(ptrn,AIMU,1,1);}if (xn<0){return rECLRETc();}} else if ((mC==LRR2)&&(sL[LRL1]>=1)&&(sL[LRL0]==0)){return {cell:POSC,color:LRL0};}if ((msm==0)&&dOK[CCW[xn+5]]&&((view[CCW[xn+3]].ant&&view[CCW[xn+3]].ant.friend)||
(view[CCW[xn+4]].ant&&view[CCW[xn+4]].ant.friend))){return {cell:CCW[xn+5]};} else if (msm<0){var cc=fwdWrong[0];return {cell:cc.v,color:fixup(ptrn[cc.p])};} else if (msm>0){var cc=rearWrong[0];return {cell:cc.v,color:fixup(ptrn[cc.p])};} else {return NOP;}return NOP;}function rECLRETc(){var ptrn;var msm;for (var i=3; i<TN+2; i+=2){if (view[CCW[i]].ant&&view[CCW[i]].ant.friend&&
((view[CCW[i]].ant.type==AJM)||(view[CCW[i]].ant.type==ASM))){xn=i-3;if (mC==LRL0){ptrn=PTFRL0;msm=patC(ptrn,AIMR,1,0.3);if (msm==PTNOM){ptrn=PTFRL2;msm=patC(ptrn,AIMR,1,0.3);}} else if (mC==LRL1){ptrn=PTFRL1;msm=patC(ptrn,AIMR,1,0.3);}if (msm>0){var cc=rearWrong[0];return {cell:cc.v,color:fixup(ptrn[cc.p])};}return NOP;}}return NOP;}function patC(ptrn,targetCell,qG,wt){if (xn>=0){return (patCO(ptrn,targetCell,qG,wt,xn));} else {var msm;for (var o=0; o<TN; o+=2){msm=patCO(ptrn,targetCell,qG,wt,o);if (xn>=0){return msm;}}return PTNOM;}}function patCO(ptrn,targetCell,qG,wt,ortn){var fwdFCs=FWD_CELLS[targetCell];var totDscs=0;fwdWrong=[];rearWrong=[];if ((Array.isArray(ptrn[POSC])&&!ptrn[POSC][mC])||
((ptrn[POSC]>0)&&(mC!=ptrn[POSC]))){if (fwdFCs[POSC]){fwdWrong.push({p:POSC,v:POSC});totDscs+=1;} else {rearWrong.push({p:POSC,v:POSC});totDscs+=wt;}}if ((xn<0)&&(totDscs>qG)){return PTNOM;}var jFrom=0;switch (targetCell){case AIMU:jFrom=4;break;case AIML:jFrom=6;break;case AIMR:jFrom=2;break;case AIMD:case POSC:default:break;}for (var j=jFrom; j<TN+jFrom; j++){var posP=CCW[j];var posV=CCW[ortn+j];var c=view[posV].color;if ((Array.isArray(ptrn[posP])&&!ptrn[posP][c])||
((ptrn[posP]>0)&&(c!=ptrn[posP]))){if (fwdFCs[posP]){fwdWrong.push({p:posP,v:posV});totDscs+=1;} else {rearWrong.push({p:posP,v:posV});totDscs+=wt;}}if ((xn<0)&&(totDscs>qG)){return PTNOM;}}if ((xn<0)){xn=ortn;}if (fwdWrong.length==0){return (totDscs);} else {return (-totDscs);}}function isQc0(color){return (LCRQCVAL[color]&&(LCRQC_VALUE[color]==0));
}function isQc2(color){return (LCRQCVAL[color]&&(LCRQC_VALUE[color]==2));
}function incQc(color){if (LCRQCVAL[color]){if (LCRQC_VALUE[color]>=QCPERD){return LCRQC[0];} else {return (LCRQC[(LCRQC_VALUE[color]+1) % QCPERD]);
}} else {return undefined;}}function isSc0(color){return (LCRSCVAL[color]&&(LCRSC_VALUE[color]==0));
}function isSc1(color){return (LCRSCVAL[color]&&(LCRSC_VALUE[color]==1));
}function incSc(color){if (LCRSCVAL[color]){return (LCRSC[(LCRSC_VALUE[color]+1) % SCPERD]);
} else {return undefined;}}function spcMS(){return (((mC==LCLR)||((mF+fdL>0)&&(mC==LMMF))||((mF>0)&&(mC==LMMH)))&&(sN[LMR0]+sN[LML1] +sN[LMR2]+sN[LML3]>=2)&&(sN[LCLR]>=3)&&(sN[LMMF] +sN[LMMH] +sN[PB]<=3)); }function spcRM(){return (LCRGRM_ALL[mC]&&(sT[LRL0]+sT[LRL1]>=3)&&(sN[LRL0]>=1)&&(sN[LRR0]+sN[LRR2]>=2)&&(sT[LRM0]+sT[LRM1_WRP] +sT[LRM1]+sT[LRM2]>=2)&&(sT[LCLR]<=4));}function spcRL1(){return ((mC==LRL1)&&(sL[LRL0]>=2)&&(sD[LRM0]>=1)&&(sL[LRM1_WRP]+sL[LRM1]>=1)&&(sD[LRM2]>=1));}function spcRL02(){return ((mC==LRL0)&&(sL[LRL1]+sL[LRL2]>=2)&&(sN[LRM0]>=1)&&(sD[LRM1_WRP]+sD[LRM1]>=1));}function spcRR0(){return ((mC==LRR0)&&(sL[LRM1]==0)&&(sD[LRM1]+sD[LRM1_WRP]>=1)&&(sL[LMR0]>=1)&&(sL[LRR2]>=1));}function spcRR1(){return (LCRGRR1[mC]&&(sN[LRR0]>=2)&&(sL[LRR2]>=1)&&(sD[LRM0]>=1)&&(sN[LCLR]<=3)&&(sL[LRM1] +sL[LRM1_WRP]>=1));}function spcRR2(){return ((mC==LRR2)&&(sD[LCLR]>=1)&&(sD[LRM0]>=1)&&(sD[LRM1]+sD[LMR0]>=2)&&(sL[LRR0]>=2));}function spcMS0R(){return((mC==LCLR)&&(sL[LMR0]>=1)&&(sL[LRR1U]>=1)&&(sD[LRR2]>=1)&&(sD[LRR0]>=1));}function spcMS0ROut(){return ((mC==LCLR)&&(sL[LMR0]+sL[LRR1V]>=2)&&(sD[LRR2]>=2)&&(sD[LRR0]>=1));}function spcMS0W(){return ((mC==LCLR)&&(sD[LRL0]>=3)&&(sL[LRL1]>=1)&&(sL[LMS_WRP]>=2)&&(sN[LCLR]>=2));}function spcMFL(){return ((sL[LMMF]>=1)&&(sD[LMMH]>=1)&&(sT[LCLR]>=2)&&(sT[LML1]+sT[LML3]>=1));}function spcMFR(){return ((sL[LMMF]>=1)&&(sD[LMMH]>=1)&&(sT[LCLR]>=2)&&(sT[LMR0]+sT[LMR2]>=1));}function fixup(ptrnCell){if (Array.isArray(ptrnCell)){for (var i=1; i<=9; i++){if (ptrnCell[i]){return i;}}return LCLR;} else {return ptrnCell;}}

(En Trichoplax de y asesoramiento de dzaima - para el que muchas gracias - esto se ha afeado a encajar dentro de los límites de tamaño PPCG, a expensas de la legibilidad!. Editar: El original íntegro, ampliamente comentado y con los nombres de variables y funciones significativas, ahora es disponibles en GitHub .)

Después de la lucha inicial habitual, la Windmill Queen lanza tres rieles, con el objetivo de tener un área más cercana recorrida más a fondo y reducir los tiempos de viaje en tren, y agregando redundancia. Hay un pequeño jardín en el cuarto lado, con bayas rojas, azules y negras.

Prescindimos de los mineros en un reparador de rieles. (Su riel muy largo es una bendición mixta ... tiende a atraer vampiros.) En cambio, tenemos un ingeniero en cada riel. Su propósito original era decirles a los mineros si están extendiendo el riel (es decir, cuando pueden ver al ingeniero) en lugar de repararlo (cuando no pueden), pero esto quedó algo enterrado a medida que el código evolucionó. Ahora se ocupan de algunas tareas menores, como ayudar a evitar que los rieles broten de forma invertida.

Se espera que un eje de 3 celdas de ancho por 1000 celdas de profundidad contenga 3 alimentos en promedio, y solo el 4% de todos los ejes de esta profundidad no contendrá ninguno. Una vez que estimamos a partir de la cantidad de comida acumulada que los rieles han crecido lo suficiente como para que valga la pena, la reina comenzará a generar mineros mayores que volverán a inspeccionar los pozos previamente explorados por un minero junior. Al igual que en Miners on a Rail, estamos preparados para manejar ejes que se envuelven alrededor de la arena en el lado posterior (izquierdo) de un rail.

Windmill Queen también emplea a otros dos empleados: un jardinero y una secretaria. Son del mismo tipo de hormiga, haciendo una cosa u otra dependiendo de su ubicación en relación con la reina y entre sí. Ayudan a la reina a orquestar la creación de los ingenieros y de los primeros mineros junior, y luego ayudan a la reina a ejecutar un reloj: un oscilador que sonará cada 85 movimientos (cuando no esté perturbado).

Este reloj maestro, junto con la cantidad de alimentos acumulados y las orientaciones aleatorias de 1 de 4 que recibimos, desacopla la creación de mineros a partir de la llegada de alimentos y regula la velocidad a la que se generarán más mineros. Cuando la reina acaba de establecerse, toda la comida entrante se convierte rápidamente en más mineros hasta que la tasa de comida entrante alcanza aproximadamente 9 por 1000 movimientos (que requiere aproximadamente una docena de mineros productivos). Luego, el ciclo del reloj se convierte en el factor limitante y comenzamos a acumular alimentos. Más tarde, a medida que aumenta la cantidad de alimentos, reducimos la tasa de desove a un máximo de 6 nuevos mineros por 1000 movimientos y luego a un máximo de 3, y finalmente dejamos de procrear por completo. Un mecanismo de trinquete evita que la reina gaste demasiada comida en el desove cuando todos los rieles están bloqueados o dañados.

Incluso sin ningún daño importante, la eficiencia de la minería disminuirá mucho a medida que se desarrolle cada juego. Inicialmente, esperamos que un minero taladre a la mitad de la velocidad de la luz y regrese a la velocidad de la luz para entregar 1 comida cada 1000 movimientos en promedio. Hacia el final, es más como 0.12-0.14 comida por minero por 1000 movimientos. Recorrer los rieles más largos, pintar el patrón del eje en su mayoría blanco sobre un lienzo que ya no es blanco, y reparar los ejes y los rieles lleva tiempo; los mineros se quedan atrapados, perdidos o atados en escaramuzas de paintball con sus oponentes.

Nuestros mineros se esfuerzan por extraerse de cualquier embotellamiento importante.

Y hay un sistema inmune rudimentario para tratar con intrusos hostiles.

No se recomienda intentar vaporizar nuestro patio trasero. Nuestro personal no se divertirá.

El principal inconveniente es que la reina del molino de viento necesita 8 alimentos para pagar su personal inicial de su bolsillo, por lo que la fase de lucha es bastante larga, dando a otros contendientes similares una ventaja. Si nuestro nido se desborda y los rieles se aniquilan antes de que hayamos acumulado comida, el día terminará mal para nosotros. Más tarde, y con al menos un riel en funcionamiento o reparable, generalmente podemos seguir adelante, o al menos conservar (la mayoría de) lo que ya tenemos.

La implementación trata las celdas vecinas como numeradas en sentido antihorario, comenzando en una esquina, con una matriz ( CCW) para traducir estos números a los viewsubíndices del controlador . Cuando tenemos una necesidad (y somos capaces) de precisar nuestro sentido del Norte, configuramos nuestra brújula, un subíndice base enCCW. La función hormiga siempre comienza haciendo un balance de su entorno, en particular registrando un espectro (con qué frecuencia ocurre cada color), y luego se ramifica por tipo y situación de hormiga a lo largo de un árbol de estrategias y tácticas de decisión de niveles múltiples. Esto hace posible manejar una gran cantidad de casos especiales extraños mientras se manejan las situaciones más comunes muy rápidamente. El árbol tiene casi 200 hojas que pintan una celda o dan un paso o crean una hormiga, y más de 70 que no hacen nada, destiladas de los 2 ^ 27 posibles patrones de color de vista multiplicados por posibles hormigas a la vista, comida a la vista y comida llevado.

Aquí hay una representación ASCII de la geometría del concentrador:

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |   |   |   | ^ |MR2|   | v |MR2|   | ^ |   |   |   |   |   |   |   |   |
|   |   |   |   | i |   |   | a | r |  rail 2   |   |   |   |   |   |   |   |
+---+---+---+---+-n-+---+---+-c-+---+---+---+---+---+---+---+---+---+---+---+
|   |   |   |ML1|   |   |ML1| a |   |RL0|RM0|RR0|   |   |   |   |   |   |   |
|   |   |   | y | u |   | y | t |   | c | r | g |   |   |   |   |   |   |   |
+---+---+---+---+-s-+---+---+-e-+---+---+---+---+---+---+---+---+---+---+---+
|   |   |   |MX | e |MR0|MX | d |MR0|RL2|RM2|RR2|MX |ML1|   |ML3|   |ML1|   |
|   |   |   | c |   | k | y |   | k | c | g | y | c | y |   | c |   | y |   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |RR1|RR0|RR2|RR1|RR0|RR2|RR1|RR0|RL1|RM1|RR1|   | shaft in use  |  >|   |
|  r|   | g | y | r | g | y | y | g | g | b | r |   |   |   |   |   |   |   |
+--a+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| <i|RM1|RM0|RM2|RM1|RM0|RM2|RM1|RM0|RL0|RM0|RR0|MR0|   |MR2|   |MR0|   |   |
|  l| b | r | g | b | r | g | b | r | c | r | g | k |   | r |   | k |   |   |
+-- +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|  3|RL1|RL0|RL2|RL1|RL0|RL2|RL1|RL0|*Q*|RL0|RL1|RL2|RL0|RL1|RL2|RL0|RL1|   |
|   | g | c | c | g | c | c | g | c |clk| c | g | c | c | g | c | c | g |r  |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+a--+
|   |   |   |   |   |   |   |G3 |Grd|Sec|RM0|RM1|RM2|RM0|RM1|RM2|RM0|RM1|i >|
|   |   |   |   |   |   |   | k |r/y|clk| r | b | g | r | b | g | r | b |l  |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ --+
|   |   |   |   |   |   |   |G4 |G5 |G6 |RR0|RR1|RR2|RR0|RR1|RR2|RR0|RR1|1  |
|   |   |   |   |   |   |   | r | k | b | g | y | y | g | r | y | g |   |   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|   |   |   |   |   |   |   |   |   |   |MR0|   |MX |MR0|   |MX |   |   |   |
|   |   |   |   |   |   |   |   |   |   | k |   | y | k |   | c |   |   |   |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

(mostrando los colores MX y RR1 durante y después del primer descenso de un minero junior).

Hay docenas de cabos sueltos. (Por ejemplo, limpiamos los alimentos del riel porque podría convertirse en un obstáculo para los mineros cargados, pero algunos alimentos que están cerca del riel no se comerán ya que la complejidad adicional simplemente no parecía valer la pena). el enemigo de lo mejor ...

v1.1 corrige una causa de descalificación y agrega algunas mejoras menores.

v1.2 agrega algunas correcciones y mejoras más.

v1.3 agrega vardeclaraciones de mezcla anteriores para que esto funcione en controladores de modo estricto como Dave's ; Sin cambios funcionales.

v1.4 corrige un malentendido entre la reina y el jardinero sobre el uso del ajo (como los Vampiros que llegan a lo largo de rail3 van a descubrir), cura un estúpido error de definición de patrón y mejora algunos casos extremos.

v1.5 le enseña al molino de viento un nuevo truco: ¿quieres ver una hormiga fugitiva?

v1.6 permite a los mineros garabatear patrones en vastas extensiones verdosas, refina la alarma antirrobo en casa y trata a las reinas enemigas en otros lugares de una manera un poco más elástica, además de retoques menores.

v1.7, aparte de pequeñas correcciones de resiliencia, utiliza una fase de inicio de estilo Lightspeed , no para establecerse antes, sino para establecerse con un mayor stock de alimentos. (Necesitamos 7 mineros para superar la tasa de retorno de alimentos esperada de un tándem de velocidad de la luz, por lo que no tiene sentido cambiar a la minería antes de que podamos pagarlos).

v1.8 corrige un punto muerto en la lógica de fase Lightspeed y, lo que es más importante, cura un error de generación introducido en v1.6 que había resultado en la descalificación.

v1.9 corrige otro error descalificador exótico, trata provisionalmente algunos casos de congestión en los ejes e intenta lidiar con los últimos inventos vampíricos.

v2.0 permite a la reina abandonar un centro existente por completo cuando lo necesita con urgencia, recurrir a la codificación al estilo Lightspeed y, con suerte, volver a establecerse más tarde para fundar un nuevo molino en otro lugar, lejos del sitio original. Los experimentos con un oscilador controlado por alimentos de velocidad variable, por otro lado, no dieron como resultado mejoras convincentes. Enviar más mineros antes aumentaría un poco las tasas de accidentes de algunos competidores, pero también la nuestra. El código FCO permanece en su lugar pero ha sido deshabilitado por ahora.

v2.1 aborda tres casos extremos en los que los trabajadores tenían que mudarse mejor que quedarse.


La razón por la cual los ejes de los mineros son como son es por el borrador del rastro: con mi diseño es muy poco probable que un borrador del rastro encuentre un eje que lo haga rastrear hasta el riel, mientras que el suyo tiene al menos un 50% de posibilidades de llevar un borrador hasta el riel. Yo estaba buscando un mejor patrón de eje durante al menos media hora sin encontrar un solo ..
dzaima

Sí, ese es un punto. Por otro lado, los borradores de senderos pueden aburrirse con el riel y alejarse a lo largo de las paredes del eje en zigzag ... El patrón alternativo es más robusto cuando se perfora en terrenos difíciles (aunque no infalible).
GNiklasch

Los mineros en un riel a veces en realidad se benefician del borrador de rastro: permite a los mineros de riel volver a explorar los ejes sin tener realmente la intención de hacerlo.- Y los rieles y los ejes pueden repararse. Los accidentes pueden y sucederán. Las opciones de recuperación son importantes. ¡Los moaR ya son impresionantes!
GNiklasch

1
Me encanta la explicación Particularmente usando un tipo de trabajador para producir dos comportamientos diferentes dependiendo del contexto local.
trichoplax

1
@trichoplax Whoops: ¡gracias por el aviso! Causa conocida (subíndice desactivado por dos), cf número 6 . Aprovecharé la ocasión para registrar un par de otras pequeñas correcciones. Actualizaré mi respuesta después de algunas pruebas de regresión y volver a minificar el código.
GNiklasch

12

Calabozo

var COLOR=8
var COLOR2=7
var COLOR3=2
var LOCKDOWN=8
var orthogonals = [1, 3, 7, 5]
var isQueen = view[4].ant.type==5
var rotationsCW = [1,2,5,8,7,6,3,0]
var rotationsCCW = [3,6,7,8,5,2,1,0]
var matchStates = [
    {state:[0,0,0,
            0,1,0,
            0,0,0],move:0,back:0,fill:true},
    {state:[1,0,0,
            0,1,0,
            0,0,0],move:1,back:3,fill:true},
    {state:[0,1,0,
            1,0,0,
            0,0,0],move:0,back:0,fill:false},
    {state:[0,1,0,
            0,0,1,
            0,0,0],move:2,back:2,fill:false},
    {state:[0,0,1,
            0,0,1,
            0,1,0],move:8,back:2,fill:false},
    //5:
    {state:[1,0,0,
            1,0,0,
            0,1,0],move:2,back:6,fill:false},
    {state:[0,1,0,
            0,1,0,
            0,0,0],move:2,back:0,fill:false},
    {state:[1,0,0,
            1,1,0,
            0,0,0],move:1,back:6,fill:false},
    {state:[0,1,1,
            0,1,0,
            0,0,0],move:5,back:0,fill:false},
    {state:[0,1,0,
            1,1,0,
            0,0,0],move:2,back:6,fill:false},
    //10:
    {state:[1,1,0,
            0,1,0,
            0,0,0],move:2,back:3,fill:false},
    {state:[1,1,0,
            1,1,0,
            0,0,0],move:2,back:6,fill:false},
    {state:[0,1,1,
            0,1,1,
            0,0,0],move:8,back:0,fill:false},
    {state:[1,1,1,
            0,1,0,
            0,0,0],move:5,back:3,fill:false},
    {state:[1,0,0,
            1,1,0,
            1,0,0],move:1,back:7,fill:false},
    //15:
    {state:[0,1,0,
            1,1,1,
            0,0,0],move:8,back:6,fill:false},
    {state:[1,1,1,
            1,1,0,
            0,0,0],move:5,back:6,fill:false},
    {state:[1,0,0,
            1,1,0,
            1,1,0],move:1,back:8,fill:false},
    {state:[1,1,0,
            1,1,0,
            1,0,0],move:2,back:7,fill:false},
    {state:[1,1,1,
            0,1,1,
            0,0,0],move:8,back:3,fill:false},
    //20:
    {state:[1,1,1,
            0,0,1,
            0,0,1],move:7,back:3,fill:true},
    {state:[1,1,1,
            1,0,0,
            1,0,0],move:5,back:7,fill:true},
    {state:[1,0,0,
            1,0,0,
            1,1,1],move:1,back:5,fill:true},
    {state:[0,0,1,
            0,0,1,
            1,1,1],move:3,back:1,fill:true},
    {state:[1,1,1,
            0,1,1,
            0,0,1],move:7,back:3,fill:true},
    //25:
    {state:[1,1,1,
            1,1,0,
            1,0,0],move:5,back:7,fill:true},
    {state:[1,0,0,
            1,1,0,
            1,1,1],move:1,back:5,fill:true},
    {state:[1,1,1,
            1,1,1,
            0,0,0],move:8,back:6,fill:true},
    {state:[1,1,1,
            1,1,1,
            1,0,0],move:8,back:7,fill:true},
    {state:[1,1,1,
            1,1,0,
            1,1,0],move:5,back:8,fill:true},
    {state:[1,1,1,
            1,1,1,
            1,1,0],move:8,back:8,fill:true},
    //30:
    {state:[1,1,1,
            1,1,1,
            1,0,1],move:7,back:7,fill:true},
    {state:[1,1,1,
            1,1,0,
            1,1,1],move:5,back:5,fill:true},
    {state:[1,0,1,
            1,1,1,
            1,1,1],move:1,back:1,fill:true},
    {state:[1,1,1,
            0,1,1,
            1,1,1],move:3,back:3,fill:true},
    {state:[1,1,1,
            1,1,1,
            1,1,1],move:9,back:9,fill:false},
    //35:
]
function matchesColor(c) {
    return c==COLOR || c==COLOR2 || c==COLOR3 || (view[4] == COLOR3 && c == LOCKDOWN)
}
function matchesNonLineColor(c) {
    return c==COLOR || c==COLOR2
}
function isAnyColor(c) {
    var r=0
    for(var i=0;i<9;i++) {
        if(view[i].color == c) r++
    }
    return r
}
function howManyAnts() {
    var r=0;
    for(var i=0;i<9;i++) {
        if(view[i].ant != null) r++
    }
    return r
}
function deRotate(m, amt) {
    if(m == 4 || m < 0 || m > 8 || amt == 0) return m
    if(amt > 0)
        return rotationsCW[(rotationsCW.indexOf(m)+amt)%8]
    amt = -amt
    return rotationsCCW[(rotationsCCW.indexOf(m)+amt)%8]
}
function deRotateSide(m, amt) {
    return deRotate(m,amt*2)
}
function matchWhileLost(sides) {
    var c=0;
    for(var i=0;i<9;i++) {
        if(view[i].color == COLOR3) c++
        if(view[i].color == COLOR3 && i%2 == 0) c+=10
    }
    if(c == 2) {
        if(view[0].color == COLOR3 || view[2].color == COLOR3 || view[6].color == COLOR3 || view[8].color == COLOR3) {
            return {cell:4,color:COLOR3}
        }
        if(view[0].ant == null)
            return {cell:0}
        if(view[2].ant == null)
            return {cell:2}
        if(view[6].ant == null)
            return {cell:6}
        if(view[8].ant == null)
            return {cell:8}
    }
    c = 0
    sides[4] = 0
    var toMatch =[{state:[1,1,1,
                         2,0,2,
                         0,1,0]},
                 {state:[0,2,1,
                         1,0,1,
                         0,2,1]},
                 {state:[0,1,0,
                         2,0,2,
                         1,1,1]},
                 {state:[1,2,0,
                         1,0,1,
                         1,2,0]}]
    for(var m=0;m<4;m++) {
        var score=0
        for(var j=0;j<9;j++) {
            if(j!=4) {
                if(sides[j] == COLOR3 && toMatch[m].state[j] == 1) {
                    score++
                }
                if(sides[j] != COLOR3 && (toMatch[m].state[j] == 0 || toMatch[m].state[j] == 2)) {
                    score++
                }
                if(sides[j] == COLOR3 && toMatch[m].state[j] == 2) {
                    score--
                }
            }
        }
        if(score >= 6) {
            var clearOrder=[1,0,2]
            for(var r=0;r<clearOrder.length;r++) {
                var s = deRotateSide(clearOrder[r],m)
                if(view[s].color == COLOR3) {
                    if(view[s].ant == null)
                        return {cell:s,color:COLOR}
                    else
                        return {cell:4}
                }
            }
        }
    }
    return null
}
function matchBlueStyle(sides) {
    return null
}
function bestMatch(sides) {
    var c=0;
    for(var i=0;i<9;i++) {
        if(sides[i] > 1) c++
    }
    if(!isQueen && view[4].ant.food > 0) {
        c++
        sides[4] = 8
    }
    if(c <= 1) {
        return {state:matchStates[0],rot:0,fill:matchStates[0].fill}
    }
    c = 0
    while(!matchesColor(sides[0]) && !matchesColor(sides[1]) && c < 4) {
        var s2 = [0,0,0,0,0,0,0,0,0]
        s2[0] = sides[2]
        s2[1] = sides[5]
        s2[2] = sides[8]
        s2[3] = sides[1]
        s2[5] = sides[7]
        s2[6] = sides[0]
        s2[7] = sides[3]
        s2[8] = sides[6]
        sides = s2
        c++
    }
    while(c < 8 && (matchesColor(sides[0]) || matchesColor(sides[1])) && matchesColor(sides[8])) {
        var s2 = [0,0,0,0,0,0,0,0,0]
        s2[0] = sides[2]
        s2[1] = sides[5]
        s2[2] = sides[8]
        s2[3] = sides[1]
        s2[5] = sides[7]
        s2[6] = sides[0]
        s2[7] = sides[3]
        s2[8] = sides[6]
        sides = s2
        c++
    }
    var bestState = null
    var bestMatchScore = -1
    for(var i = 0; i < matchStates.length; i++) {
        var score=0
        for(var j=0;j<9;j++) {
            if(j!=4) {
                if(matchesColor(sides[j]) && matchStates[i].state[j] == 1) {
                    score++
                }
                if(!matchesColor(sides[j]) && matchStates[i].state[j] == 0) {
                    score++
                }
            }
        }
        if(score >= bestMatchScore) {
            //console.log("state " + i + ": " + score);
            bestMatchScore = score
            bestState = matchStates[i]
        }
    }
    return {state:bestState,rot:c,fill:bestState.fill,score:bestMatchScore}
}
function getHighestWorker() {
    var r=0;
    for(var i=0;i<9;i++) {
        if(i != 4 && view[i].ant != null) {
            if(view[i].ant.friend && view[i].ant.type > r) r = view[i].ant.type
        }
    }
    return r
}
function pathLost() {
    var i, j
    var safe = []
    for(var q=0;q<9;q++) {
        if(q != 4 && view[q].ant != null && view[q].ant.friend && (view[q].ant.type > view[4].ant.type && view[4].ant.food == 0 && view[q].ant.type < 5)) {
            if(!matchesColor(view[4].color)) return {cell:4,color:COLOR}
            return {cell:4}
        }
    }
    if (matchesNonLineColor(view[4].color)) {
        var myView = [0,0,0,0,0,0,0,0,0]
        for(var i=0; i < 9; i++) {
            myView[i] = view[i].color
            if(!isQueen && view[4].ant.food > 0 && view[i].food > 0) {
                myView[i] = COLOR;
            }
        }
        var ret = matchWhileLost(myView)
        if(ret == null)
            return {cell:4, color:COLOR3}
        else {
            if(!(view[ret.cell].ant != null && view[ret.cell].ant.friend == false) && (view[4].ant.food == 0 || view[ret.cell].food == 0 || isQueen))
                return ret
        }
    }
    for (i=0; i<view.length; i++) {
        if (view[i].ant === null && (view[4].ant.food == 0 || view[i].food == 0 || isQueen)) {
            safe.push(i);
        }
    }
    for (i=0; i<4; i++) {
        j = (i+2) % 4
        if (matchesNonLineColor(view[orthogonals[i]].color) && view[orthogonals[j]].color == COLOR3) {
            if (view[orthogonals[i]].ant == null) {
                return {cell:orthogonals[i]}
            } else if (safe.length > 0) {
                return {cell:safe[0]}
            } else if (view[0].ant === null && (view[4].ant.food == 0 || view[0].food == 0 || isQueen)) {
                return {cell:0}
            }
        }
    }
    if (view[1].ant === null && (view[4].ant.food == 0 || view[1].food == 0 || isQueen)) {
        return {cell:1}
    } else {
        if(!matchesColor(view[4].color)) return {cell:4,color:COLOR}
        return {cell:4}
    }
}
function isAllyAdjacentTo(view, place) {
    var i = deRotate(place, 1)
    var j = deRotate(place, -1)
    if(view[i].ant != null && view[i].ant.friend && view[i].ant.type < 5) return 1
    if(view[j].ant != null && view[j].ant.friend && view[j].ant.type < 5) return 1
    if(orthogonals.indexOf(place) >= 0) {
        i = deRotate(place, 2)
        j = deRotate(place, -2)
        if(view[i].ant != null && view[i].ant.friend && view[i].ant.type < 5) return 2
        if(view[j].ant != null && view[j].ant.friend && view[j].ant.type < 5) return 2
    }
    return 0
}
function findOpenSpace(pos, dir) {
    if(pos > 8 || pos < 0) return pos
    if(view[pos].ant != null && view[pos].ant.friend && view[4].ant.food == 0) {
        pos=deRotate(pos,4)
    }
    //var inc = dir>0?1:-1
    var b = 0
    while(view[pos].ant != null && b < 8) {
        pos=deRotate(pos,dir)
        b++
    }
    return pos
}
//end functions
function getReturn() {
    var colToPlace=COLOR
    var blueAmt = isAnyColor(COLOR2)
    var myView = [0,0,0,0,0,0,0,0,0]
    for(var i=0; i < 9; i++) {
        myView[i] = view[i].color
        if(!isQueen && view[4].ant.food > 0 && view[i].food > 0) {
            myView[i] = COLOR;
        }
        if(!isQueen && view[4].ant.food == 0 && view[i].ant != null && view[i].ant.food > 0) {
            if(!matchesColor(view[4].color)) return {cell:4,color:COLOR}
            return {cell:4};
            //myView[i] = COLOR;
        }
        if(view[i].ant != null && !view[i].ant.friend) {
            myView[i] = COLOR;
        }
    }
    if(isQueen) {
        for(var i=0; i < 9; i++) {
            if(i != 4 && !matchesColor(view[i].color) && view[i].ant != null) {
                myView[i] = COLOR
            }
        }
    }
    //console.log("view:")
    //console.log(myView)
    //console.log("1")
    var match = bestMatch(myView)
    if(match.state.move != 9) {
        var ctY = 0
        var lastY = -1
        var ctW = 0
        var lastW = -1
        for(var i=0; i < 9; i++) {
            if(view[i].color == COLOR3) {
                myView[i] = 8
                ctY++
                lastY = i
            }
            else if(!matchesColor(view[i].color)) {
                ctW++
                lastW = i
            }
        }
        if(ctY > 0 && isQueen && view[4].ant.food > 0 && ctW >= 1) {
            if(view[4].color != COLOR3 && matchesColor(view[4].color))
                return {cell:4,color:COLOR3}
            var tt = deRotate(lastW,-1)
            if(view[tt].color != COLOR2)
                return {cell:tt,color:COLOR2}
            lastW = findOpenSpace(lastW,1)
            return {cell:lastW}
        }
        else if(ctY >= 2 && ctW >= 3)
            match = bestMatch(myView)
        else if(ctY > 0 && view[lastY].ant == null && ctW >= 3) {
            return {cell:lastY,color:1}
        }
    }
    //console.log("2")
    if(!isQueen) {
        for(var i=0; i < 9; i++) {
            if(view[i].ant != null && view[i].ant.type == 5 && view[i].ant.food > 0 && view[i].ant.food <= 2) {
                if(view[4].ant.type == 4)
                    return {cell:4,color:COLOR2}
                return {cell:4}
            }
        }
    }
    //console.log("3")
    if(blueAmt > 0 && view[4].color != COLOR3 && match.state.move != 9) {
        //console.log("Some blue")
        var mb = match.state.back
        mb = deRotateSide(mb,match.rot)
        if(!isQueen || view[4].ant.food <= 2) {
            var a = deRotate(mb,1)
            var b = deRotate(mb,-1)//TODO should be -1
            //console.log("mb: " + mb + "," + a + "," + b)
            if(mb != 9 && (view[mb].color == COLOR2 || view[4].color == COLOR2 || view[a].color == COLOR2 || view[b].color == COLOR2)) {
                //blue behind
                //console.log("Blue behind")
                colToPlace = COLOR2
            }
            else {
                //console.log("No blue behind")
                //console.log(match)
                var myView2 = [0,0,0,0,0,0,0,0,0]
                //construct a view without blue in it
                for(var i=0; i < 9; i++) {
                    myView2[i] = view[i].color == COLOR2?1:view[i].color
                }
                var match2 = bestMatch(myView2)
                if(match2.state.move == 9 || match2.state == matchStates[0]) {
                    //zero or one black
                    //console.log("<= 1 Black")
                    //console.log(myView2)
                    //console.log(match2.state)
                    colToPlace = COLOR2
                }
                else if(view[4].ant.type != 4) {
                    var mf = match2.state.move
                    mf = deRotateSide(mf,match2.rot)
                    //console.log("mf: " + mf)
                    if(mf != 9 && view[mf].color == COLOR2 && view[mf].ant == null) {
                        //about to move onto blue
                        //console.log("Moving onto blue")
                        //console.log(view)
                        //console.log(myView2)
                        return {cell:mf,color:1}
                    }
                    var clearOrder=[1,3,5,7,0,2,6,8]
                    for(var r=0;r<clearOrder.length;r++) {
                        var s = deRotateSide(clearOrder[r],0)
                        if(view[s].color == COLOR2 && (view[s].ant == null || !view[s].ant.friend || (isQueen && view[4].ant.food == 0))) {
                            //console.log("DIE BLUE SCUM")
                            //console.log(view)
                            //console.log(myView2)
                            return {cell:s,color:1}
                        }
                        else if(isQueen && view[s].ant != null && view[s].ant.friend) {
                            //console.log("Blue Queen")
                            //console.log(view)
                            //console.log(myView2)
                            return {cell:4,color:COLOR2}
                        }
                    }
                }
            }
        }
        //console.log("Nothing happened")
    }
    //console.log("4")
    if(view[4].ant.type <= 2) {
      for(var i=0; i < 9; i++) {
        if(view[i].ant != null && !view[i].ant.friend) {
          var canSeeAlly = isAllyAdjacentTo(view,i)
          if(canSeeAlly == 0) {
            if(view[i].color == LOCKDOWN) {
              var a = deRotate(i, 1)
              var b = deRotate(i, -1)
              if(view[a].color != LOCKDOWN) return {cell:a,color:LOCKDOWN}
              if(view[b].color != LOCKDOWN) return {cell:b,color:LOCKDOWN}
              if(orthogonals.indexOf(i) >= 0) {
                a = deRotate(i, 2)
                b = deRotate(i, -2)
                if(view[a].color != LOCKDOWN) return {cell:a,color:LOCKDOWN}
                if(view[b].color != LOCKDOWN) return {cell:b,color:LOCKDOWN}
              }
            }
            else {
              return {cell:i,color:LOCKDOWN}
            }
            if(view[4].color == LOCKDOWN || view[4].color == COLOR) {
              var ii = deRotate(i,4)
              ii = findOpenSpace(ii,1)
              return {cell:ii}
            }
            return {cell:4,color:COLOR}
          }
          else if(canSeeAlly == 2) {
            var m = deRotate(i, 2)
            var j = deRotate(i, -2)
            if(view[m].ant != null && view[m].ant.friend && view[m].ant.type < 5) return {cell:m,color:LOCKDOWN}
            if(view[j].ant != null && view[j].ant.friend && view[j].ant.type < 5) return {cell:j,color:LOCKDOWN}
          }
          else if(view[4].color == LOCKDOWN || view[4].color == 2) {

          }
          else {
            return {cell:4,color:2}
          }
        }
      }
      for(var i=0; i < 9; i++) {
        if(view[i].ant != null && view[i].ant.friend && (view[i].ant.type > view[4].ant.type && view[4].ant.food == 0)) {
          if(match.state.move == 9)
            return {cell:4}
          if(view[i].ant.type == 5)
            return {cell:4}
          var m = findOpenSpace(i,1)
          if(view[m].ant == null)
            return {cell:m}
          return {cell:4,color:2}
        }
      }
    }
    else if(view[4].ant.type <= 4) {
      for(var i=0; i < 9; i++) {
        if(view[i].ant != null && !view[i].ant.friend) {
          var canSeeAlly = isAllyAdjacentTo(view,i)
          if(canSeeAlly == 0) {
            if(view[i].color == LOCKDOWN) {
              var a = deRotate(i, 1)
              var b = deRotate(i, -1)
              if(view[a].color != LOCKDOWN) return {cell:a,color:LOCKDOWN}
              if(view[b].color != LOCKDOWN) return {cell:b,color:LOCKDOWN}
              if(orthogonals.indexOf(i) >= 0) {
                a = deRotate(i, 2)
                b = deRotate(i, -2)
                if(view[a].color != LOCKDOWN) return {cell:a,color:LOCKDOWN}
                if(view[b].color != LOCKDOWN) return {cell:b,color:LOCKDOWN}
              }
            }
            else {
              return {cell:i,color:LOCKDOWN}
            }
            if(view[4].color == LOCKDOWN || view[4].color == COLOR) {
              var ii = deRotate(i,4)
              ii = findOpenSpace(ii,1)
              return {cell:ii}
            }
            return {cell:4,color:COLOR}
          }
          else if(canSeeAlly == 2) {
                var m = deRotate(i, 2)
                j = deRotate(i, -2)
                if(view[m].ant != null && view[i].ant.friend && view[m].ant.type < 5) return {cell:m,color:LOCKDOWN}
                if(view[j].ant != null && view[j].ant.friend && view[j].ant.type < 5) return {cell:j,color:LOCKDOWN}
          }
          else if(view[4].color == LOCKDOWN || view[4].color == 2) {

          }
          else {
            return {cell:4,color:2}
          }
        }
      }
    }
    else if(view[4].ant.food > 4) {
        for(var i=0; i < 9; i++) {
            if(view[i].ant != null && !view[i].ant.friend) {
                var canSeeAlly = isAllyAdjacentTo(view,i)
                if(canSeeAlly == 0) {
                    var m = findOpenSpace(i,1)
                    if(view[m].ant == null)
                        return {cell:m,type:1}
                    return {cell:4,color:3}
                }
            }
        }
        var high = getHighestWorker()
        if(high >= 3 && view[4].ant.food % 2 == 1 && view[4].ant.food < 40) {
            var typeToSpawn = 1
            if(view[4].ant.food < 10 && high == 4 && view[4].ant.food % 4 == 1) {
                typeToSpawn = 3
            }
            var m = findOpenSpace(0,1)
            var canSeeAlly = isAllyAdjacentTo(view,m)
            if(canSeeAlly == 0 && view[m].ant == null)
                return {cell:m,type:typeToSpawn}
        }
    }
    //console.log("5")
    var m = match.state.move
    if(isQueen && view[4].ant.food > 0 && view[4].ant.food <= 2 && isAnyColor(COLOR2) == 0 && isAnyColor(COLOR3) == 0 && m < 9) {
        var high = getHighestWorker()+1
        var num = howManyAnts();
        //high += Math.max(num-2,0)
        if(high < 5) {
            m = deRotate(m,match.rot+4) //get space behind
            m = findOpenSpace(m,1) //make sure its open
            if(view[m].ant == null && view[m].food == 0)
                return {cell:m,type:high}
            return {cell:4}
        }
        else {
            //return {cell:9}
            colToPlace = COLOR2
        }
    }
    if(!isQueen && view[4].ant.food > 0 /*&& view[4].ant.type >= 3*/) {
        //console.log("type 3")
        m = match.state.back
        //console.log(m)
        colToPlace = COLOR
    }
    if(view[4].ant.type == 3) {
        colToPlace = COLOR
    }
    //console.log("6")
    if(!matchesColor(view[4].color) && !(!isQueen && view[4].ant.food)) {
        //console.log("6a")
        /*for(var j=0; j < 9; j++) {
            if(j != 4 && view[j].ant != null && view[j].ant.friend && view[j].ant.food > 0 && j != match.back) {
                m = match.state.move
                if(m < 9) {
                    m = findOpenSpace(m,1)
                    if(view[m].ant == null)
                        return {cell:m}
                    return {cell:4}
                }
                return {cell:4,color:colToPlace}
            }
        }*/
        if(isQueen && view[4].color == LOCKDOWN) {
          m = deRotateSide(m,match.rot)
          m = findOpenSpace(m,1)
          return {cell:m}
        }
        return {cell:4,color:colToPlace}
    }
    if(match.fill && !matchesColor(view[4].color)) {
        return {cell:4,color:colToPlace}
    }
    if(m >= 9) {
        if(!matchesColor(view[4].color)) {
            return {cell:4,color:COLOR}
        }
        //console.log("lost! " + view[4].ant.food);
        //console.log(pathLost());
        return pathLost()
    }
    //console.log("7")
    //console.log("m0: " + m + "+" + match.rot)
    m = deRotateSide(m,match.rot)
    //console.log("m1: " + m)
    m = findOpenSpace(m,1)
    //console.log("m2: " + m)
    if(view[4].ant.food > 0 && !matchesColor(view[4].color) /*&& (view[4].ant.type >= 3)*/) {
        var anyFood = false
        for(var x=0;x<9;x++) {
            if(view[x].food > 0) anyFood = true;
        }
        if(!anyFood)
            return {cell:4,color:colToPlace}
    }
    //console.log("m3: " + m)
    m = findOpenSpace(m,1)
    //console.log("m4: " + m)
    if((!isQueen && view[4].ant.food > 0 && view[m].food > 0) && view[m].ant == null) return {cell:4}
    return {cell:m}
}
var ret = getReturn()
ret = sanityCheck(ret)
return ret
function sanityCheck(ret) {
    if(!ret || ret.cell < 0 || ret.cell > 8 || (ret.cell != 4 && (ret.color == null || ret.color == 0) && view[ret.cell].ant != null) || (view[ret.cell].food > 0 && (view[4].ant.food > 0 && view[4].ant.type < 5))) {
        return {cell:4}
    }
    if(ret.type && (view[ret.cell].ant != null || view[ret.cell].food > 0)) {
        return {cell:4}
    }
    return ret;
}

Esta es una función de hormiga masiva, masiva. Hace esto:

El agujero negro

La funcionalidad es realmente bastante simple. La parte superior del bloque de código define un matchStatesobjeto que las hormigas usan para identificar hacia dónde se enfrentan y, al hacerlo, orbitan alrededor del área explorada conocida. Luego, algunas funciones auxiliares (colores coincidentes, conteo de hormigas, etc.).

bestMatch()toma la vista vista por la hormiga (mutable) y encuentra la mejor coincidencia en matchStatesy devuelve la mejor coincidencia.

Queeny hace una cosa mientras se mueve, colocando negro:

  • Haga trabajadores hasta que ella vaya a hacer un trabajador que sería una reina, luego cambia a colocar azul. Cualquier hormiga que coloque un color que vea azul cerca de lugares azules en su lugar.
  • La reina, si ve azul, acumula comida.

Los trabajadores tipo 1 y 2 actúan como la reina hasta que encuentran comida, luego abandonan la colocación de color hasta que caminan alrededor del círculo y le dan su comida a la reina.

Los trabajadores de tipo 3 y 4 actúan como reinas hasta que encuentran comida, luego trabajan hacia atrás alrededor del círculo (aún colocando color) hasta que le entregan su comida a la reina.

Cualquier hormiga que se encuentra perdida invoca, pathLost()que es un algoritmo de línea recta más inteligente (literalmente es la función de ruta recta inteligente de meta con algunos ajustes).

Esos ajustes son:

  • Las hormigas tipo 1 actúan aleatoriamente e intentan borrar caminos (en su mayoría no son necesarios, pero las hormigas tipo 1 no son valiosas a largo plazo, y esto limpia los tableros de damas diagonales)
  • Las no reinas no actuarán si pueden ver a la reina
  • Cada vez que la hormiga puede ver y aún determinar la orientación de su camino que encuentra caminos anteriores frente a ella, borra ese camino, asegurando que las hormigas regresen:

Ejemplo cruzado

Más allá de eso, la mayor parte del resto es solo manejo de errores para asegurar que ninguna hormiga realice operaciones ilegales (pasar a otras hormigas, pasar a la comida, desovar hormigas en la comida ...) aunque el mayor error al manejar el fragmento de código está en la parte inferior :

if(view[4].ant.food > 0 && !matchesColor(view[4].color) && (view[4].ant.type >= 3) || surroundingColor > 6) {
  var anyFood = false
  for(var x=0;x<9;x++) {
    if(view[x].food > 0) anyFood = true;
  }
  if(!anyFood)
    return {cell:4,color:colToPlace}
}

Las hormigas tipo 3 y 4 que caminan hacia atrás no colocan el color alrededor de los alimentos que todavía están en el suelo (los alimentos se tratan como si fueran baldosas de colores para la orientación del camino). Además, las hormigas Tipo 1 o 2 que piensan que han sido cercadas (<= 2 espacios sin color a la vista) colocarán color hacia abajo. Para las pequeñas 'islas' eventualmente se pierden, en lugar de quedar atrapadas permanentemente.

La comida máxima que puede obtener esta facción solo está limitada por la rapidez con la que cambia de color, así como por la duración máxima de un juego (10k mínimo). Más trabajadores no es necesariamente beneficioso, pero es esencial conseguir varios antes de tiempo. Los trabajadores de tipo 3 y 4 son los más eficientes (dar 6 pasos más cerca de la reina cada 6 pasos del juego), pero crearlos demasiado pronto lleva a menos trabajadores totales. Por lo tanto, la ubicación inicial tiene un gran impacto, pero a medida que el área mapeada por el enjambre crece constantemente con pocos espacios invisibles, agarrará hasta la última pieza , aunque ninguna hormiga se arriesgará a perderse para recoger una pieza.

Actualización 7/23

Noté algunos problemas en casos límite específicos, como este:

La reina quiere pasar a un enemigo.

E hizo ajustes muy pequeños para dar cuenta de ello. Básicamente, trata a las hormigas enemigas y a los trabajadores cargados como fichas de colores.

Actualización 7/26

Fox, ni siquiera sé más.

  • Se mejoró el manejo de error de rastro amarillo perdido para ser más robusto
  • Se mejoró el manejo de colisión de ruta de amigo para ser más robusto
  • Se agregó el código neutralizador de Trail Eraser
  • Se agregó el código de detección y manejo de "rastros azules" [BETA]
  • Made queen continúa produciendo trabajadores después de pasar al modo de acumulación (ocasionalmente, al menos)
  • Movimiento de saneamiento no válido
  • Código de espagueti misceláneo
  • Console.log eliminado
  • Herobrine removido
  • Disco de acreción agregado

Nuevo disco de acreción

Sin los senderos amarillos:

Menos el amarillo

Actualización 7/26 PARTE 2

  • Completamente renovado el "¿Qué hago con el azul?" código
    • Disco de acreción eliminado
  • Sal y pimienta
  • Problemas resueltos con "¿hacia dónde me enfrento?" detección
    • Forma circular eliminada
    • Forma cuadrada agregada
      • Parece aburrido ahora
  • Se eliminó la inmunidad a Trail-Eraser
  • Se agregó inteligencia en el código "Estoy perdido", reduce las hormigas atrapadas

Actualización 31/7

  • Se volvió a agregar el código anti-Trail-Eraser (se perdió en la actualización "eliminar azul")
  • La función de control de cordura evitaba la coloración de células debajo de otras hormigas
  • Más mejor solución anti-borrador: ya no necesita 3 trabajadores para contrarrestar un solo borrador

Actualización 8/4

Ajustes menores.

  • El color de BLOQUEO ahora es negro
  • Todas las hormigas caminan "hacia atrás" para entregar comida. Esas mecánicas conducirán a que menos hormigas queden atrapadas en las "burbujas" dejadas por Trail-Eraser
  • Mejor manejo de las hormigas perdidas que no se atascan
  • Se redujo el umbral de "solo acumulación" a 40

Debilidades

  • Borradura.
  • La manipulación del color.

Los comentarios no son para discusión extendida; Esta conversación se ha movido al chat .
Martin Ender

12

Vampire Mk.8 (Re-Vamped)

Esto se ha convertido en un wiki comunitario para que cualquiera pueda actualizarlo para apuntar a otras víctimas. Utiliza el concepto de entornos para mantener separados los diferentes códigos de orientación. Si quieres hacer un cambio, ¡ejecuta algunos torneos para asegurarte de que tu nuevo código no reduzca la puntuación promedio!


Todas mis respuestas comparten el mismo conjunto de funciones auxiliares de bajo nivel. Busque "La lógica de alto nivel comienza aquí" para ver el código específico de esta respuesta.

// == Shared low-level helpers for all solutions ==
var QUEEN = 5

var WHITE = 1
var COL_MIN = WHITE
var COL_LIM = 9

var CENTRE = 4

var NOP = {cell: CENTRE}

var DIR_FORWARDS = false
var DIR_REVERSE = true
var SIDE_RIGHT = true
var SIDE_LEFT = false

function sanity_check(movement) {
    var me = view[CENTRE].ant
    if(!movement || (movement.cell|0) !== movement.cell || movement.cell < 0 || movement.cell > 8) {
        return false
    }
    if(movement.type) {
        if(movement.color) {
            return false
        }
        if((movement.type|0) !== movement.type || movement.type < 1 || movement.type > 4) {
            return false
        }
        if(view[movement.cell].ant || view[movement.cell].food) {
            return false
        }
        if(me.type !== QUEEN || me.food < 1) {
            return false
        }
        return true
    }
    if(movement.color) {
        if((movement.color|0) !== movement.color || movement.color < COL_MIN || movement.color >= COL_LIM) {
            return false
        }
        if(view[movement.cell].color === movement.color) {
            return false
        }
        return true
    }
    if(view[movement.cell].ant && movement.cell != 4) {
        return false
    }
    if(view[movement.cell].food + me.food > 1 && me.type !== QUEEN) {
        return false
    }
    return true
}

function as_array(o) {
    if(Array.isArray(o)) {
        return o
    }
    return [o]
}

function best_of(movements) {
    var m
    for(var i = 0; i < movements.length; ++ i) {
        if(typeof(movements[i]) === 'function') {
            m = movements[i]()
        } else {
            m = movements[i]
        }
        if(sanity_check(m)) {
            return m
        }
    }
    return null
}

function play_safe(movement) {
    // Avoid disqualification: no-op if moves are invalid
    return best_of(as_array(movement)) || NOP
}

var RAND_SEED = (() => {
    var s = 0
    for(var i = 0; i < 9; ++ i) {
        s += view[i].color * (i + 1)
        s += view[i].ant ? i * i : 0
        s += view[i].food ? i * i * i : 0
    }
    return s % 29
})()

var ROTATIONS = [
    [0, 1, 2, 3, 4, 5, 6, 7, 8],
    [6, 3, 0, 7, 4, 1, 8, 5, 2],
    [8, 7, 6, 5, 4, 3, 2, 1, 0],
    [2, 5, 8, 1, 4, 7, 0, 3, 6],
]

function areAdjacent(A, B) {
    if(A == 4 || B == 4 || A == B) return true
    if(A % 2 == 0 && B % 2 == 0) return false
    if(A % 2 == 1 && B % 2 == 0) return areAdjacent(B,A)
    if(A % 2 == 1 && B % 2 == 1) return !(8-A == B || 8-B == A)
    if(A == 0 && (B == 1 || B == 3)) return true
    if(A == 2 && (B == 1 || B == 5)) return true
    if(A == 6 && (B == 3 || B == 7)) return true
    if(A == 8 && (B == 5 || B == 7)) return true
    return false
}

function try_all(fns, limit, wrapperFn, checkFn) {
    var m
    fns = as_array(fns)
    for(var i = 0; i < fns.length; ++ i) {
        if(typeof(fns[i]) !== 'function') {
            if(checkFn(m = fns[i])) {
                return m
            }
            continue
        }
        for(var j = 0; j < limit; ++ j) {
            if(checkFn(m = wrapperFn(fns[i], j))) {
                return m
            }
        }
    }
    return null
}

function identify_rotation(testFns) {
    // testFns MUST be functions, not constants
    return try_all(
        testFns,
        4,
        (fn, r) => fn(ROTATIONS[r]) ? ROTATIONS[r] : null,
        (r) => r
    )
}

function near(a, b) {
    return (
        Math.abs(a % 3 - b % 3) < 2 &&
        Math.abs(Math.floor(a / 3) - Math.floor(b / 3)) < 2
    )
}

function try_all_angles(solverFns) {
    return try_all(
        solverFns,
        4,
        (fn, r) => fn(ROTATIONS[r]),
        sanity_check
    )
}

function try_all_cells(solverFns, skipCentre) {
    return try_all(
        solverFns,
        9,
        (fn, i) => ((i === CENTRE && skipCentre) ? null : fn(i)),
        sanity_check
    )
}

function try_all_cells_near(p, solverFns) {
    return try_all(
        solverFns,
        9,
        (fn, i) => ((i !== p && near(p, i)) ? fn(i) : null),
        sanity_check
    )
}

function ant_type_at(i, friend) {
    return (view[i].ant && view[i].ant.friend === friend) ? view[i].ant.type : 0
}

function friend_at(i) {
    return ant_type_at(i, true)
}

function foe_at(i) {
    return ant_type_at(i, false)
}

function foe_near() {
    for(var i = 0; i < 9; ++ i) {
        if(i !== 4 && view[i].ant && !view[i].ant.friend) {
            return true
        }
    }
    return false
}

function ant_type_near(p, friend) {
    for(var i = 0; i < 9; ++ i) {
        if(i !== 4 && ant_type_at(i, friend) && near(i, p)) {
            return true
        }
    }
    return false
}

function move_agent(agents) {
    var me = view[CENTRE].ant
    var buddies = [0, 0, 0, 0, 0, 0]
    for(var i = 0; i < 9; ++ i) {
        ++ buddies[friend_at(i)]
    }

    for(var i = 0; i < agents.length; i += 2) {
        if(agents[i] === me.type) {
            return agents[i+1](me, buddies)
        }
    }
    return null
}

function grab_nearby_food() {
    return try_all_cells((i) => (view[i].food ? {cell: i} : null), true)
}

function go_anywhere() {
    return try_all_cells((i) => ({cell: i}), true)
}

function colours_excluding(cols) {
    var r = []
    for(var i = COL_MIN; i < COL_LIM; ++ i) {
        if(cols.indexOf(i) === -1) {
            r.push(i)
        }
    }
    return r
}

function generate_band(start, width) {
    var r = []
    for(var i = 0; i < width; ++ i) {
        r.push(start + i)
    }
    return r
}

function colour_band(colours) {
    return {
        contains: function(c) {
            return colours.indexOf(c) !== -1
        },
        next: function(c) {
            return colours[(colours.indexOf(c) + 1) % colours.length]
        },
        prev: function(c) {
            return colours[(colours.indexOf(c) + colours.length - 1) % colours.length]
        }
    }
}

function random_colour_band(colours) {
    return {
        contains: function(c) {
            return colours.indexOf(c) !== -1
        },
        next: function() {
            return colours[RAND_SEED % colours.length]
        }
    }
}

function fast_diagonal(colourBand) {
    var m = try_all_angles([
        // Avoid nearby checked areas
        (rot) => {
            if(
                !colourBand.contains(view[rot[0]].color) &&
                colourBand.contains(view[rot[5]].color) &&
                colourBand.contains(view[rot[7]].color)
            ) {
                return {cell: rot[0]}
            }
        },

        // Go in a straight diagonal line if possible
        (rot) => {
            if(
                !colourBand.contains(view[rot[0]].color) &&
                colourBand.contains(view[rot[8]].color)
            ) {
                return {cell: rot[0]}
            }
        },

        // When in doubt, pick randomly but avoid doubling-back
        (rot) => (colourBand.contains(view[rot[0]].color) ? null : {cell: rot[0]}),

        // Double-back when absolutely necessary
        (rot) => ({cell: rot[0]})
    ])

    // Lay a colour track so that we can avoid doubling-back
    // (and mess up our foes as much as possible)
    if(!colourBand.contains(view[CENTRE].color)) {
        var prevCol = m ? view[8-m.cell].color : WHITE

        var colours = [0, 0, 0, 0, 0, 0, 0, 0, 0]
        for(var i = 0; i < 9; ++ i) {
            ++ colours[view[i].color]
        }

        return {cell: CENTRE, color: colourBand.next(prevCol)}
    }

    return m
}

function checkAllNearEnvirons(colours, buddies) {
        var nearMoves = [victims.length]
        for(var e = 0; e < victims.length; e++) {
                var env = victims[e]
                nearMoves[e] = null
                if(env.near_nest(colours)) {
                        nearMoves[e] = env.near_nest_move(colours, buddies)
                }
        }
        return best_of(nearMoves)
}

function follow_edge(obstacleFn, side) {
    // Since we don't know which direction we came from, this can cause us to get
    // stuck on islands, but the random orientation helps to ensure we don't get
    // stuck forever.

    var order = ((side === SIDE_LEFT)
        ? [0, 3, 6, 7, 8, 5, 2, 1, 0]
        : [0, 1, 2, 5, 8, 7, 6, 3, 0]
    )
    return try_all(
        [obstacleFn],
        order.length - 1,
        (fn, i) => (fn(order[i+1]) && !fn(order[i])) ? {cell: order[i]} : null,
        sanity_check
    )
}

function start_dotted_path(colourBand, side, protectedCols) {
    var right = (side === SIDE_RIGHT)
    return try_all_angles([
        (rot) => ((
            !protectedCols.contains(view[rot[right ? 5 : 3]].color) &&
            !colourBand.contains(view[rot[right ? 5 : 3]].color) &&
            !colourBand.contains(view[rot[right ? 2 : 0]].color) &&
            !colourBand.contains(view[rot[1]].color)
        )
            ? {cell: rot[right ? 5 : 3], color: colourBand.next(WHITE)}
            : null)
    ])
}

function lay_dotted_path(colourBand, side, protectedCols) {
    var right = (side === SIDE_RIGHT)
    return try_all_angles([
        (rot) => {
            var ahead = rot[right ? 2 : 0]
            var behind = rot[right ? 8 : 6]
            if(
                colourBand.contains(view[behind].color) &&
                !protectedCols.contains(view[ahead].color) &&
                !colourBand.contains(view[ahead].color) &&
                !colourBand.contains(view[rot[right ? 6 : 8]].color)
            ) {
                return {cell: ahead, color: colourBand.next(view[behind].color)}
            }
        }
    ])
}

function follow_dotted_path(colourBand, side, direction) {
    var forwards = (direction === DIR_REVERSE) ? 7 : 1
    var right = (side === SIDE_RIGHT)

    return try_all_angles([
        // Cell on our side? advance
        (rot) => {
            if(
                colourBand.contains(view[rot[right ? 5 : 3]].color) &&
                // Prevent sticking / trickery
                !colourBand.contains(view[rot[right ? 3 : 5]].color) &&
                !colourBand.contains(view[rot[0]].color) &&
                !colourBand.contains(view[rot[2]].color)
            ) {
                return {cell: rot[forwards]}
            }
        },

        // Cell ahead and behind? advance
        (rot) => {
            var passedCol = view[rot[right ? 8 : 6]].color
            var nextCol = view[rot[right ? 2 : 0]].color
            if(
                colourBand.contains(passedCol) &&
                nextCol === colourBand.next(passedCol) &&

                // Prevent sticking / trickery
                !colourBand.contains(view[rot[right ? 3 : 5]].color) &&
                !colourBand.contains(view[rot[right ? 0 : 2]].color)
            ) {
                return {cell: rot[forwards]}
            }
        }
    ])
}

function escape_dotted_path(colourBand, side, newColourBand) {
    var right = (side === SIDE_RIGHT)
    if(!newColourBand) {
        newColourBand = colourBand
    }

    return try_all_angles([
        // Escape from beside the line
        (rot) => {
            var approachingCol = view[rot[right ? 2 : 0]].color
            if(
                !colourBand.contains(view[rot[right ? 8 : 6]].color) ||
                !colourBand.contains(approachingCol) ||
                colourBand.contains(view[rot[7]].color) ||
                colourBand.contains(view[rot[right ? 6 : 8]].color)
            ) {
                // not oriented, or in a corner
                return null
            }
            return best_of([
                {cell: rot[right ? 0 : 2], color: newColourBand.next(approachingCol)},
                {cell: rot[right ? 3 : 5]},
                {cell: rot[right ? 0 : 2]},
                {cell: rot[right ? 6 : 8]},
                {cell: rot[right ? 2 : 0]},
                {cell: rot[right ? 8 : 6]},
                {cell: rot[right ? 5 : 3]}
            ])
        },

        // Escape from inside the line
        (rot) => {
            if(
                !colourBand.contains(view[rot[7]].color) ||
                !colourBand.contains(view[rot[1]].color) ||
                colourBand.contains(view[CENTRE].color)
            ) {
                return null
            }
            return best_of([
                {cell: rot[3]},
                {cell: rot[5]},
                {cell: rot[0]},
                {cell: rot[2]},
                {cell: rot[6]},
                {cell: rot[8]}
            ])
        }
    ])
}

function latch_to_dotted_path(colourBand, side) {
    var right = (side === SIDE_RIGHT)

    return try_all_angles([
        (rot) => {
            var approachingCol = view[rot[right ? 2 : 0]].color
            if(
                colourBand.contains(approachingCol) &&
                view[rot[right ? 8 : 6]].color === colourBand.next(approachingCol) &&
                !colourBand.contains(view[rot[right ? 5 : 3]].color)
            ) {
                // We're on the wrong side; go inside the line
                return {cell: rot[right ? 5 : 3]}
            }
        },

        // Inside the line? pick a side
        (rot) => {
            var passedCol = view[rot[7]].color
            var approachingCol = view[rot[1]].color
            if(
                !colourBand.contains(passedCol) ||
                !colourBand.contains(approachingCol) ||
                colourBand.contains(view[CENTRE].color)
            ) {
                return null
            }
            if((approachingCol === colourBand.next(passedCol)) === right) {
                return best_of([{cell: rot[3]}, {cell: rot[6]}, {cell: rot[0]}])
            } else {
                return best_of([{cell: rot[5]}, {cell: rot[2]}, {cell: rot[8]}])
            }
        }
    ])
}


// == High-level logic begins here ==


var TARGET_COLOURS_ZIG = colour_band([4, 5, 7, 8])
var TARGET_COLOURS_FIREFLY = colour_band([2, 5, 8])
var GROUND_COLOURS_BH = colour_band([2, 7, 8])
var SAFE_COLOURS = random_colour_band([8])

var THIEF = 1
var BOUNCER = 2
var LANCE = 4
var LANCE_TIP = 3

var INITIAL_GATHER = 12

function colour_band_prev(band, base) {
    if(!band.contains(base)) {
        return band.next(WHITE)
    }
    var cur = band.next(base)
    var c
    while((c = band.next(cur)) !== base) {
        cur = c
    }
    return cur
}

function white_near(p) {
    for(var i = 0; i < 9; ++ i) {
        if(near(i, p) && view[i].color === WHITE) {
            return true
        }
    }
    return false
}

function white_near(p, min) {
    var c = 0
    for(var i = 0; i < 9; ++ i) {
        if(near(i, p) && view[i].color === WHITE) {
            if(++c >= min) return true
        }
    }
    return false
}

var TARGET_ARRANGEMENT_RAIL = [
    [8,4,5,8,5,2,4,2,6],
    [8,5,2,4,2,6,6,4,5],
    [4,2,6,6,4,5,8,4,5],
    [6,4,5,8,4,5,8,5,2]
]
var TARGET_NEAR_RAIL = [
    [2,4,0,5,8,0,4,8,0,1], //Not Valid for Worker #1
    [2,6,0,4,5,0,4,5,0,0],
    [4,6,0,2,4,0,5,8,0,0],
    [4,8,0,4,6,0,2,4,0,0],
    [4,5,0,5,2,0,2,6,0,1], //NV 1
    [4,5,0,4,5,0,5,2,0,5], //NV Q
    [5,2,0,2,6,0,4,5,0,0],
    [5,8,0,4,8,0,4,6,0,5]  //NV Q
]
var TARGET_COLOURS_RAIL = colour_band([4,5,2,4])
var rail_miners = {
    name:function() { return "rail_miners"; },
    near_nest: function(colours) {
        var bestScore = 0
        var enemyQueen = false
        // check every rotation for each 3x3 rail possibility
        TARGET_NEAR_RAIL.forEach(function (arrangement) {
            ROTATIONS.forEach(function (rot){
                var sevenVal = 1
                var score = 0
                for(var i = 0; i < 9; i++) {
                    score += arrangement[i] == view[rot[i]].color?1:0
                    score += (arrangement[i] == 0 && view[rot[i]].color == 7)?sevenVal:0
                    score += (arrangement[i] == 0 && !(view[rot[i]].color == 7 || view[rot[i]].color == 1))?-1:0
                    if(arrangement[i] == 0 && view[rot[i]].color == view[rot[i-2]].color) score -= 2
                    if(view[rot[i]].color) sevenVal = 0
                    enemyQueen |= view[i].ant && view[i].ant.type == QUEEN && !view[i].ant.friend
                    if(view[i].ant != null && view[i].ant.friend && view[i].ant.type == THIEF && view[i].color == WHITE) score++
                }
                if(score > bestScore && arrangement[9] != view[4].ant.type) {
                    bestScore = score
                }
            })
        })
        if(bestScore >= (5 - (enemyQueen && view[4].ant.type == 1?1:0))) {
            if(highway.likely_nest(colours)) return false
            return true
        }
        return false
    },
    worth_leeching: function(myFood, buddies) {
        var numFours = 0
        var foodNeed = 11
        for(var i = 0; i < 9; i++) {
            if(foe_at(i) == 4) numFours++
        }
        if(!buddies[THIEF]) return false
        if(view[4].ant.type != 5 && buddies[QUEEN] && myFood < 500 && myFood+buddies[THIEF] > (foodNeed-numFours*3)) return true
        return myFood < 500 && myFood >= (foodNeed-numFours*3)
    },
    near_nest_move: function(colours, buddies) {
        var victim_pos = -1
        var avoid_pos = -1
        var friend_pos = -1
        for(var i = 0; i < 9; i++) {
            if(foe_at(i) == QUEEN) victim_pos = i
            if(foe_at(i) > 0 && foe_at(i) < 4) avoid_pos = i
            if(friend_at(i) == THIEF) friend_pos = i
        }
        if(victim_pos >= 0) return rail_miners.follow_victim(view[4].ant, buddies, colours, victim_pos)
        if(view[4].ant.type == THIEF && buddies[QUEEN]) return NOP
        if(view[4].ant.type == QUEEN && rail_miners.worth_leeching(view[4].ant.food, buddies)) {
            if(avoid_pos >= 0 && view[4].color != WHITE) {
                return best_of([
                    try_all_angles.bind(null, [
                        (rot) => (friend_at(rot[1]) === THIEF ? {cell: rot[0]} : null),
                        (rot) => (friend_at(rot[0]) === THIEF ? {cell: rot[3]} : null)
                    ]),
                    try_all_angles.bind(null, [
                        (rot) => (friend_at(rot[1]) === THIEF ? {cell: rot[2]} : null),
                        (rot) => (friend_at(rot[0]) === THIEF ? {cell: rot[1]} : null)
                    ]),
                    NOP
                ])
            }
            var allowed = [[8,4,8],[4,6,8],[6,8,4],[5,5,6],[6,5,2],[2,6,5]]
            var curr = [view[4].color,view[friend_pos].color,view[8-friend_pos].color]
            var found = false
            allowed.forEach(function (al) {
                if(al[0] == curr[0] && al[1] == curr[1] && al[2] == curr[2]) {
                    found = true
                }
            })
            if(!found) {
                return best_of([
                    try_all_angles.bind(null, [
                        (rot) => (friend_at(rot[1]) === THIEF && [2,4,5].indexOf(view[rot[2]].color) >= 0 ? {cell: rot[2]} : null),
                        (rot) => (friend_at(rot[1]) === THIEF && [2,4,5].indexOf(view[rot[0]].color) >= 0 ? {cell: rot[0]} : null)
                    ]),
                    NOP
                ])
            }
            return NOP
        }
        return null
    },
    likely_nest: function(colours) {
        var bestScore = 0
        // check every rotation for each 3x3 rail possibility
        var q = 0
        TARGET_ARRANGEMENT_RAIL.forEach(function (arrangement) {
            var j = 0
            ROTATIONS.forEach(function (rot){
                var score = 0
                for(var i = 0; i < 9; i++) {
                    score += arrangement[i] == view[rot[i]].color?1:0
                    if(view[i].ant != null && view[i].ant.friend && view[i].ant.type == THIEF && view[i].color == WHITE) score++
                }
                if(score > bestScore) {
                    bestScore = score
                }
                j++
            })
            q++
        })
        if(view[4].ant.type == THIEF && rail_miners.near_nest(colours)) return true
        if(bestScore >= 7) {
            if(highway.likely_nest(colours)) return false
            return true
        }
        return false
    },

    likely_victim: function(victim_pos) {
        return true
    },

    follow_victim: function(me, buddies, colours, victim_pos) {
        if(me.type == QUEEN) {
            if(victim_pos % 2 == 0) {
                return best_of([
                    try_all_angles.bind(null, [
                        (rot) => (foe_at(rot[0]) === QUEEN && friend_at(rot[5]) == THIEF ? {cell: rot[2]} : null),
                        (rot) => (foe_at(rot[0]) === QUEEN /*&& friend_at(rot[7]) == THIEF*/ ? {cell: rot[6]} : null)
                    ]),
                    NOP
                ])
            }
            else {
                return best_of([
                    try_all_angles.bind(null, [
                        (rot) => (foe_at(rot[1]) === QUEEN && friend_at(rot[2]) == THIEF ? {cell: rot[5], type: THIEF} : null),
                        (rot) => (foe_at(rot[1]) === QUEEN ? {cell: rot[3], type: THIEF} : null),
                        (rot) => (foe_at(rot[1]) === QUEEN ? {cell: rot[5], type: THIEF} : null),
                        (rot) => (buddies[THIEF] < 4 && foe_at(rot[1]) === QUEEN ? {cell: rot[2], type: THIEF} : null),
                        (rot) => (buddies[THIEF] < 4 && foe_at(rot[1]) === QUEEN ? {cell: rot[0], type: THIEF} : null)
                    ]),
                    NOP
                ])
            }
        }
        return NOP
    },
    find_victim: function(me, buddies, colours) {
        var forwardCell = -1
        var current = view[CENTRE].color
        var target = TARGET_COLOURS_RAIL.next(current)
        var antitarget = TARGET_COLOURS_RAIL.prev(current)
        var queenPos = -1
        for(var i = 0; i < 9; i++) {
            if(i % 2 == 1 && view[i].color == target && view[8-i].color == antitarget && current != WHITE){
                forwardCell = i
            }
            if(friend_at(i) == QUEEN) queenPos = i
        }
        if(forwardCell < 0 && current == 4) {
            target = 4
            antitarget = 2
            for(var i = 0; i < 9; i++) {
                if(i % 2 == 1 && view[i].color == target && view[8-i].color == antitarget){
                    forwardCell = i
                }
            }
        }
        if(me.type == QUEEN) {
            var numEn = 0
            for(var i = 0; i < 9; i++) {
                if(i % 2 == 1 && friend_at(i) == THIEF && friend_at(8-i) == THIEF){
                    if(foe_at(deRotate(i,1)) > 0)
                        return {cell:forwardCell}
                    if(foe_at(deRotate(i,-1)) > 0)
                        return {cell:forwardCell}
                    return NOP
                }
                if(i % 2 == 0 && friend_at(i) == THIEF && friend_at(deRotate(i,2)) == THIEF){
                    return {cell:deRotate(i,3), type:THIEF}
                }
            }
            return wilderness.find_victim(me, buddies, colours)
        }
        else if(forwardCell >= 0) {
            if(friend_at(forwardCell) == QUEEN) {
                return best_of([
                    try_all_angles.bind(null, [
                        (rot) => (friend_at(rot[1]) === QUEEN ? {cell: rot[0]} : null),
                        (rot) => (friend_at(rot[0]) === QUEEN ? {cell: rot[3]} : null)
                    ]),
                    go_anywhere
                ])
            }
        }
        else if(queenPos>=0 && view[queenPos].color == WHITE && (foe_at(deRotate(queenPos,2)) && foe_at(deRotate(queenPos,-2)))) {
            return wilderness.find_victim(me, buddies, colours)
        }
        if(me.type == THIEF && forwardCell >= 0 && buddies[THIEF] == 1) {
            return wilderness.find_victim(me, buddies, colours)
        }
        return NOP
    }
}

var TARGET_ARRANGEMENT_WIND = [
        [5,4,0,7,6,0,6,4,0],
        [7,6,0,6,4,0,5,4,0],
        [6,4,0,5,4,0,7,6,0]
]
var TARGET_ARRANGEMENT_WINDCENTER = [
        [2,7,6,2,6,4,6,5,4],
        [2,6,4,6,5,4,2,7,6],
        [6,5,4,2,7,6,2,6,4]
]
var WIND_BAND = colour_band([5,6,7])
var windmill = {
    name:function() { return "windmill"; },
    near_nest: function(colours) { return false; },
    near_nest_move: function(colours, buddies) { return null; },
    likely_nest: function(colours) { // Main nest detection
        var bestScore = 0
        // check every rotation for each 3x3 rail possibility
        TARGET_ARRANGEMENT_WIND.forEach(function (arrangement) {
            ROTATIONS.forEach(function (rot){
                var score = 0
                for(var i = 0; i < 9; i++) {
                    score += arrangement[i] == view[rot[i]].color?1:0
                }
                if(score > bestScore) {
                    bestScore = score
                }
            })
        })
        if(bestScore >= 5 && view[4].ant.type != THIEF) {
            return true
        }

        var bestScore = 0
        // check every rotation for each 3x3 rail possibility
        TARGET_ARRANGEMENT_WINDCENTER.forEach(function (arrangement) {
            ROTATIONS.forEach(function (rot){
                var score = 0
                for(var i = 0; i < 9; i++) {
                    score += arrangement[i] == view[rot[i]].color?1:0
                }
                if(score > bestScore) {
                    bestScore = score
                }
            })
        })
        if(bestScore >= 8) {
            return true
        }
        var buddies = [0, 0, 0, 0, 0, 0]
        for(var i = 0; i < 9; ++ i) {
            ++ buddies[friend_at(i)]
        }
        return buddies[LANCE] || buddies[LANCE_TIP]
    },
    worth_leeching: function(myFood, buddies) {
        if(view[4].ant.type == THIEF && (buddies[LANCE] > 0 || buddies[LANCE_TIP] > 0)) return true
        return myFood > 5 || (myFood > 1 && buddies[LANCE])
    },
    likely_victim: function(victim_pos) {
        return false
    },

    follow_victim: function(me, buddies, colours, victim_pos) {
        // nest is chaotic and varies by direction of approach
        // We'll let the Find Victim logic handle this
        return NOP
    },

    find_victim: function(me, buddies, colours) {
        if(me.type == THIEF) {
            var queenPos = -1
            var lancePos = -1
            var tipPos = -1
            for(var i=0;i<9;i++) {
                if(friend_at(i) == QUEEN) queenPos = i
                if(friend_at(i) == LANCE) lancePos = i
                if(friend_at(i) == LANCE_TIP) tipPos = i
            }
            if(queenPos < 0 || (foe_at(deRotate(queenPos,1)) > 0 && foe_at(deRotate(queenPos,2)) > 0)) {
                if(queenPos < 0)
                    return go_anywhere
                return {cell:8-queenPos}
            }
            if(queenPos % 2 == 1 && tipPos % 2 == 0) {
                return go_anywhere
            }
            if(queenPos % 2 == 0 && lancePos % 2 == 1) {
                return go_anywhere
            }
            if(queenPos % 2 == 1 && foe_at(deRotate(queenPos,-2)) > 0) {
                return go_anywhere
            }
            return NOP
        }
        if(buddies[LANCE_TIP]) {
            var lancePos = -1
            for(var i=0;i<9;i++) {
                if(friend_at(i) == LANCE_TIP) {
                    lancePos = i
                }
            }
            if(buddies[LANCE]) {
                if(friend_at(8-lancePos) == LANCE) {
                    if(foe_at(deRotate(8-lancePos,1)) == 1 || foe_at(deRotate(8-lancePos,2)) == 1) {
                        var ret = NOP
                        if(lancePos % 2 == 1)
                            ret = {cell:deRotate(8-lancePos,-2)}
                        if(lancePos % 2 == 0)
                            ret = {cell:deRotate(8-lancePos,-3)}
                        if(!sanity_check(ret)) {
                            ret = best_of([
                                try_all_cells_near(lancePos, (i) => (ant_type_at(i) == 0 && view[i].color == 6 ? {cell: i} : null), true),
                                NOP
                            ])
                        }
                        return ret
                    }
                    if(foe_at(deRotate(lancePos,-2)) > 0) {
                        return {cell:deRotate(lancePos,2)}
                    }
                    return NOP
                }
                if(friend_at(deRotate(lancePos,3)) == LANCE) {
                    if((view[lancePos].color == 2 && view[4].color == 7) || foe_at(8-lancePos)) {
                        return {cell:deRotate(lancePos,1)}
                    }
                    return NOP
                }
                if(view[4].color == 6 && view[lancePos].color == 6 && friend_at(deRotate(lancePos,1)) == LANCE) {
                    if(foe_at(deRotate(lancePos,2)) > 0) {

                        return {cell:8-deRotate(lancePos,2)}
                    }
                    return NOP
                }
                if(view[lancePos].color == 2 && view[deRotate(lancePos,-3)].color == 5 && friend_at(deRotate(lancePos,-3)) == LANCE) {
                    return NOP
                }
                if(lancePos % 2 == 0) {
                    if(foe_at(deRotate(lancePos,-1)) > 0 && lancePos % 2 == 1) return {cell:deRotate(lancePos,2)}
                    if(view[deRotate(lancePos,-1)].color != 5) return {cell:deRotate(lancePos,-1),color:5}
                    if(view[deRotate(lancePos,-1)].color == 3 && view[4].color == 1) return {cell:4,color:3}
                    if(view[deRotate(lancePos,-1)].color == 5 && view[4].color == 3) return {cell:4,color:2}
                    if(view[deRotate(lancePos,-1)].color == 5 && view[4].color == 2) return {cell:4,color:1}
                    if(view[deRotate(lancePos,-1)].color == 5 && view[4].color == 7 && view[deRotate(lancePos,-1)].ant == null) return {cell:deRotate(lancePos,-1),type:THIEF}
                    if(view[deRotate(lancePos,-1)].color == 5 && view[4].color == 7) return {cell:4,color:3}
                }
                return {cell:deRotate(lancePos,-1)}
            }
            if(view[4].color == WHITE && view[lancePos].color == WHITE) {
                return {cell:deRotate(lancePos,-2),type:BOUNCER}
            }
            if(view[deRotate(lancePos,-1)].ant != null && view[deRotate(lancePos,-1)].ant.type == 5) {
                return {cell:deRotate(lancePos,2)}
            }
            if(view[4].color == 6 && view[deRotate(lancePos,1)].color == 7) {
                return {cell:deRotate(lancePos,1)}
            }
            if(foe_at(deRotate(lancePos,-2)) > 0 || foe_at(deRotate(lancePos,-3)) > 0) {
                if(foe_at(deRotate(lancePos,-2)) > 0 && foe_at(deRotate(lancePos,3)) > 0 && (foe_at(deRotate(lancePos,-1)) > 0 || foe_at(deRotate(lancePos,4)) > 0)) {
                    return {cell:deRotate(lancePos,1)}
                }
                if(foe_at(deRotate(lancePos,3)) > 0) {
                    return NOP
                }
                return {cell:deRotate(lancePos,1)}
            }
            if(foe_at(deRotate(lancePos,2)) > 0 && view[deRotate(lancePos,-1)].color != 2) {
                return {cell:deRotate(lancePos,-1),color:2}
            }
            if(foe_at(deRotate(lancePos,-1)) > 0) {
                return {cell:deRotate(lancePos,1)}
            }
            if(lancePos % 2 == 1 && friend_at(deRotate(lancePos,-1)) == THIEF) {
                return {cell:deRotate(lancePos,-2)}
            }
            return {cell:deRotate(lancePos,-1)}
        }
        else if(buddies[LANCE]) {
            var lancePos = -1
            for(var i=0;i<9;i++) {
                if(view[i].ant && view[i].ant.friend && view[i].ant.type == LANCE) {
                    lancePos = i
                }
            }
            if(view[4].color == 3 && lancePos % 2 == 1) return NOP
            var moveNext = lancePos % 2 == 1 ? {cell:deRotate(lancePos,2)} : {cell:deRotate(lancePos,1)}
            if(view[moveNext.cell].ant != null && !view[moveNext.cell].ant.friend) {
                moveNext = {cell:deRotate(lancePos,1),type:LANCE_TIP}
            }
            if(view[lancePos].ant.food > 0) {
                if(lancePos % 2 == 1)
                    return {cell:deRotate(lancePos,4),type:LANCE_TIP}
                else
                    return {cell:deRotate(lancePos,3),type:LANCE_TIP}
            }
            if(view[lancePos].color == 6 && view[moveNext.cell].color == 8 && view[deRotate(lancePos,2)].color == 5) {
                return {cell:moveNext.cell,type:LANCE_TIP}
            }

            return moveNext
        }
        else {
            var current = view[CENTRE].color
            var standOn = WIND_BAND.next(WIND_BAND.next(WIND_BAND.next(current)))
            var target = WIND_BAND.next(current)
            var antitarget = WIND_BAND.next(target)
            if(current != standOn) return wilderness.find_victim(me, buddies, colours)

            var ret = best_of([
                try_all_cells((i) => ((i % 2 == 1 && view[i].color == target && view[8-i].color == antitarget && ([2,5,6].indexOf(view[deRotate(i,-1)].color) >= 0) && (view[i].color != 5 || view[deRotate(i,1)].color == 4)) ? {cell: i, type: LANCE} : null), true),
                NOP
            ])
            if(ret.cell == 4) {
                return wilderness.find_victim(me, buddies, colours)
            }
            return ret
        }
        return NOP
    }
}

var TARGET_ARRANGEMENT_HIGHWAY = [
    [2,3,7,6,8,2,3,7,6],
    [2,3,7,7,6,4,4,2,3],
    [2,4,6,7,3,2,4,6,7],
    [3,2,4,4,6,7,7,3,2],
    [3,4,7,7,2,6,6,3,4],
    [3,4,7,2,6,3,4,7,2],
    [3,6,2,2,7,4,4,3,6],
    [4,7,2,2,5,6,3,4,7],
    [4,6,7,2,6,3,3,4,7],
    [4,6,7,7,3,2,2,4,6],
    [6,4,2,3,7,6,4,2,3],
    [7,3,2,2,4,6,6,7,3],
    [7,4,3,6,2,7,4,3,5]
]
var HIGHWAY_BAND = colour_band([2,7,4,3,6])
var HIGHWAY_BAND2 = colour_band([2,3,7,6,4])

var highway = {
    name:function() { return "highway"; },                                     // For debugging
    near_nest: function(colours) { return false; },                // For dodging enemy workers without getting lost
    near_nest_move: function(colours, buddies) { return null; }, // How to move when near_nest is true
    likely_nest: function(colours) { // Main nest detection
        var bestScore = 0
        // check every rotation for each 3x3 rail possibility
        TARGET_ARRANGEMENT_HIGHWAY.forEach(function (arrangement) {
            ROTATIONS.forEach(function (rot){
                var score = 0
                for(var i = 0; i < 9; i++) {
                    score += arrangement[i] == view[rot[i]].color?1:0
                }
                if(score > bestScore) {
                    bestScore = score
                }
            })
        })
        if(bestScore >= 7) {
            return true
        }
        if(this.isCenter(colours)) return true

        return false
    },         // Main nest detection
    isCenter: function(colours) {
        var bestScore = 0
        ROTATIONS.forEach(function (rot){
            var score = 0
            for(var i = 0; i < 9; i++) {
                if(i >= 3 && i <= 5 && [2,7,4,3,6].indexOf(view[rot[i]].color) >= 0 && (i == 4 || view[rot[i]].color != view[rot[8-i]].color)) {
                    if(i != 4) {
                        score++
                    }
                    else {
                        if(view[rot[3]].color != view[rot[5]].color && view[rot[1]].color == view[rot[7]].color && (view[rot[4]].color != view[rot[1]].color && view[rot[4]].color != view[rot[3]].color && view[rot[4]].color != view[rot[5]].color && view[rot[4]].color != view[rot[7]].color)) {
                            score++
                        }
                    }
                }
                else if(i >= 6) {
                    if(view[rot[i]].color == view[rot[i-6]].color && [2,7,4,3,6].indexOf(view[rot[i]].color) >= 0 && (i == 7 || view[rot[i]].color != view[rot[8-i]].color) && view[rot[i]].color != view[4].color) {
                        score += 2
                    }
                }
            }
            if(score > bestScore) {
                bestScore = score
            }
        })
        if(bestScore >= 7) {
            return true
        }
        return false
    },
    worth_leeching:function(myFood, buddies){ return myFood > 80 && myFood < 500; }, // Is this nest worth leeching?
    likely_victim: function(victim_pos) {
        return true
    },   // Identifying the target queen
    follow_victim: function(me, buddies, colours, victim_pos) {
        if(me.type == QUEEN && buddies[THIEF] < 3) {
            return best_of([
                try_all_cells((i) => (near(i, victim_pos) ? {cell: i, type: THIEF} : null), true),
                try_all_cells((i) => ({cell: i, type: THIEF}), true)
            ])
        }
        if(me.type == THIEF && buddies[QUEEN])
            return NOP
        return go_anywhere
    },   // How to handle what happens when the enemy queen is found
    find_victim: function(me, buddies, colours) {
        if(me.type == THIEF && !buddies[QUEEN]) {
            for(var i=0;i<9;i++) {
                if(foe_at(i)) return NOP
            }
            var target = HIGHWAY_BAND.prev(view[4].color)
            var followRail = best_of([
                try_all_cells((i) => (i % 2 == 1 && view[i].color == target) ? {cell:i} : null),
                NOP
            ])
        }
        else {
            var target = HIGHWAY_BAND.next(view[4].color)
            var followRail = best_of([
                try_all_cells((i) => (i % 2 == 1 && view[i].color == target) ? {cell:i} : null),
                NOP
            ])
        }
        return followRail
    }                // How to follow the nest
}

var wilderness = {
    name:function() { return "wilderness"; },
    near_nest: function(colours) { return false; },
    near_nest_move: function(colours, buddies) { return null; },
    likely_nest: function(colours) {
        return true
    },
    worth_leeching: function(myFood, buddies) {
        return true
    },
    likely_victim: function(victim_pos) {
        return true
    },

    follow_victim: function(me, buddies, colours, victim_pos) {
        // We stumbled across a random queen; make the most of it
        // TODO
        if(rail_miners.near_nest(colours)) {
            return rail_miners.follow_victim(me, buddies, colours, victim_pos)
        }

        // avoids blocking off the rail miner queen from her workers
        // (we'd like to leech her again)
        if(me.type === QUEEN && !buddies[THIEF] && me.food > 0) {

            // Make a buddy to help us steal
            return best_of([
                try_all_cells((i) => (near(i, victim_pos) ? {cell: i, type: THIEF} : null), true),
                try_all_cells((i) => ({cell: i, type: THIEF}), true)
            ])
        }
        else if(me.type === QUEEN){
            var enemyCount = 0
            var allyPos = -1
            for(var a=0; a<9; a++) {
                if(a != 4 && view[a].ant != null) {
                    if(view[a].ant.friend) {
                        if(near(a,victim_pos)){
                            allyPos = a
                        }
                    }
                    else if(view[a].ant.type != 5) {
                        enemyCount++
                    }
                }
            }
            if(enemyCount >= buddies[THIEF] && allyPos >= 0) {
                //if next to the queen and we're outnumbered, move back to the center of the rail.
                var target = TARGET_COLOURS_RAIL.prev(view[allyPos].color)
                var best = best_of([
                    try_all_cells((i) => (near(i, victim_pos) && i % 2 == 0 ? {cell: i, type: THIEF} : null), true),
                    try_all_cells((i) => (near(i, victim_pos) ? {cell: i, type: THIEF} : null), true)
                ])
                if(best != null) return best

                best_of([
                    try_all_cells((i) => ((view[i].color == target && i != 4 && areAdjacent(i,a)) ? {cell: i} : null))
                ])
                if(best != null) return best

                return best_of([
                    {cell:deRotate(allyPos,1)},
                    {cell:deRotate(allyPos,-1)}
                ])
            }
        }

        return NOP
    },
    find_victim: function(me, buddies, colours) {
        if(me.type === QUEEN) {
            var in_void = true
            for(var i = 0; i < 9; ++ i) {
                if(view[i].color !== WHITE && !SAFE_COLOURS.contains(view[i].color)) {
                    in_void = false
                    break
                }
            }
            if(!in_void) {
                // because of avoiding returning Miner on a Rail workers
                // we dodge sideways and this takes us back onto track
                var nearMove = checkAllNearEnvirons(colours, buddies)
                if(nearMove) return nearMove
            }
            return best_of([
                // Make a buddy once we have a reasonable stash of food so we can
                // search the board faster
                // (but avoid making buddies when there's a potential nest nearby
                // better to wait until we find their queen)
                (!buddies[THIEF] && me.food >= INITIAL_GATHER && in_void) &&
                    try_all_cells((i) => ({cell: i, type: THIEF}), true),

                // Follow buddy in search of victims
                buddies[THIEF] && try_all_angles.bind(null, [
                    (rot) => (friend_at(rot[1]) === THIEF ? {cell: rot[2]} : null),
                    (rot) => (friend_at(rot[0]) === THIEF ? {cell: rot[1]} : null)
                ]),
                buddies[THIEF] && try_all_angles.bind(null, [
                    (rot) => (friend_at(rot[1]) === THIEF ? {cell: rot[0]} : null),
                    (rot) => (friend_at(rot[0]) === THIEF ? {cell: rot[3]} : null)
                ]),
                buddies[THIEF] && NOP, // Don't lose our buddy!

                // Random walk until we can make a buddy or find the victim
                grab_nearby_food,
                foe_near() ? go_anywhere : fast_diagonal.bind(null, SAFE_COLOURS),
                go_anywhere
            ])
        } else if(me.type === THIEF) {
            return best_of([
                // Lost the queen! Random walk because we have nothing better to do.
                // (don't leave lines; they could disrupt the pattern)
                !buddies[QUEEN] && go_anywhere,
                buddies[BOUNCER] && go_anywhere,
                buddies[THIEF] > 1 && go_anywhere, //untested
                // Follow queen in search of victims
                try_all_angles.bind(null, [
                    (rot) => (friend_at(rot[1]) === QUEEN ? {cell: rot[0]} : null),
                    (rot) => (friend_at(rot[0]) === QUEEN ? {cell: rot[3]} : null)
                ]),
                NOP // Don't lose our buddy!
            ])
        }
    }
}

var victims = [highway, rail_miners, windmill]

function guess_environment(colours, buddies) {
    var food = view[4].ant.food
    if(view[4].ant.type !== QUEEN) {
        for(var i = 0; i < 9; i++) {
            if(i != 4 && view[i].ant && view[i].ant.friend && view[i].ant.type === QUEEN) {
                food = view[i].ant.food
            }
        }
    }
    for(var i = 0; i < victims.length; ++ i) {
        if(victims[i].likely_nest(colours) && victims[i].worth_leeching(food, buddies)) {
            return victims[i]
        }
    }

    return wilderness
}

function is_safe(i) {
    var nearThief = false
    var nearOfficer = false
    for(var j = 0; j < 9; ++ j) {
        if(friend_at(j) === THIEF) {
            nearThief = true
        }
        if(foe_at(j) && foe_at(j) !== QUEEN) {
            nearOfficer = true
        }
    }
    return nearThief && !nearOfficer
}

function move(me, buddies) {
    var colours = [0, 0, 0, 0, 0, 0, 0, 0, 0]
    for(var i = 0; i < 9; ++ i) {
        ++ colours[view[i].color]
    }
    var env = guess_environment(colours,buddies)
    var victim_pos = -1
    var queen_pos = -1
    for(var i = 0; i < 9; ++ i) {
        if(foe_at(i) === QUEEN && env.likely_victim(i) && view[i].ant.food > 0) {
            victim_pos = i
            if(view[i].ant.food > 0) {
                break
            }
        }
        if(friend_at(i) === QUEEN) {
            queen_pos = i
        }
    }

    var in_void = true
    for(var i = 0; i < 9; ++ i) {
        if(view[i].color !== WHITE || (i != 4 && me.type === BOUNCER && friend_at(i) === BOUNCER)) {
            in_void = false
            break
        }
    }
    if(me.type === BOUNCER) {
        if(env === wilderness && in_void) {
            // Our work is done; leave queen and wander at random
            if(buddies[QUEEN]) {
                return best_of([
                    try_all_cells((i) => (ant_type_near(i, true) ? null : {cell: i}), true),
                    go_anywhere
                ])
            }
            return NOP
        }
        else if(env === rail_miners) {
            // Our work is done; leave queen and wander at random
            if(buddies[QUEEN]) {
                var allAngles = try_all_angles.bind(null, [
                    (rot) => (friend_at(rot[1]) === QUEEN ? {cell: rot[0]} : null),
                    (rot) => (friend_at(rot[0]) === QUEEN ? {cell: rot[3]} : null),
                    NOP
                ])
                return best_of([
                    //if next to an enemy queen, move out of the way
                    try_all_cells((i) => (foe_at(i) == QUEEN ? {cell:9-i} : null), true),
                    try_all_cells((i) => (foe_at(i) == QUEEN ? {cell:7-i} : null), true),
                    allAngles
                ])
            }
            return NOP
        } else if(buddies[QUEEN]) {
            // Escort queen out of nest
            var allAngles = try_all_angles.bind(null, [
                (rot) => (friend_at(rot[1]) === QUEEN ? {cell: rot[0]} : null),
                (rot) => (friend_at(rot[0]) === QUEEN ? {cell: rot[3]} : null),
                NOP
            ])

            return best_of([
                //if next to an enemy queen, move out of the way
                try_all_cells((i) => (foe_at(i) == QUEEN ? {cell:9-i} : null), true),
                try_all_cells((i) => (foe_at(i) == QUEEN ? {cell:7-i} : null), true),
                allAngles
            ])
        }
        else {
            return go_anywhere
        }
    } else if(buddies[BOUNCER]) {
        if(me.type === QUEEN) {
            // Be escorted out of nest
            return try_all_angles.bind(null, [
                (rot) => (friend_at(rot[1]) === BOUNCER ? {cell: rot[2]} : null),
                (rot) => (friend_at(rot[0]) === BOUNCER ? {cell: rot[1]} : null),
                go_anywhere,
                NOP
            ])
        } else {
            // Get out of the way
            return try_all_angles.bind(null, [
                (rot) => (friend_at(rot[1]) === QUEEN ? {cell: rot[7]} : null),
                (rot) => (friend_at(rot[0]) === QUEEN ? {cell: rot[8]} : null),
                (rot) => (friend_at(rot[1]) === BOUNCER ? {cell: rot[7]} : null),
                (rot) => (friend_at(rot[0]) === BOUNCER ? {cell: rot[8]} : null),
                go_anywhere
            ])
        }
    }
    if(victim_pos !== -1) {
        // abandon the queen if she's dry.
        // abandon rail miner's queen so she has at least 10 food (otherwise she produces workers 3:4 food she aquires)
        // value is higher than 10 because there's two to three rounds of theft (at 4 ants each) before the queen gets out of range
        // this can still leave the rail miner's queen lower than 10, but unlikely
        // other queens are abandoned if they have less than 5 food, due to the "max 4 ants stealing" and at 0 food, she's not a target.
        if(view[victim_pos].ant.food < 5 || (env == rail_miners && view[victim_pos].ant.food < 28)) {
            if(me.type == THIEF) {
                if(rail_miners.near_nest(colours)) {
                    // we'd rather reuse the workers
                    return NOP
                }
            }
            // Victim is out of food; bounce out of nest
            if(env == rail_miners) {
                if(me.type == QUEEN && me.food < 300 && !buddies[BOUNCER]) {
                    if(friend_at(deRotate(victim_pos,2)) == THIEF && foe_at(deRotate(victim_pos,3)) == 0) return {cell:deRotate(victim_pos,3),type:BOUNCER}
                    if(friend_at(deRotate(victim_pos,-2)) == THIEF && foe_at(deRotate(victim_pos,-3)) == 0) return {cell:deRotate(victim_pos,-3),type:BOUNCER}
                }
                // murder SlM
                return NOP
            }
            var m = try_all_cells((i) => ({cell: i, type: BOUNCER}), true)
            if(m) {
                return m
            }
        }
        if(me.type === QUEEN && buddies[THIEF] && !is_safe(CENTRE)) {
            // Try to avoid getting food stolen back from us
            var m = try_all_cells((i) => (is_safe(i) ? {cell: i} : null), true)
            if(m) {
                return m
            }
        }
        return env.follow_victim(me, buddies, colours, victim_pos)
    } else {
        return env.find_victim(me, buddies, colours)
    }
}

// LANCE is only used by windmill targetting, easier to break this out as its own method
function moveLance(me, buddies) {
    var queenPos = -1
    var tipPos = -1
    var enQueenPos = -1
    if(buddies[BOUNCER]) {
        for(var i=0;i<9;i++) {
            if(friend_at(i) == BOUNCER) {
                return {cell:8-i}
            }
        }
    }
    for(var i=0;i<9;i++) {
        if(friend_at(i) == QUEEN) {
            queenPos = i
        }
        if(friend_at(i) == LANCE_TIP) {
            tipPos = i
        }
        if(foe_at(i) == QUEEN) enQueenPos = i
    }
    if(!buddies[QUEEN]) {
        for(var i=0;i<9;i++) {
            if(i % 2 == 0 && friend_at(i) == QUEEN) {
                if(view[deRotate(i,3)].ant != null && view[deRotate(i,3)].ant.friend && view[deRotate(i,3)].ant.type == LANCE_TIP) return NOP
                return {cell:deRotate(i,1)}
            }
        }
        if(!buddies[LANCE_TIP] && !buddies[THIEF] && view[4].color == 2) {
            for(var i = 0; i < 9; ++ i) {
                if(view[i].color == 1) return {cell:i}
            }
        }
        if(enQueenPos >= 0 && enQueenPos % 2 == 0 && foe_at(deRotate(enQueenPos,1)) == 1) {
            return {cell:deRotate(enQueenPos,-3)}
        }
        if(enQueenPos >= 0 && enQueenPos % 2 == 1 && foe_at(deRotate(enQueenPos,2)) == 1) {
            return {cell:8-enQueenPos}
        }
        if(enQueenPos >= 0 && (me.food > 0 || foe_at(deRotate(enQueenPos,-1)) || foe_at(deRotate(enQueenPos,3)))) {
            if(enQueenPos % 2 == 0 && (foe_at(deRotate(enQueenPos,4)) || friend_at(deRotate(enQueenPos,4)) == THIEF)) {
                return {cell:deRotate(enQueenPos,-3)}
            }
        }
        return NOP
    }
    if(buddies[LANCE_TIP]) {
        if(deRotate(queenPos,-1) == tipPos && view[tipPos].color == 8) return {cell:8-tipPos}
        if(deRotate(queenPos,-1) == tipPos) return try_all_cells((i) => (areAdjacent(i,tipPos) && view[i].color == 5 ? {cell:i} : null))
        if(foe_at(8-tipPos) == QUEEN) return {cell:8-tipPos,color:6}
        if(foe_at(8-queenPos) > 0 || foe_at(deRotate(8-queenPos,1)) > 0) return NOP
        return try_all_cells((i) => (!areAdjacent(i,queenPos) && !areAdjacent(i,tipPos) ? {cell:i} : null))
    }
    if(view[4].color != 4 && view[4].color != 6) {
        if(foe_at(8-queenPos) == QUEEN) {
            var formation = try_all_angles.bind(null, [
                (rot) => (foe_at(rot[1]) === 1 && foe_at(rot[2]) === QUEEN ? {cell: rot[3]} : null),
                (rot) => (foe_at(rot[1]) === 1 && foe_at(rot[0]) === QUEEN ? {cell: rot[7]} : null),
                (rot) => (foe_at(rot[1]) === 1 && view[rot[1]].ant.food > 0 && foe_at(rot[6]) === QUEEN && friend_at(rot[2]) === QUEEN ? {cell: rot[5]} : null),
            ])()
            if(formation != null) {
                return formation
            }
            return NOP
        }
        if(foe_at(deRotate(queenPos,1)) > 0 && foe_at(deRotate(queenPos,-1)) > 0) {
            return {cell:deRotate(queenPos,-3)}
        }
        return best_of([
            try_all_cells((i) => (enQueenPos ==-1 && i % 2 == 1 && (view[i].color == 4 || view[i].color == 6) && view[deRotate(i,1)].color != 2 && view[deRotate(i,-1)].color != 2 && areAdjacent(i,queenPos) ? {cell: i} : null), true),
            ((view[4].color != 6 || view[4].color != 4) && queenPos % 2 == 0 && view[deRotate(queenPos,-3)].color == 5) ? {cell:4,color:6} : null,
            NOP
        ])
    }
    else {
        var queenOn = view[8-queenPos].color
        var target = WIND_BAND.next(queenOn)
        var prior = WIND_BAND.next(target)
        var followRail = best_of([
            try_all_cells((i) => (view[deRotate(i,-3)].color == prior && view[deRotate(i,-1)].color == target && areAdjacent(i,queenPos) && (view[i].color == 4 || view[i].color == 6) ? {cell: i} : null), true),
            queenPos % 2 == 1 ? (view[queenPos].color == 4 || view[4].color == 4 ? NOP : {cell:deRotate(queenPos,-2)}) : (view[queenPos].color == 4 || view[queenPos].color == 6 ? {cell:deRotate(queenPos,-1)} : NOP)
        ])

        if(view[deRotate(queenPos,-1)].ant != null) {
            if(!view[deRotate(queenPos,-1)].ant.friend && view[deRotate(queenPos,-2)].ant != null && !view[deRotate(queenPos,-2)].ant.friend) {
                return NOP
            }
            if(queenPos % 2 == 0 && !view[deRotate(queenPos,-1)].ant.friend && view[deRotate(queenPos,-2)].ant == null && (view[queenPos].color == 3 || view[queenPos].color == WHITE)) {
                return {cell:deRotate(queenPos,-3)}
            }
            if(queenPos % 2 == 0 && friend_at(deRotate(queenPos,-1)) == THIEF && view[deRotate(queenPos,-2)].ant == null && (view[queenPos].color == 3 || view[queenPos].color == WHITE)) {
                return {cell:deRotate(queenPos,-3)}
            }
            return NOP
        }
        if(me.food > 0 && queenPos % 2 == 0) {
            return {cell:deRotate(queenPos,-1)}
        }
        if(foe_at(deRotate(queenPos,-3)) > 0 && (view[queenPos].color == 1 || view[deRotate(queenPos,1)].color == 1 || view[deRotate(queenPos,-1)].color == 1)) {
            if(view[queenPos].color == 3) {
                return followRail
            }
            if(view[queenPos].color == 7) return NOP
            return {cell:queenPos,color:3}
        }
        if((foe_at(deRotate(queenPos,-2)) > 0 || foe_at(deRotate(queenPos,-3)) > 0) && queenPos % 2 == 0 && view[deRotate(queenPos,-1)].color == 5) {
            if(view[queenPos].color == 7) return NOP
            return {cell:queenPos,color:3}
        }
        if(view[deRotate(queenPos,-4)].ant != null && !view[deRotate(queenPos,-4)].ant.friend && (view[queenPos].color == 1 || view[deRotate(queenPos,1)].color == 1 || view[deRotate(queenPos,-1)].color == 1)) {
            if(view[queenPos].color == 7) return NOP
            return {cell:queenPos,color:3}
        }
        if((followRail == null || followRail.cell == 4) && foe_at(deRotate(queenPos,-2)) == 1) {
            if(view[queenPos].color == 7) return NOP
            return {cell:queenPos,color:3}
        }
        if(followRail != null && followRail.cell != 4 && view[followRail.cell].color == 6 && view[deRotate(followRail.cell,1)].color == 6) {
            followRail = {cell:deRotate(followRail.cell,1)}
        }
        return followRail
    }
    return NOP
}

// LANCE_TIP never needs to move
// Unfortunately, reusing an existing worker type for this purpose is not easily possible.
// Used against Sliding Miners as a stationary blocker to prevent the queen slipping past.
function moveTip(me, buddies) {
    var queenPos = -1
    var in_void = true
    for(var i=0;i<9;i++) {
        if(friend_at(i) == QUEEN) {
            queenPos = i
        }
        if(view[i].color != WHITE) {
            in_void = false
        }
    }
    var colours = [0, 0, 0, 0, 0, 0, 0, 0, 0]
    var enemies = 0
    for(var i = 0; i < 9; ++ i) {
        ++ colours[view[i].color]
        if(foe_at(i) > 0) enemies++
    }
    var onRails = rail_miners.near_nest(colours)
    if(buddies[QUEEN] && !buddies[LANCE]) {
        if(onRails) return NOP
        if(foe_at(8-queenPos) == 4) {
            return {cell:deRotate(queenPos,2)}
        }
        if(in_void) return {cell:deRotate(queenPos,4)}
        if(enemies == 2 && queenPos % 2 == 0 && view[deRotate(queenPos,1)].ant == null) {
            return {cell:queenPos,color:7}
        }
        if(enemies == 2 && queenPos % 2 == 1) {
            return {cell:deRotate(queenPos,-1),color:7}
        }
    }
    if(buddies[QUEEN] && buddies[LANCE]) {
        if(enemies == 0 && view[queenPos].color == 1) return NOP
        if(view[deRotate(queenPos,1)].color == 5 && friend_at(deRotate(queenPos,1)) == LANCE) return {cell:deRotate(queenPos,4)}
        return {cell:deRotate(queenPos,2)}
    }
    if(!buddies[QUEEN] && view[4].color == 2) {
        for(var i = 0; i < 9; ++ i) {
            if(view[i].color == 8) return {cell:i}
        }
    }
    if(queenPos >=0 && foe_at(deRotate(queenPos,2)) > 0 && view[deRotate(queenPos,2)].ant.food == 0 && foe_at(deRotate(queenPos,4)) > 0 && view[deRotate(queenPos,4)].ant.food > 0) {
        return {cell:queenPos,color:7}
    }
    return NOP
}

function deRotate(m, amt) {
    var rotationsCW = [1,2,5,8,7,6,3,0]
    var rotationsCCW = [3,6,7,8,5,2,1,0]
    if(m == 4 || m < 0 || m > 8 || amt == 0) return m
    if(amt > 0)
        return rotationsCW[(rotationsCW.indexOf(m)+amt)%8]
    amt = -amt
    return rotationsCCW[(rotationsCCW.indexOf(m)+amt)%8]
}

return play_safe(move_agent([
    THIEF, move,
    QUEEN, move,
    BOUNCER, move,
    LANCE, moveLance,
    LANCE_TIP, moveTip
]))

Nadie había publicado ninguna respuesta explotando la regla "Un trabajador sin carga adyacente a una reina enemiga robará 1 pieza de comida, si está presente", ¡así que decidí arreglar eso!

Este vampiro busca objetivos específicos para eliminar, que se actualizan continuamente (ya que este es un Wiki de la comunidad), y a veces se desactivan (a través de la worth_leechingfunción) cuando ya no son lo suficientemente rentables.

Tenga en cuenta que la worth_leechingfunción mencionada, además de su uso para deshabilitar objetivos (si devuelve falso), permite el control sobre un objeto de objetivo dado para maximizar la toma de decisiones, por ejemplo, evitar que Vampire vaya tras trampas probables (Ziggurat crea pequeños bolsillos que no tienen reina en el centro) hasta que Vampire haya recolectado una cantidad suficiente de comida para que quedarse atascado no desperdicie la ronda por completo (es decir, solo anote 12 alimentos). Los parámetros pasados ​​hacen que el método sea muy flexible sin tener que consultar el viewobjeto.

Siguen las descripciones de los objetivos, en el orden en que aparecen en el código:

Agujero negro (objetivo deshabilitado)

Cuando esto encuentra Black Hole, es bastante aleatorio si terminaremos encontrando a su reina, o si sus trabajadores vaciarán nuestra propia comida, o rebotaremos y continuaremos buscando. Resulta que Black Hole es bastante difícil de atacar.

Zigurat (objetivo deshabilitado)

Una vez en el centro de Zigurat, la reina genera ladrones para extraer tanta comida como sea posible lo más rápido posible. Tiene que ser rápido ya que la colonia ahora se defiende contra nosotros al generar un ejército de trabajadores (desperdiciando su propia comida). Una vez que toda la comida se ha ido, hacemos un "gorila" y nos escoltamos fuera, en busca de la próxima víctima.

Para Black Hole, esto usa un trabajador sentado en la superficie para esperar a que pase la reina objetivo, mientras que nuestra reina se sienta más profundo para que los trabajadores que pasen no la asalten. Cuando la reina objetivo finalmente pasa, la seguimos tanto como sea posible.

Para los mineros en un riel, utiliza una búsqueda de fuerza bruta para ver si la reina está sentada en el centro del sistema ferroviario principal del minero. Luego lo sigue de regreso a su fuente (dejando que los trabajadores del minero se muevan). Una vez en la reina, genera un ladrón como de costumbre y drena a la reina hasta 9 alimentos. Con menos de 10 alimentos, la reina minera genera 3 trabajadores por cada 4 alimentos que le dan, lo que hace que quedarse con una perspectiva de bajo rendimiento. Salta y vuelve más tarde. (¡Gracias a Draco18s por proporcionar el código de este entorno!)

Cuando esto encuentra Ziggurat, lo hace bastante bien y causa explosiones interesantes, como se ve en este prototipo inicial (antes de que se agregara el rebote):

zigurat explotado

FireFly (objetivo deshabilitado)

El bloque dirigido a Firefly usa el código Ziggurat como línea base, pero anula los colores utilizados. Esto hace que sea fácil para cualquier autor crear un nuevo objetivo Vampire con facilidad mientras mantiene bajo el recuento de bytes. El código de Firefly se deshabilitó cuando Firefly no recolectó comida, pero se volvió a habilitar en Mk. 5)

No está relacionado con Firefly, pero Mk.4 también agregó algunos métodos de objetos adicionales para manejar de lado a lado a los trabajadores del objetivo (utilizado por el código anti-mineros ferroviarios) que permite a la reina Vampiro encontrar con seguridad a un reparador de mineros ferroviarios en su lugar. de hacer que las dos hormigas se atasquen permanentemente.

Mineros en un riel (MoaR) / Minders deslizantes (SlM)

Cuando esto encuentra mineros en un riel, rastrea el riel en la dirección de salida (la misma dirección en la que se mueven los trabajadores ferroviarios sin carga) para evitar que le roben su comida. Cuando encuentra el final del riel, actúa como los mineros en el propio trabajador 4 de un riel (el reparador). Sabemos dónde está el riel, ¡también podemos seguir esa dirección y girar para comenzar!

Pero el resultado más común es que nunca encontramos nada. Esto todavía funciona bien en ese caso; sobre la mitad del marcador.

Molino

El desarrollo del código Don Quijote (orientación del molino de viento) (en Mc 5) estuvo lleno de desafíos y pasó por muchas iteraciones, incluida una que habría sido un nuevo tipo de hormiga) antes de que se desarrollara una estrategia aceptable. Cuando la reina se da cuenta de que está parada en el riel central de los brazos principales de Windmill, genera un nuevo tipo de trabajador (con nombre LANCEen código ) para correr por el costado del riel para evitar a los trabajadores enemigos (como si un trabajador enemigo descubriera al vampiro reina, intentarán bloquearla), hasta que finalmente se encuentren con la reina del molino de viento.

Dos acercamientos a la reina son relativamente claros y podemos intentar confiar en que la Lanza llegue primero (la reina Vampiro observará a su trabajadora sosteniendo la comida) y usar ese momento para engendrar en THIEFlugar de intervenir y dejar que la reina del Molino de Viento engendre un trabajador adyacente a la Reina Vampiro (lo que resulta en un flujo neto cero de alimentos). El tercer enfoque termina por toparse con los jardineros, por lo que la reina genera un LANCE_TIPtrabajador para hacer algunas maniobras políticas para terminar con un flujo de alimentos positivo neto.

Estos ataques tienen el costo de no poder determinar cuánta comida tiene la reina del molino de viento y, por lo tanto, no pueden predecir cuándo engendrar ay BOUNCERsalir para mejores víctimas. Sin embargo, esto funciona a favor de Vampire, ya que Windmill es una vaca tan gorda y jugosa que es más valioso quedarse hasta el final: Windmill puede reunir fácilmente varios cientos de alimentos en solo unos pocos miles de movimientos, mucho más de lo que Vampire puede adquirir. tratando de encontrar un nuevo objetivo para la sanguijuela.

La actualización Garlicked (Mk6) cambia la forma en que la reina se acerca ligeramente. El enfoque ferroviario es idéntico, pero al llegar a la reina, hay algunos cambios leves, que resultan en que solo un trabajador esté adyacente a la reina del molino de viento, manteniendo a la reina del vampiro lo más lejos posible (para evitar a los trabajadores del molino de viento, y lo más importante , El ajo). El cambio se debió al hecho de que cuando dos trabajadores estaban adyacentes a la reina del molino de viento, ella empacaría sus maletas y se mudaría.

La energía renovable (Mk 7) revisa la lógica de orientación del molino de viento, deshaciendo en gran medida los cambios de Mk 6, ya que hubo cambios en el molino de viento que estaban causando que el código fallara el 100% del tiempo. La tasa de éxito revisada es de aproximadamente el 70%, el 30% restante se debe a la tonta suerte que es inevitable. Vector de aproximación ligeramente alterado.

Autopista

La autopista es fácil de encontrar. Es una gota de perdición verdosa en constante expansión. Por lo tanto, a la espera de encontrar y destruir los sueños de los mineros y del molino de viento primero antes de ir después de la carretera significa que vampiro no se dirige ni demasiado pronto.

Encontrar a la reina es simple: encuentra el centro de la carretera y espera. Ella finalmente vendrá. Los arreglos de los trabajadores determinarán si la detienen o no o si tenemos que esperar otro ciclo, pero la demora no hace una gran diferencia: eventualmente la atraparemos y le robaremos TODA su comida.

Si Vampire tiene 1000 alimentos o más, ignora Highway, porque en ese punto, ya no importa.


1
@trichoplax no hay problema; cuando tenga tiempo para echarle un segundo vistazo, veré qué puedo mejorar ahora que el trabajador no necesita moverse. En cuanto a cuánto tiempo hasta que se hizo esto, ¡creo que lo principal era esperar a que un oponente sea fácil de encontrar!
Dave

99
Esto es realmente malo.
Destructible Lemon

2
trichoplax permitió explícitamente tales estrategias de explotación de debilidad
pppery

1
Voté "esto es realmente malo" porque estoy de acuerdo, y es una de las cosas malas que específicamente quería ver en este concurso ...
trichoplax

1
Sip. Súper malo. Si te sirve de consuelo: casi nunca funciona en juegos reales (con otros jugadores además de este y su víctima), porque el borrador de línea sigue arruinando el patrón objetivo.
Dave

11

Hormiga de Langton

Todas mis respuestas contendrán una lógica similar de bajo nivel en forma del Marco de funciones fórmicas. "LA LÓGICA DE ALTO NIVEL COMIENZA AQUÍ" marca el final del código del Marco.

// FORMIC FUNCTIONS FRAMEWORK //
// Version 1.0                //

var WHITE = 1;
var QUEEN = 5;
var HERE = 4;
var MY_VO = view[HERE];
var ME = MY_VO.ant;
var NOP = move(HERE);

var ORTHOGONALS = [1, 3, 5, 7];
var DIAGONALS = [0, 2, 6, 8];
var DIRECTIONS = [0, 1, 2, 3, 5, 6, 7, 8];
var ALL_CELLS = [0, 1, 2, 3, 4, 5, 6, 7, 8];
var VIEW_ORIENTATIONS = [
  [0,1,2,
   3,4,5,
   6,7,8],

  [6,3,0,
   7,4,1,
   8,5,2],

  [8,7,6,
   5,4,3,
   2,1,0],

  [2,5,8,
   1,4,7,
   0,3,6]
];

function rotateCW(cell, amount) {
  if (cell === HERE) return cell;
  var order = [0, 1, 2, 5, 8, 7, 6, 3];
  return order[(order.indexOf(cell) + amount + 8) % 8];
}

function isDiagonal(cell) {
  return DIAGONALS.includes(cell);
}
function isOrthogonal(cell) {
  return ORTHOGONALS.includes(cell);
}

function move(cell) {
  return {cell: cell};
}
function moveMany(cells) {
  var p = [];
  for (var i = 0; i < cells.length; i++) p.push(move(cells[i]));
  return p;
}

function color(cell, col) {
  return {cell: cell, color: col};
}
function colorMany(cells, col) {
  var p = [];
  for (var i = 0; i < cells.length; i++) p.push(color(cells[i], col));
  return p;
}

function spawn(cell, type) {
  return {cell: cell, type: type};
}
function spawnMany(cells, type) {
  var p = [];
  for (var i = 0; i < cells.length; i++) p.push(spawn(cells[i], type));
  return p;
}

function isSane(action, ant) {
  // TODO: Minimize this
  if (ant === undefined || !ant.isObject) ant = ME;
  if (action === undefined || action.cell < 0 || action.cell >= 9) return false;
  if (action.color !== undefined) {
    if (action.color < 1 || action.color > 8) return false;
    return true;
  }
  else if (action.type !== undefined) {
    if (action.type < 1 || action.type > 4) return false;
    if (ant.type !== QUEEN || ant.food === 0) return false;
    if (isOccupied(action.cell, ant) || view[action.cell].food !== 0) return false;
    return true;
  }
  else {
    if (isOccupied(action.cell, ant) && action.cell !== HERE) return false;
    return true;
  }
}
function isOccupied(cell, ant) {
  if (ant === undefined || !ant.isObject) ant = ME;
  return view[cell].ant !== null || (view[cell].food > 0 && ant.type !== QUEEN && ant.food === 1);
}
function isColoringMeaningful(action) {
  return isSane(action) && action.color !== undefined && view[action.cell].color !== action.color;
}

function test(cell, test) {
  var vo = view[cell];
  return (test.color === undefined || test.color === vo.color) &&
         (test.food === undefined || test.food === vo.food) &&
         (test.ant === undefined || test.ant === vo.ant || (
           (test.ant !== null && vo.ant !== null) &&
           (test.ant.food === undefined || test.ant.food === vo.ant.food) &&
           (test.ant.type === undefined || test.ant.type === vo.ant.type) &&
           (test.ant.friend === undefined || test.ant.friend === vo.ant.friend)
         ));
}

function findOrientation(tests) {
  var best = {orientation: null, matches: []};
  for (var o = 0; o < VIEW_ORIENTATIONS.length; o++) {
    var matches = [];
    for (var i = 0; i < tests.length; i++) {
      if (test(VIEW_ORIENTATIONS[o][tests[i].cell], tests[i])) {
        matches.push(tests[i]);
      }
    }
    if (matches.length > best.matches.length) {
      best.orientation = o;
      best.matches = matches;
    }
  }

  return best;
}

function orientCells(orientation, cells) {
  if (orientation === null || orientation < 0 || orientation >= 4) orientation = 0;
  for (var i = 0; i < cells.length; i++) {
    cells[i] = VIEW_ORIENTATIONS[orientation][cells[i]];
  }
  return cells;
}

function findFirst(func, cells) {
  if (cells === undefined) cells = ALL_CELLS;
  for (var i = 0; i < cells.length; i++) {
    if (func(cells[i])) return cells[i];
  }
  return null;
}
function findAll(func, cells) {
  if (cells === undefined) cells = ALL_CELLS;
  var found = [];
  for (var i = 0; i < cells.length; i++) {
    if (func(cells[i])) found.push(cells[i]);
  }
  return found;
}

// HIGH-LEVEL LOGIC STARTS HERE //
var ROAD_COL = 3;
var SIM_COLS = [ 1, 8, 5, 6, 4, 2, 7, 3]; // SIM_COLS.length must be greater or equal to SIM_ROTS.length
var SIM_ROTS = [-1,-1,+1,-1,-1,+1,-1,-1];
// Here are some additional rulesets to play around with:
// [+1,-1,+1,-1,+1,-1,+1,-1] // Classic Langton's ant, extended to use all 8 colors cyclically
// [+1,+1,-1,+1,-1,+1,+1]    // Produces a very interesting highway
// [-1,-1,+1,-1,-1,+1,-1,-1] // The default one -- chosen because it produces a highway nearly instantly, and the highway itself is pretty efficient
// [-1,+1,-1,-1,-1,+1,+1,-1]
// [-1,-1,+1,-1,-1,+1,-1,-1]
// [-1,+1,-1,-1,-1,+1,+1,-1]
// [+1,-1,+1,+1,+1,-1]

var ANCHOR = 1;
var TAIL = 2;

var DEBUG_MODE = false;

function getSimColIndex(cell) {
  return Math.max(SIM_COLS.lastIndexOf(view[cell].color, SIM_ROTS.length - 1), 0);
}
function getNextSimCol(simColIndex) {
  return SIM_COLS[(simColIndex + 1) % SIM_ROTS.length];
}
function getSimRot(simColIndex) {
  return SIM_ROTS[simColIndex];
}

function run() {
  switch (ME.type) {
    case QUEEN: {
      var anch = findFirst(c => test(c, {ant: {type: ANCHOR, friend: true}}), DIRECTIONS);
      if (anch !== null) {
        if (isOrthogonal(anch)) {
          var tail = findFirst(c => test(c, {ant: {type: TAIL, friend: true}}), DIAGONALS);
          if (tail !== null) {
            return [move(rotateCW(anch, -2 * getSimRot(getSimColIndex(HERE))))].filter(isSane)[0] || NOP;
          } else {
            var nanch = rotateCW(anch, -getSimRot(getSimColIndex(anch)));
            return color(nanch, getNextSimCol(getSimColIndex(nanch)));
          }
        } else {
          return NOP;
        }
      } else {
        var tailO;
        if (ME.food === 2) {
          return spawnMany(ORTHOGONALS, TAIL).filter(isSane)[0] || NOP;
        } else if (ME.food === 1 && (tailO = findOrientation([{cell: 1, ant: {type: TAIL, friend: true}}])).orientation !== null) {
          return spawnMany(orientCells(tailO.orientation, [3, 5]), ANCHOR).filter(isSane)[0] || NOP;
        }

        var f;
        if ((f = findFirst(c => test(c, {food: 1})))) {
          return move(f);
        }

        if (test(HERE, {color: ROAD_COL})) {
          return moveMany(orientCells(findOrientation([{cell: 0, color: ROAD_COL}]).orientation, [8, 6, 2])).filter(a => isSane(a) && !test(a.cell, {color: ROAD_COL}))[0] || moveMany(DIAGONALS).filter(isSane)[0] || NOP;
        } else {
          return color(HERE, ROAD_COL);
        }
      }
      break;
    }
    case ANCHOR: {
      var queen = findFirst(c => test(c, {ant: {type: QUEEN, friend: true}}), DIAGONALS);
      var tail = findFirst(c => test(c, {ant: {type: TAIL, friend: true}}), ORTHOGONALS);
      var qp = [rotateCW(queen, -1), rotateCW(queen, +1)];
      var tp = [rotateCW(tail, -2), rotateCW(tail, +2)];
      for (var i = 0; i < qp.length; i++) {
        for (var j = 0; j < tp.length; j++) {
          if (qp[i] === tp[j]) return [move(qp[i])].filter(isSane)[0] || NOP;
        }
      }
      return NOP;
      break;
    }
    case TAIL: {
      var anch = findFirst(c => test(c, {ant: {type: ANCHOR, friend: true}}), DIAGONALS);
      if (anch !== null) {
        var rot = getSimRot(getSimColIndex(anch));
        var nanch = rotateCW(anch, rot);
        if (test(nanch, {ant: {type: QUEEN, friend: true}})) return [move(rotateCW(anch, -rot))].filter(isSane)[0] || NOP;
        return [move(nanch)].filter(isSane)[0] || NOP;
      } else {
        return NOP;
      }
      break;
    }
  }
}

var output = run();
if (isSane(output)) return output;
else {
  if (DEBUG_MODE) {
    return;
  } else {
    return NOP;
  }
}

La hormiga de Langton ("RL") La hormiga de Langton ("LLRLLRLL")


Introducción

Esta es una implementación de la hormiga de Langton dentro de los límites del desafío QOTH de Formic Functions. Como una ventaja adicional, admite variantes multicolores de la hormiga de Langton. También logré utilizar la paleta completa de hasta 8 colores. Además, esta hormiga completa un paso de la simulación en dos pasos de tiempo en el juego.

Desafortunadamente, las variantes más interesantes de la hormiga de Langton toman más de 8 colores, por lo que me decidí por una eficiente. Escribí un programa complementario para encontrar las hormigas que cubren la mayor cantidad de tierra dentro de un límite de tiempo específico, y me topé con múltiples variaciones del conjunto de reglas "RRL". Todos cubren 4168 celdas en 15000 pasos.

¡Ahora, 4000 células son abismales! Esto significa que, en promedio, esta entrada terminará el juego con CUATRO alimentos. ¡Y eso está en un tablero vacío! Francamente, la Brownie Jig lo hace mejor que esto. En resumen, este no es un contendiente serio cuando se trata de posicionarse en el marcador. Sin embargo, lo que puede hacer es desordenar otras entradas. Y esa es la única razón por la que incluso me molesté en enviar esto. A menudo surgen interacciones muy complejas entre esta entrada y las que dependen en gran medida de los colores. Y aquellos que confían en los colores generalmente sufren.


Explicación

Los colores ( SIM_COLS) tienen una rotación correspondiente ( SIM_ROTS) que la Reina usa para cambiar la dirección en la que se dirige. +1significa rotación en sentido horario ("R"), -1significa rotación en sentido antihorario ("L"). Hormiga del clásico de Langton sería SIM_COLS = [ 1, 8], SIM_ROTS = [+1,-1]. La SIM_COLSmatriz descarta efectivamente todos los elementos que no tienen un elemento coincidente en la SIM_ROTSmatriz. Todos los colores que no están contenidos dentro de la SIM_COLSmatriz truncada se tratan como color 0 y la hormiga nunca los producirá.

Como cualquier otra hormiga adecuada, esta comienza reuniendo suficiente comida para que pueda comenzar a hacer cosas. Requiere 2 alimentos .

Después de terminar la lucha inicial, la Reina genera dos hormigas, llamadas Anchor y Tail . La Reina genera la Cola primero, adyacente ortogonalmente (celdas 1, 3, 5, 7) a la Reina. Luego, genera el Ancla, adyacente ortogonalmente a la Reina y diagonalmente (celdas 0, 2, 6, 8) a la Cola.

El comportamiento consiste en un ciclo repetitivo de dos pasos diferentes.

Paso 1

Cola: busca la celda que ocupaba la Reina hace 2 pasos de simulación y va allí. Tenga en cuenta que utiliza el color de debajo del Ancla y la presencia de la Reina (o la falta de ella) para determinar con precisión la celda objetivo. Esto es propenso a los desastres que abordaré en una actualización futura.

Ancla: No hace nada.

Reina: encuentra el ancla y lo trata como el inverso de la dirección en la que va la hormiga. La dirección se gira según el color debajo de la Reina. La Reina se mueve a la celda indicada por la dirección rotada.

Paso 2

Cola: no hace nada.

Ancla: Busca una celda que está diagonalmente adyacente a la Cola y ortogonalmente adyacente a la Reina y va allí. Hay como máximo una de esas celdas.

Reina: De manera similar a Tail en el paso 1, busca la celda que ocupó hace 2 pasos de simulación y cambia su color de manera cíclica. Tenga en cuenta que ella usa el color debajo del ancla para determinar con precisión la celda objetivo. El peor desastre que podría ocurrir es colorear la celda equivocada, y aunque alteraría la trayectoria de la hormiga, no es realmente un problema porque la trayectoria se verá alterada por la presencia de otras hormigas de todos modos.

Determinando que hacer

La Reina determina el paso actual buscando la Cola ortogonalmente. Si lo encuentra, está en el paso 1. De lo contrario, está en el paso 2. En casos excepcionales, puede encontrar el ancla adyacente en diagonal a sí misma. En ese caso, ella no hará nada.

El ancla no tiene ninguna lógica para determinar su paso. Siempre se esfuerza por ser ortogonalmente adyacente a la Reina y diagonalmente adyacente a la Cola. Si no hay tal celda, simplemente no se mueve.

La cola determina el paso actual buscando el ancla en diagonal. Si lo encuentra, está en el paso 1. De lo contrario, está en el paso 2.

El desastre mencionado anteriormente durante el movimiento de la Cola puede ser provocado por una hormiga que altera el color debajo del Ancla. Si el color alterado indica una rotación diferente a la original y la Reina no está a la vista de la Cola, la posición resultante después del movimiento de la Cola es una línea recta de las 3 hormigas. Actualmente estoy trabajando en una solución a esta situación.


Si bien esto definitivamente no es un contendiente serio para el primer lugar, seguramente animará las cosas en la arena y cambiará un poco el meta hacia las hormigas incoloras. Tengo un par de presentaciones de cocina (y una de ellas se ve muy picante), así que espere algunas entradas más de mí en las próximas semanas.


3
Bienvenido a PPCG!
Steadybox

10

Zigurat v3.0

var clockwise = [1,2,5,0,4,8,3,6,7];
var opposite = [8,7,6,5,4,3,2,1,0];
var cyclic_cw = [0,1,2,5,8,7,6,3,0];
var worker_colors = [4,5,7,8];
var next_worker_color = [1,1,1,1,5,7,1,8,4];
var prev_worker_color = [1,1,1,1,8,4,1,5,7];
var diags = [0,2,6,8];
var orthos = [1,3,5,7];
var cleaning_color = 6;


// Borrowed from Medusa
function clean(move) {
    if (move["color"] == undefined) {
        if (view[move["cell"]].ant != null) {
            move = {cell: 4};
        }
        if (move["type"] == undefined) {
            if (view[move["cell"]].food == 1 && view[4].ant.type < 5 && view[4].ant.food > 0) {
                move = {cell: 4};
            }
        } else if (view[4].ant.type != 5 || view[4].ant.food == 0 || view[move["cell"]].food == 1) {
            move = {cell: 4};
        }
    }
    return move;
}

function worker_blank(cel) {
    return (worker_colors.indexOf(view[cel].color) < 0);
}

// Own status
var my_color = view[4].color;
var my_food = view[4].ant.food;
var my_type = view[4].ant.type;

// Random free cell
var free_cell = 4;
for (var cel = 0; cel < 9; cel++) {
    if (view[cel].ant == null) {
    free_cell = cel;
    }
}

// Check surroundings
var blanks = 0;
var outer_edge = 0;
var inner_edge = 0;
var next_edge = -1;
var prev_nonblank = -1;
var some_nonblank = -1;
var prev_cell = -1;
var next_cell = -1;
var food_cell = -1;
var nonblank_color = 0;
var cleaning_marker = -1;
var uniform = 1;
var low_type = -1;
var friend_workers = 0;
var guards = 0;
var enemies = 0;
var enemy_queens = 0;
var my_queen = -1;

if (!worker_blank(4)) {
    nonblank_color = view[4].color;
}
for (var ix = 0; ix < 8; ix++) {
    var cel = cyclic_cw[ix];
    var cel2 = cyclic_cw[ix+1];
    if (view[cel].food == 1) {
    food_cell = cel;
    }
    if (worker_blank(cel)) {
    blanks++;
    if (!worker_blank(cel2)) {
        if (worker_blank(4)) {
        outer_edge = 1;
        } else {
        inner_edge = 1;
        }
        next_edge = cel;
            prev_nonblank = cel2;
    }
    if (view[cel].color == cleaning_color) {
        cleaning_marker = cel;
    }
    } else {
    some_nonblank = cel;
    if (nonblank_color == 0) {
        nonblank_color = view[cel].color;
    } else if (view[cel].color != nonblank_color) {
        uniform = 0;
    }
    }
    if ((!worker_blank(4) && view[cel2].color == prev_worker_color[my_color] && view[cel2].ant == null) || (worker_blank(4) && !worker_blank(cel2))) {
    prev_cell = cel2;
    }
    if (!worker_blank(4) && view[cel2].color == next_worker_color[my_color] && view[cel2].ant == null) {
    next_cell = cel2;
    }
    if (view[cel].ant != null) {
    var the_ant = view[cel].ant;
    if (the_ant.friend) {
        if (low_type < 0 || the_ant.type < low_type) {
        low_type = the_ant.type;
        }
        if (the_ant.type == 4) {
        guards++;
        } else if (the_ant.type == 5) {
        my_queen = cel;
        } else {
        friend_workers++;
        }
    } else {
        enemies++;
        if (the_ant.type == 5) {
        enemy_queens++;
        }
    }
    }
}

// Queen before finding food (motile)
if (my_type == 5 && worker_blank(4)) {
    if (my_food > 1) {
    return {cell:4, color:worker_colors[1]};
    }
    if (food_cell >= 0 && my_color != 1) {
    return clean({cell:food_cell});
    }
    if (my_color == 2) {
    for (var ix = 0; ix < 4; ix++) {
        var cel = diags[ix];
        var oppo = opposite[cel];
        if (view[cel].color == 2) {
        if (view[oppo].color == 1 && worker_blank(oppo) && view[oppo].ant == null) {
            return clean({cell:oppo});
        }
                if (view[oppo].color != 2) {
            return {cell:oppo, color:1};
                }
        }
    }
        for (var ix = 0; ix < 4; ix++) {
        var cel = diags[ix];
        if (view[cel].color != 2) {
        return {cell:cel, color:2};
        }
    }
    }
    if (my_color == 1) {
    return {cell:4, color:2};
    }
    return clean({cell:free_cell});
}

// Queen after finding food (sessile)
if (my_type == 5) {
    for (var ix = 0; ix < 8; ix++) {
        cel = cyclic_cw[ix];
    if (worker_blank(cel)) {
            return {cell:cel, color:worker_colors[1]};
    }
    }

    if (my_color != worker_colors[0]) {
        if (my_food > 0) {
        return clean({cell:free_cell, type:1});
        } else {
            return {cell:4, color:worker_colors[0]};
        }
    }
    if (my_food > 0) {
    if (my_food > 3 && guards < 2) {
        return clean({cell:free_cell, type:4});
    }
    if (0 < low_type && low_type < 3) {
        return clean({cell:free_cell, type:(low_type + 1)});
    }
    }
    return {cell:4};
}

// Queen's guard

if (my_type == 4) {
    // Queen is a nbor
    if (my_queen >= 0) {
    if (enemy_queens > 0) {
        return {cell:4};
    }
    if (my_queen == 1) {
        return clean({cell:5});
    }
    return clean({cell:clockwise[my_queen]});
    }
    // Try to get to queen
    if (prev_cell >= 0) {
    return clean({cell:prev_cell});
    }
    // Wander
    return clean({cell:free_cell});
}

// Worker

// Create new ziggurat
if (blanks == 8 && cleaning_marker < 0 && my_color != cleaning_color) {
    if (worker_colors.indexOf(my_color) >= 0) {
    return {cell:free_cell, color:my_color};
    }
    return {cell:free_cell, color:worker_colors[0]};
}

var front = view[1].color;
if (!worker_blank(4) && !worker_blank(1) && my_color != front) {
    if (view[7].color == front || (view[6].color == front && view[8].color == front)) {
        return {cell:4, color:front};
    }
}

if (my_food == 0) {
    // Grab food
    if (food_cell >= 0 && (!worker_blank(4) || !worker_blank(food_cell))) {
        return clean({cell:food_cell});
    }

    // Clear marked uniform region
    if (my_color == cleaning_color && uniform) {
    if (blanks < 7) {
        return {cell:some_nonblank, color:1};
    } else if (blanks == 7) {
        return {cell:some_nonblank, color:cleaning_color};
    }
    }

    // Follow cleaning color
    if (blanks == 8) {
    if (cleaning_marker < 0 || my_color == cleaning_color) {
        return {cell:4, color:1};
    } else if (cleaning_marker >= 0) {
        return clean({cell:cleaning_marker});
    }
    }

    // Dive into uniform region
    if (blanks > 3 && worker_blank(4) && worker_blank(1) && !worker_blank(2) && view[2].color == view[5].color && view[2].color == view[8].color) {
    return clean({cell:2});
    }

    // Mark uniform region for clearing
    if (!worker_blank(4) && uniform && (blanks < 4 || (blanks < 7 && ((worker_blank(1) && worker_blank(7)) || (worker_blank(3) && worker_blank(5)))))) {
    return {cell:4, color:cleaning_color};
    }

    // Extend edge
    if (outer_edge) {
    var new_color = 0;
    var cl = clockwise[next_edge];
    var cl2 = clockwise[cl];
    if (!worker_blank(1) && view[7].color == view[1].color) {
        new_color = view[1].color;
    } else if (!worker_blank(3) && view[5].color == view[3].color) {
        new_color = view[3].color;
        } else if (!worker_blank(cl2) && view[cl].color == next_worker_color[view[cl2].color]) {
        if (cl > 1) {
        new_color = view[cl].color;
        } else {
        new_color = next_worker_color[view[cl].color];
        }
    } else if (!worker_blank(cl)) {
        new_color = next_worker_color[view[cl].color];
        } else if (prev_nonblank >= 0) {
            new_color = next_worker_color[prev_nonblank];
    }
    if (new_color == 0 && blanks < 2) {
        new_color = worker_colors[0];
    }
        if (new_color > 0) {
            return {cell:4, color:new_color};
        } else {
            return clean({cell:next_edge});
        }
    }

    // Escape from hole
    if (worker_blank(4) && blanks == 0) {
        return {cell:4, color:next_worker_color[nonblank_color]};
    }

    // Go outside or fill it
    if (inner_edge && next_edge >= 0) {
    if (friend_workers > 1) {
        return clean({cell:free_cell});
    }
        if (blanks == 4 && prev_nonblank >= 0) {
            return {cell:next_edge, color:next_worker_color[view[prev_nonblank].color]};
        }
    if (view[next_edge].ant == null) {
            return clean({cell:next_edge});
    }
    return {cell:4};
    }

    // Go toward border
    if (!worker_blank(4) && next_cell >= 0 && next_cell != 1) {
    return clean({cell:next_cell});
    }

    // Wander
    return clean({cell:free_cell});
}

if (my_food > 0) {
    // Take food to queen
    if ((prev_cell >= 0 && prev_cell != 1) || (prev_cell >= 0 && worker_blank(4))) {
    return clean({cell:prev_cell});
    }

    // Wander
    if (worker_blank(free_cell) && !worker_blank(4)) {
    return {cell:4};
    }
    return clean({cell:free_cell});
}

return clean({cell:free_cell});

Cómo funciona

Esta hormiga es una combinación de Black Hole y Medusa . La reina comienza buscando comida en diagonal. Una vez que tiene dos unidades de alimentos, se vuelve sésil y genera dos trabajadores. Los trabajadores rodean a la reina y forman una región de rayas en crecimiento (el "zigurat") con cuatro colores. Cuando un trabajador encuentra comida, sigue las rayas y se la lleva a la reina, que se sienta en el centro de la plaza. Si el trabajador era uno de los dos originales, la reina crea un nuevo trabajador; de lo contrario, ella almacena la comida.

Comentarios

La versión 2.0 usa cuatro colores, lo que con suerte evita que las hormigas se pierdan tan fácilmente. El esquema de creación de trabajadores también se ha modernizado para hacer primero muchos trabajadores y hacer crecer la región, luego esconder alimentos para llegar a la clasificación. También hay más controles contra movimientos ilegales.

La versión 2.1 presenta una rutina de construcción de zigurat mejorada. Los trabajadores a veces pueden elegir su color entre dos opciones, lo que hace que el patrón de rayas sea más aleatorio, con suerte engañando al vampiro. Los trabajadores a veces colocan dos colores antes de moverse, lo que hace que el zigurat crezca más rápido. Cuando están dentro del zigurat, los trabajadores a veces realizan movimientos aleatorios para escapar de bucles infinitos e intentan corregir ciertas inconsistencias locales. La reina es más inteligente al evitar los rastros en su fase móvil. Finalmente, si la reina sésil es atacada, contraataca creando una explosión de nuevos trabajadores, lo que también debería ayudarla a recuperarse si el atacante fue un borrador que la separó de todos los trabajadores existentes.

La versión 3.0 tiene más ajustes a la rutina de construcción. Como una contramedida (en gran medida no probada) contra Black Hole y Wildfire, los trabajadores que descubren regiones de colores uniformes intentarán borrarlas. La reina ya no genera docenas de trabajadores cuando es atacada; en cambio, tiene un par de hormigas guardianes dedicadas que orbitan a su alrededor. También esperará más tiempo antes de comenzar a acumular comida.

Realmente no sé JS, por lo que el código es un desastre horrible.

Aquí hay una foto de la región rayada:

Zigurat


Esto es hermoso de ver. Es interesante que haya imperfecciones ocasionales en las rayas, como defectos en un cristal en crecimiento, pero todavía están dispuestas conduciendo a la reina, por lo que no parece causar ningún problema a los trabajadores.
trichoplax

1
Me encanta ver este trabajo, especialmente cuando el patrón tiene algunas anomalías imperfectas (debido a que los trabajadores no pueden regresar al lugar donde encontraron comida)
Skidsdev

1
@trichoplax Acabo de actualizar el bot. Nunca debería hacer un movimiento ilegal ahora, y en general es un poco más inteligente.
Zgarb

1
Y, la versión más nueva parece que puede sobrevivir a un ataque de un borrador con cierta dificultad. Sin embargo, no estoy seguro de qué sucede si más de uno invade
pppery

1
@trichoplax debería arreglarse ahora. También agregué otras mejoras.
Zgarb

9

Wildfire Mk.3

Todas mis respuestas comparten el mismo conjunto de funciones auxiliares de bajo nivel. Busque "La lógica de alto nivel comienza aquí" para ver el código específico de esta respuesta.

// == Shared low-level helpers for all solutions ==

var QUEEN = 5;

var WHITE = 1;
var COL_MIN = WHITE;
var COL_LIM = 9;

var CENTRE = 4;

var NOP = {cell: CENTRE};

var DIR_FORWARDS = false;
var DIR_REVERSE = true;
var SIDE_RIGHT = true;
var SIDE_LEFT = false;

function sanity_check(movement) {
  var me = view[CENTRE].ant;
  if(!movement || (movement.cell|0) !== movement.cell || movement.cell < 0 || movement.cell > 8) {
    return false;
  }
  if(movement.type) {
    if(movement.color) {
      return false;
    }
    if((movement.type|0) !== movement.type || movement.type < 1 || movement.type > 4) {
      return false;
    }
    if(view[movement.cell].ant || view[movement.cell].food) {
      return false;
    }
    if(me.type !== QUEEN || me.food < 1) {
      return false;
    }
    return true;
  }
  if(movement.color) {
    if((movement.color|0) !== movement.color || movement.color < COL_MIN || movement.color >= COL_LIM) {
      return false;
    }
    if(view[movement.cell].color === movement.color) {
      return false;
    }
    return true;
  }
  if(movement.cell !== CENTRE && view[movement.cell].ant) {
    return false;
  }
  if(view[movement.cell].food + me.food > 1 && me.type !== QUEEN) {
    return false;
  }
  return true;
}

function as_array(o) {
  if(Array.isArray(o)) {
    return o;
  }
  return [o];
}

function best_of(movements) {
  var m;
  for(var i = 0; i < movements.length; ++ i) {
    if(typeof(movements[i]) === 'function') {
      m = movements[i]();
    } else {
      m = movements[i];
    }
    if(sanity_check(m)) {
      return m;
    }
  }
  return null;
}

function play_safe(movement) {
  // Avoid disqualification: no-op if moves are invalid
  return best_of(as_array(movement)) || NOP;
}

var RAND_SEED = (() => {
  var s = 0;
  for(var i = 0; i < 9; ++ i) {
    s += view[i].color * (i + 1);
    s += view[i].ant ? i * i : 0;
    s += view[i].food ? i * i * i : 0;
  }
  return s % 29;
})();

var ROTATIONS = [
  [0, 1, 2, 3, 4, 5, 6, 7, 8],
  [6, 3, 0, 7, 4, 1, 8, 5, 2],
  [8, 7, 6, 5, 4, 3, 2, 1, 0],
  [2, 5, 8, 1, 4, 7, 0, 3, 6],
];

function try_all(fns, limit, wrapperFn, checkFn) {
  var m;
  fns = as_array(fns);
  for(var i = 0; i < fns.length; ++ i) {
    if(typeof(fns[i]) !== 'function') {
      if(checkFn(m = fns[i])) {
        return m;
      }
      continue;
    }
    for(var j = 0; j < limit; ++ j) {
      if(checkFn(m = wrapperFn(fns[i], j))) {
        return m;
      }
    }
  }
  return null;
}

function identify_rotation(testFns) {
  // testFns MUST be functions, not constants
  return try_all(
    testFns,
    4,
    (fn, r) => fn(ROTATIONS[r]) ? ROTATIONS[r] : null,
    (r) => r
  );
}

function near(a, b) {
  return (
    Math.abs(a % 3 - b % 3) < 2 &&
    Math.abs(Math.floor(a / 3) - Math.floor(b / 3)) < 2
  );
}

function try_all_angles(solverFns) {
  return try_all(
    solverFns,
    4,
    (fn, r) => fn(ROTATIONS[r]),
    sanity_check
  );
}

function try_all_cells(solverFns, skipCentre) {
  return try_all(
    solverFns,
    9,
    (fn, i) => ((i === CENTRE && skipCentre) ? null : fn(i)),
    sanity_check
  );
}

function try_all_cells_near(p, solverFns) {
  return try_all(
    solverFns,
    9,
    (fn, i) => ((i !== p && near(p, i)) ? fn(i) : null),
    sanity_check
  );
}

function ant_type_at(i, friend) {
  return (view[i].ant && view[i].ant.friend === friend) ? view[i].ant.type : 0;
}

function friend_at(i) {
  return ant_type_at(i, true);
}

function foe_at(i) {
  return ant_type_at(i, false);
}

function ant_type_near(p, friend) {
  for(var i = 0; i < 9; ++ i) {
    if(i !== 4 && ant_type_at(i, friend) && near(i, p)) {
      return true;
    }
  }
  return false;
}

function move_agent(agents) {
  var me = view[CENTRE].ant;
  var buddies = [0, 0, 0, 0, 0, 0];
  for(var i = 0; i < 9; ++ i) {
    ++ buddies[friend_at(i)];
  }

  for(var i = 0; i < agents.length; i += 2) {
    if(agents[i] === me.type) {
      return agents[i+1](me, buddies);
    }
  }
  return null;
}

function grab_nearby_food() {
  return try_all_cells((i) => (view[i].food ? {cell: i} : null), true);
}

function go_anywhere() {
  return try_all_cells((i) => ({cell: i}), true);
}

function colours_excluding(cols) {
  var r = [];
  for(var i = COL_MIN; i < COL_LIM; ++ i) {
    if(cols.indexOf(i) === -1) {
      r.push(i);
    }
  }
  return r;
}

function generate_band(start, width) {
  var r = [];
  for(var i = 0; i < width; ++ i) {
    r.push(start + i);
  }
  return r;
}

function colour_band(colours) {
  return {
    contains: function(c) {
      return colours.indexOf(c) !== -1;
    },
    next: function(c) {
      return colours[(colours.indexOf(c) + 1) % colours.length];
    }
  };
}

function random_colour_band(colours) {
  return {
    contains: function(c) {
      return colours.indexOf(c) !== -1;
    },
    next: function() {
      return colours[RAND_SEED % colours.length];
    }
  };
}

function fast_diagonal(colourBand, avoidedColours) {
  if(!avoidedColours) {
    avoidedColours = colourBand;
  }
  var m = try_all_angles([
    // Avoid nearby checked areas
    (rot) => {
      if(
        !avoidedColours.contains(view[rot[0]].color) &&
        avoidedColours.contains(view[rot[5]].color) &&
        avoidedColours.contains(view[rot[7]].color)
      ) {
        return {cell: rot[0]};
      }
    },

    // Go in a straight diagonal line if possible
    (rot) => {
      if(
        !avoidedColours.contains(view[rot[0]].color) &&
        avoidedColours.contains(view[rot[8]].color)
      ) {
        return {cell: rot[0]};
      }
    },

    // When in doubt, pick randomly but avoid doubling-back
    (rot) => (avoidedColours.contains(view[rot[0]].color) ? null : {cell: rot[0]}),

    // Double-back when absolutely necessary
    (rot) => ({cell: rot[0]})
  ]);

  // Lay a colour track so that we can avoid doubling-back
  // (and mess up our foes as much as possible)
  if(!avoidedColours.contains(view[CENTRE].color)) {
    var prevCol = m ? view[8-m.cell].color : WHITE;
    return {cell: CENTRE, color: colourBand.next(prevCol)};
  }

  return m;
}

function follow_edge(obstacleFn, side, resultFn) {
  // Since we don't know which direction we came from, this can cause us to get
  // stuck on islands, but the random orientation helps to ensure we don't get
  // stuck forever.

  if(!resultFn) {
    resultFn = (i) => ({cell: i});
  }

  var order = ((side === SIDE_LEFT)
    ? [0, 3, 6, 7, 8, 5, 2, 1, 0]
    : [0, 1, 2, 5, 8, 7, 6, 3, 0]
  );
  return try_all(
    [obstacleFn],
    order.length - 1,
    (fn, i) => ((fn(order[i+1]) && !fn(order[i])) ? resultFn(order[i]) : null),
    sanity_check
  );
}

function start_dotted_path(colourBand, side, protectedCols) {
  var right = (side === SIDE_RIGHT);
  return try_all_angles([
    (rot) => ((
      !protectedCols.contains(view[rot[right ? 5 : 3]].color) &&
      !colourBand.contains(view[rot[right ? 5 : 3]].color) &&
      !colourBand.contains(view[rot[right ? 2 : 0]].color) &&
      !colourBand.contains(view[rot[1]].color)
    )
      ? {cell: rot[right ? 5 : 3], color: colourBand.next(WHITE)}
      : null)
  ]);
}

function lay_dotted_path(colourBand, side, protectedCols) {
  var right = (side === SIDE_RIGHT);
  return try_all_angles([
    (rot) => {
      var ahead = rot[right ? 2 : 0];
      var behind = rot[right ? 8 : 6];
      if(
        colourBand.contains(view[behind].color) &&
        !protectedCols.contains(view[ahead].color) &&
        !colourBand.contains(view[ahead].color) &&
        !colourBand.contains(view[rot[right ? 6 : 8]].color)
      ) {
        return {cell: ahead, color: colourBand.next(view[behind].color)};
      }
    }
  ]);
}

function follow_dotted_path(colourBand, side, direction) {
  var forwards = (direction === DIR_REVERSE) ? 7 : 1;
  var right = (side === SIDE_RIGHT);

  return try_all_angles([
    // Cell on our side? advance
    (rot) => {
      if(
        colourBand.contains(view[rot[right ? 5 : 3]].color) &&
        // Prevent sticking / trickery
        !colourBand.contains(view[rot[right ? 3 : 5]].color) &&
        !colourBand.contains(view[rot[0]].color) &&
        !colourBand.contains(view[rot[2]].color)
      ) {
        return {cell: rot[forwards]};
      }
    },

    // Cell ahead and behind? advance
    (rot) => {
      var passedCol = view[rot[right ? 8 : 6]].color;
      var nextCol = view[rot[right ? 2 : 0]].color;
      if(
        colourBand.contains(passedCol) &&
        nextCol === colourBand.next(passedCol) &&

        // Prevent sticking / trickery
        !colourBand.contains(view[rot[right ? 3 : 5]].color) &&
        !colourBand.contains(view[rot[right ? 0 : 2]].color)
      ) {
        return {cell: rot[forwards]};
      }
    }
  ]);
}

function escape_dotted_path(colourBand, side, newColourBand) {
  var right = (side === SIDE_RIGHT);
  if(!newColourBand) {
    newColourBand = colourBand;
  }

  return try_all_angles([
    // Escape from beside the line
    (rot) => {
      var approachingCol = view[rot[right ? 2 : 0]].color;
      if(
        !colourBand.contains(view[rot[right ? 8 : 6]].color) ||
        !colourBand.contains(approachingCol) ||
        colourBand.contains(view[rot[7]].color) ||
        colourBand.contains(view[rot[right ? 6 : 8]].color)
      ) {
        // not oriented, or in a corner
        return null;
      }
      return best_of([
        {cell: rot[right ? 0 : 2], color: newColourBand.next(approachingCol)},
        {cell: rot[right ? 3 : 5]},
        {cell: rot[right ? 0 : 2]},
        {cell: rot[right ? 6 : 8]},
        {cell: rot[right ? 2 : 0]},
        {cell: rot[right ? 8 : 6]},
        {cell: rot[right ? 5 : 3]}
      ]);
    },

    // Escape from inside the line
    (rot) => {
      if(
        !colourBand.contains(view[rot[7]].color) ||
        !colourBand.contains(view[rot[1]].color) ||
        colourBand.contains(view[CENTRE].color)
      ) {
        return null;
      }
      return best_of([
        {cell: rot[3]},
        {cell: rot[5]},
        {cell: rot[0]},
        {cell: rot[2]},
        {cell: rot[6]},
        {cell: rot[8]}
      ]);
    }
  ]);
}

function latch_to_dotted_path(colourBand, side) {
  var right = (side === SIDE_RIGHT);

  return try_all_angles([
    (rot) => {
      var approachingCol = view[rot[right ? 2 : 0]].color;
      if(
        colourBand.contains(approachingCol) &&
        view[rot[right ? 8 : 6]].color === colourBand.next(approachingCol) &&
        !colourBand.contains(view[rot[right ? 5 : 3]].color)
      ) {
        // We're on the wrong side; go inside the line
        return {cell: rot[right ? 5 : 3]};
      }
    },

    // Inside the line? pick a side
    (rot) => {
      var passedCol = view[rot[7]].color;
      var approachingCol = view[rot[1]].color;
      if(
        !colourBand.contains(passedCol) ||
        !colourBand.contains(approachingCol) ||
        colourBand.contains(view[CENTRE].color)
      ) {
        return null;
      }
      if((approachingCol === colourBand.next(passedCol)) === right) {
        return best_of([{cell: rot[3]}, {cell: rot[6]}, {cell: rot[0]}]);
      } else {
        return best_of([{cell: rot[5]}, {cell: rot[2]}, {cell: rot[8]}]);
      }
    }
  ]);
}


// == High-level logic begins here ==


var groundCol = 5;
var poisonCol = 8;

var DIRECTOR = 1;
var FORAGER0 = 2;
var FORAGER1 = 3;
var FORAGER2 = 4;
var MAX_FORAGER_TYPES = 3; // Worker creation throttle
var MIN_FOOD = 3; // Don't embarrass ourselves when things go bad
var MAX_FOOD_SPAWN = 80; // If we're doing well, don't spoil it all

var GROUND_COLOURS = colour_band([groundCol, poisonCol]);
var POISON_COLOURS = colour_band([poisonCol]);
var SAFE_COLOURS = random_colour_band(colours_excluding([WHITE, groundCol, poisonCol]));
var INITIAL_OBSTACLES = random_colour_band(colours_excluding([WHITE]));

function ground_at(i) {
  return GROUND_COLOURS.contains(view[i].color);
}

function unlaiden_friend_at(i) {
  return friend_at(i) && (friend_at(i) === QUEEN || !view[i].ant.food);
}

function obstacle_at(i) {
  // foes are unpredictable, so don't consider them obstacles
  return view[i].food || unlaiden_friend_at(i) || GROUND_COLOURS.contains(view[i].color);
}

function wait_if_blocked(i) {
  return friend_at(i) ? {cell:CENTRE} : {cell: i};
}

function move_director(me, buddies) {
  if(!buddies[QUEEN]) {
    // Lost the queen!
    return go_anywhere();
  }

  var rot = identify_rotation((rot) => (
    friend_at(rot[0]) === QUEEN || friend_at(rot[1]) === QUEEN
  ));

  var ready = (friend_at(rot[1]) === QUEEN && view[rot[1]].color === groundCol);
  var shift = (view[rot[2]].color === groundCol && GROUND_COLOURS.contains(view[rot[5]].color));

  return best_of([
    // Ensure we never end up underground unless we mean to, and provide a
    // base poison layer to help workers find the right side if lost
    {cell: CENTRE, color: poisonCol},
//    {cell: rot[5], color: poisonCol},
    {cell: rot[3], color: poisonCol},

    // Move up to avoid own line after wrapping (us being underground is a signal)
    (ready && shift) && {cell: rot[2]},

    // Advance
    (ready && !shift) && {cell: rot[5]},

    // Make the poison layer more solid if we have extra time
    {cell: rot[7], color: poisonCol},
    {cell: rot[6], color: poisonCol},
    {cell: rot[8], color: poisonCol},

    // Don't lose the queen
    NOP
  ]);
}

function move_forager(me, buddies) {
  var underground = GROUND_COLOURS.contains(view[CENTRE].color);
  var buried = 0;
  for(var i = 0; i < 9; ++ i) {
    if(i !== 4 && GROUND_COLOURS.contains(view[i].color)) {
      ++ buried;
    }
  }
  var travelCol = underground ? POISON_COLOURS : SAFE_COLOURS;

  if(buddies[DIRECTOR]) {
    // We've somehow got in the way of the line; get out of the way
    return try_all_angles((rot) =>
      ((friend_at(rot[6]) === DIRECTOR || friend_at(rot[7]) === DIRECTOR) &&
      best_of([{cell: rot[0]}, {cell: rot[1]}, {cell: rot[2]}])));
  }

  if(me.food) {
    // We have food for the queen; run ahead to find her as fast as we can

    return best_of([
      // Identify confusing pinch points and close them (don't get stuck on islands)
      try_all_angles((rot) => (
        obstacle_at(rot[1]) && obstacle_at(rot[7]) &&
        !obstacle_at(rot[5]) && !GROUND_COLOURS.contains(view[CENTRE].color)
      ) && {cell: CENTRE, color: groundCol}),

      // We're enclosed; mark this as a dead-end
      (buried >= 7) && {cell: CENTRE, color: poisonCol},

      // Race to queen, but don't climb over each other and cause a blockage
      follow_edge(obstacle_at, SIDE_RIGHT, wait_if_blocked),

      // Lost? Travel quickly to find the surface again
      fast_diagonal.bind(null, travelCol),

      // Totally lost
      go_anywhere
    ]);
  }

  if(buddies[QUEEN]) {
    // Don't overtake the queen!
    return NOP;
  }

  // Paint the ground
  if(!underground) {
    return {cell: CENTRE, color: groundCol};
  }

  return best_of([
    // Unpaint small islands which would confuse us or our buddies
    (buried >= 3) && try_all_angles((rot) => (
      !view[rot[0]].ant &&
      GROUND_COLOURS.contains(view[rot[0]].color) &&
      !GROUND_COLOURS.contains(view[rot[1]].color) &&
      !GROUND_COLOURS.contains(view[rot[3]].color)
    ) && {cell: rot[0], color: SAFE_COLOURS.next(WHITE)}),

    (buried >= 3) && try_all_angles((rot) => (
      !view[rot[1]].ant &&
      GROUND_COLOURS.contains(view[rot[1]].color) &&
      !GROUND_COLOURS.contains(view[rot[0]].color) &&
      !GROUND_COLOURS.contains(view[rot[2]].color)
    ) && {cell: rot[1], color: SAFE_COLOURS.next(WHITE)}),

    // Follow line
    follow_edge(ground_at, SIDE_RIGHT, wait_if_blocked),

    // Disoriented; find the surface again
    fast_diagonal.bind(null, travelCol),

    // Totally lost; random walk
    {cell: 0}
  ]);
}

function move_queen(me, buddies) {
  if(buddies[DIRECTOR]) {
    var rot = identify_rotation((rot) => (
      (friend_at(rot[7]) === DIRECTOR && view[rot[7]].color !== groundCol) ||
      (friend_at(rot[5]) === DIRECTOR && view[rot[5]].color === groundCol) ||
      friend_at(rot[8]) === DIRECTOR
    ));

    var rand14 = rot === ROTATIONS[0];
    var existing = friend_at(rot[0]);
    var nextType = existing ? (existing + 1) : FORAGER0;
    var workerSpawn = (
      me.food > MIN_FOOD && me.food < MAX_FOOD_SPAWN &&
      view[rot[3]].color === groundCol && // Don't spawn if disrupted
      view[rot[0]].color === WHITE && // Don't spawn while stuck in a nest
      view[rot[1]].color === WHITE &&
      !friend_at(rot[1]) && !friend_at(rot[3]) && !friend_at(rot[6]) &&
      (existing || rand14) // reduce likelihood of spawning new chains
    );

    return best_of([
      // Paint ground
      {cell: CENTRE, color: groundCol},

      // Follow director up slopes
      (friend_at(rot[5]) === DIRECTOR) && {cell: rot[2]},
      (friend_at(rot[5]) === DIRECTOR) && {cell: rot[1]},

      // Recognise likely erasure issues and correct
      view[rot[2]].color === groundCol && GROUND_COLOURS.contains(view[rot[8]].color) &&
        {cell: CENTRE, color: groundCol},

      // Clear cells which could confuse workers
      GROUND_COLOURS.contains(view[rot[2]].color) && {cell: rot[2], color: SAFE_COLOURS.next(WHITE)},

      // Spawn new workers when ready (throttle probabilistically)
      (workerSpawn && nextType < FORAGER0 + MAX_FORAGER_TYPES) && {cell: rot[1], type: nextType},

      // Follow director along flat planes
      (friend_at(rot[8]) === DIRECTOR) && {cell: rot[5]},

      // Don't lose director
      NOP
    ]);
  }

  return best_of([
    // Begin wildfire
    (me.food >= MIN_FOOD + MAX_FORAGER_TYPES + 1) && try_all_angles((rot) =>
      (view[rot[5]].color !== groundCol && sanity_check({cell: rot[5]}) &&
        {cell: rot[8], type: DIRECTOR})),

    // Hungry or too crowded to begin; frantically find food
    grab_nearby_food,
    fast_diagonal.bind(null, SAFE_COLOURS, INITIAL_OBSTACLES),
    go_anywhere,
    {cell: 1, color: SAFE_COLOURS.next(WHITE)}
  ]);
}

return play_safe(move_agent([
  DIRECTOR, move_director,
  FORAGER0, move_forager,
  FORAGER1, move_forager,
  FORAGER2, move_forager,
  QUEEN, move_queen,
]));

Las hormigas de fuego salvaje barren el tablero, devorando todo a su paso. Esto se inspiró al mezclar los conceptos de Black Hole (de Draco18s) con mis hormigas forenses .

La reina comenzará reuniendo rápidamente un alijo de comida. Una vez que tenga suficiente, comenzará a moverse en línea recta y generará algunos ayudantes. Estos ayudantes la seguirán en una línea ordenada, corriendo para alcanzar si encuentran comida.

Mk.2 usa una hormiga especialista para ayudar a la reina a mantener su dirección, y esta hormiga también establece un rastro de negro para ayudar a los trabajadores perdidos a encontrar el lado correcto de la banda. Combinado con una mejor navegación de los trabajadores, ahora funciona mucho mejor cuando se combina con hormigas competidoras. Incluso (eventualmente) se recupera después de golpear nidos de puntos rojos.

Mk.2c usa la probabilidad para controlar la población de trabajadores y parece manejarla bastante bien. Los trabajadores todavía se pierden dentro del fuego con más frecuencia de lo que quisiera, pero a pesar de eso se las arregla para hacerse cargo de cantidades impresionantes de la tabla cuando está solo.

Mk.3 agrega protección contra las líneas rojas diagonales producidas por la entrada "reina única", que también ayuda en algunas situaciones similares. Ahora es mucho menos probable que los trabajadores se distraigan con desvíos aleatorios, y parece estar funcionando mejor.

Aquí está el resultado de uno de los prototipos:

FUEGO

(sí, eso es 865 hormigas obreras ... y er, 5 alimentos)


Aquí hay una captura de pantalla con competencia:

Fuego de limpieza


Y así es como me imagino las hormigas en mi mente (más la música correspondiente):

Desfile de pimentón


Los comentarios no son para discusión extendida; Esta conversación se ha movido al chat .
Martin Ender

no puedo escuchar tu música ...
NH.

1
@NUEVA HAMPSHIRE. Las ranas / caos / locura general son de la película Paprika. Si quieres saber la música, ¡mira eso!
Dave

9

Velocidad de la luz

Todas mis respuestas contendrán una lógica similar de bajo nivel en forma del Marco de funciones fórmicas. "LA LÓGICA DE ALTO NIVEL COMIENZA AQUÍ" marca el final del código del Marco.

 //  FORMIC FRAMEWORK  //
// Version 6.1.10     //
const WHITE = 1;
const QUEEN = 5;
const CENTER = 4;
const HERE = view[CENTER];
const ME = HERE.ant;
const ORTHOGONALS = [1, 3, 5, 7];
const DIAGONALS = [0, 2, 6, 8];
const DIAGONALS_ORTHOGONALS = [0, 2, 6, 8, 1, 3, 5, 7];
const DIRECTIONS = [0, 1, 2, 3, 5, 6, 7, 8];
const CLOCKWISE_DIRECTIONS = [0, 1, 2, 5, 8, 7, 6, 3];
const CELLS = [0, 1, 2, 3, 4, 5, 6, 7, 8];
const ROTATIONS = [
  [0, 1, 2,
   3, 4, 5,
   6, 7, 8],

  [6, 3, 0,
   7, 4, 1,
   8, 5, 2],

  [8, 7, 6,
   5, 4, 3,
   2, 1, 0],

  [2, 5, 8,
   1, 4, 7,
   0, 3, 6]
];
const NEIGHBORS = [
  [1, 4, 3],
  [2, 5, 4, 3, 0],
  [5, 4, 1],
  [0, 1, 4, 7, 6],
  [0, 1, 2, 5, 8, 7, 6, 3],
  [8, 7, 4, 1, 2],
  [3, 4, 7],
  [6, 3, 4, 5, 8],
  [7, 4, 5]
];
const HORIZONTAL_FLIP = [2, 1, 0, 5, 4, 3, 8, 7, 6];
const VERTICAL_FLIP = [6, 7, 8, 3, 4, 5, 0, 1, 2];

const DEBUG_MODE = false;
function dump() {
  if (DEBUG_MODE) {
    throw "dump() not implemented";
  }
}
function log(...args) {
  if (DEBUG_MODE) {
    console.log(...args);
  }
}
function error(...args) {
  log("Transformed view state:", view);
  log(...args);
  throw "A critical error has occurred!";
}

function createArray(func, length) {
  const arr = [];
  for (let i = 0; i < length; i++) {
    arr.push(func(i, arr));
  }
  return arr;
}

class Test {
  run(cell) {
    error("No run method defined for this instance of Test:", this);
  }
  find(cells = CELLS) {
    return cells.find((c) => this.run(c));
  }
  findIndex(cells = CELLS) {
    return cells.findIndex((c) => this.run(c));
  }
  filter(cells = CELLS) {
    return cells.filter((c) => this.run(c));
  }
  every(cells = CELLS) {
    return cells.every((c) => this.run(c));
  }
  some(cells = CELLS) {
    return cells.some((c) => this.run(c));
  }
  count(cells = CELLS) {
    return this.filter(cells).length;
  }
  invert() {
    return new InverseTest(this);
  }
  and(test) {
    return new EveryTest(this, test);
  }
  or(test) {
    return new SomeTest(this, test);
  }
}

class InverseTest extends Test {
  constructor(test) {
    super();
    this.test = test;
  }
  run(cell) {
    return !this.test.run(cell);
  }
  invert() {
    return this.test;
  }
}

class CombinedTest extends Test {
  constructor(...tests) {
    super();
    this.tests = tests;
  }
  append(test) {
    this.tests.push(test);
    return this;
  }
}
class EveryTest extends CombinedTest {
  run(cell) {
    return this.tests.every((test) => test.run(cell));
  }
  and(test) {
    return this.append(test);
  }
}
class SomeTest extends CombinedTest {
  run(cell) {
    return this.tests.some((test) => test.run(cell));
  }
  or(test) {
    return this.append(test);
  }
}

class ColorTest extends Test {
  constructor(color) {
    super();
    this.color = color;
  }
  run(cell) {
    return view[cell].color === this.color;
  }
}
class ColorBandTest extends SomeTest {
  constructor(colorBand) {
    super(...colorBand.map((color) => new ColorTest(color)));
  }
}

class FoodTest extends Test {
  constructor(hasFood = true) {
    super();
    this.food = hasFood ? 1 : 0;
  }
  run(cell) {
    return view[cell].food === this.food;
  }
}

class AntTest extends Test {
  constructor(friend, type, food) {
    super();
    this.friend = friend;
    this.type = type;
    this.food = food;
  }
  run(cell) {
    const ant = view[cell].ant;
    return ant !== null && (this.type === undefined || ant.type === this.type) && (this.friend === undefined || ant.friend === this.friend) && (this.food === undefined || (this.food ? ant.food > 0 : ant.food === 0));
  }
}

class NeighborTest extends Test {
  constructor(test) {
    super();
    this.test = test;
  }
  run(cell) {
    return this.test.some(NEIGHBORS[cell]);
  }
}

class MatchTest extends Test {
  constructor(matches) {
    super();
    this.matches = matches;
  }
  run(cell) {
    return this.matches[cell];
  }
}

class CustomTest extends Test {
  constructor(func, ...args) {
    super();
    this.func = func;
    this.args = args;
  }
  run(cell) {
    return this.func(cell, ...this.args);
  }
}

class Action {
  constructor(cell, test) {
    this.cell = cell;
    this.test = test;
  }

  valid() {
    return this.cell >= 0 && this.cell < 9 && (!this.test || this.test.run(this.cell));
  }
  attempt() {
    return this.valid() ? this : null;
  }
  static tryAll(...actions) {
    return actions.find((action) => action instanceof this && action.valid()) || null;
  }
}
class Move extends Action {
  constructor(cell, test) {
    super(cell, test);
  }

  valid() {
    return super.valid() && view[this.cell].ant === null && (view[this.cell].food === 0 || ME.food === 0 || ME.type === QUEEN);
  }
  static many(cells, test) {
    return cells.map((cell) => new this(cell, test));
  }
}
class Paint extends Action {
  constructor(cell, color, test) {
    super(cell, test);
    this.color = color;
  }

  valid() {
    return super.valid() && view[this.cell].color !== this.color && this.color >= 1 && this.color <= 8;
  }
  static many(cells, colors, test) {
    return cells.map((cell, i) => new this(cell, colors[i % colors.length], test));
  }
}
class Spawn extends Action {
  constructor(cell, type, test) {
    super(cell, test);
    this.type = type;
  }

  valid() {
    return super.valid() && view[this.cell].ant === null && view[this.cell].food === 0 && ME.food > 0 && ME.type === QUEEN && this.type >= 1 && this.type <= 4;
  }
  static many(cells, type, test) {
    return cells.map((cell, i) => new this(cell, type, test));
  }
}
class NOP extends Action {
  constructor() {
    super(CENTER);
  }

  valid() {
    return true;
  }
}

class Context {
  apply(func, ...args) {
    const hiddenView = view;
    if (this.viewTranslator) {
      view = this.viewTranslator(hiddenView);
    }

    let output = func(...args);
    if (output instanceof Action && this.outputTranslator) {
      this.outputTranslator(output);
    }

    view = hiddenView;
    return output;
  }
}

class TranslationContext extends Context {
  constructor(translationArray) {
    super();
    this.translationArray = translationArray;
  }

  viewTranslator(oldView) {
    const newView = [];
    for (let i = 0; i < 9; i++) {
      newView.push(oldView[this.translationArray[i]]);
    }
    return newView;
  }

  outputTranslator(out) {
    out.cell = this.translationArray[out.cell];
  }
}
class RotationContext extends TranslationContext {
  constructor(orientation) {
    super(ROTATIONS[orientation]);
    this.orientation = orientation;
  }
}
class OffsetContext extends TranslationContext {
  constructor(centerCell) {
    throw "OffsetContext not implemented";
  }
}
class HorizontalReflectionContext extends TranslationContext {
  constructor() {
    super(HORIZONTAL_FLIP);
  }
}
class VerticalReflectionContext extends TranslationContext {
  constructor() {
    super(VERTICAL_FLIP);
  }
}

class ColorMapContext extends Context {
  constructor(map, unmap) {
    super();
    this.map = map;
    this.unmap = unmap;
  }

  viewTranslator(oldView) {
    return oldView.map((cell) => ({color: this.map[cell.color - 1], food: cell.food, ant: cell.ant}));
  }

  outputTranslator(out) {
    out.color = this.unmap[out.color - 1];
  }
}

class XY {
  constructor(x = 0, y = 0) {
    this.x = x;
    this.y = y;
  }

  static fromTuples(...xyTuples) {
    return xyTuples.map((xy) => new this(xy[0], xy[1]));
  }
}

class WrapProperties {
  constructor(horizontal, vertical, size, wrapOffsets) {
    this.horizontal = !!horizontal;
    this.vertical = !!vertical;
    this.size = size;
    this.wrapOffsets = wrapOffsets || {};
  }
}

class ScoredTest {
  constructor(test, score = 1) {
    this.test = test;
    this.score = score;
  }

  run(cell) {
    return this.test.run(cell) ? this.score : 0;
  }
}

class Environment {
  constructor(tests, wrapping) {
    this.tests = tests.map((test) => test instanceof Test ? new ScoredTest(test) : test);
    this.wrapping = wrapping;
  }

  at(x, y) {
    const w = this.wrapping;
    while ((w.horizontal && (x < 0 || x >= w.size.x)) || (w.vertical && (y < 0 || y >= w.size.y))) {
      if (w.horizontal) {
        if (x < 0) {
          x += w.size.x;
          y += w.wrapOffsets.left || 0;
        } else if (x >= w.size.x) {
          x -= w.size.x;
          y += w.wrapOffsets.right || 0;
        }
      }

      if (w.vertical) {
        if (y < 0) {
          y += w.size.y;
          x += w.wrapOffsets.up || 0;
        } else if (y >= w.size.y) {
          y -= w.size.y;
          x += w.wrapOffsets.down || 0;
        }
      }
    }

    if ((!w.horizontal || (x >= 0 && x < w.size.x)) && (!w.vertical || (y >= 0 || y < w.size.y))) {
      return this.tests[x + y * w.size.x];
    } else {
      return null;
    }
  }
  around(x, y) {
    const arr = [];
    for (let oy = -1; oy <= 1; oy++) {
      for (let ox = -1; ox <= 1; ox++) {
        arr.push(this.at(x + ox, y + oy));
      }
    }
    return arr;
  }

  detect(...positions) {
    return createArray((i) => new RotationContext(i), 4).reduce((best, context) => {
      const next = context.apply(() => {
        return positions.reduce((best, pos, i) => {
          let score = 0;
          const matches = this.around(pos.x, pos.y).map((test, i) => {
            if (test && (test.test instanceof Test)) {
              const result = test.run(i);
              if (result) {
                score += result;
                return true;
              } else {
                return false;
              }
            } else {
              return null;
            }
          });
          if (score > best.score) {
            return {position: pos, positionIndex: i, orientation: context.orientation, environment: this, matches: matches, score: score, confidence: score - best.score};
          } else {
            best.confidence = Math.min(best.score - score, best.confidence);
            return best;
          }
        }, {position: positions[0], positionIndex: 0, orientation: 0, environment: this, matches: [], score: 0, confidence: 0});
      });
      if (next.score > best.score) {
        next.confidence = next.score - best.score;
        return next;
      } else {
        best.confidence = Math.min(best.score - next.score, best.confidence);
        return best;
      }
    }, {position: positions[0], positionIndex: 0, orientation: 0, environment: this, matches: [], score: 0, confidence: 0});
  }

  static chooseBest(...detectionResults) {
    const r = detectionResults.reduce((best, result, i) => {
      if (result.score > best.score) {
        result.index = i;
        result.confidence = result.score - best.score;
        return result;
      } else {
        best.confidence = Math.min(best.score - result.score, best.confidence);
        return best;
      }
    });
    r.index = r.index || 0;
    return r;
  }
}

class ColoredEnvironment extends Environment {
  constructor(colors, wrapping) {
    super(colors.map((color) => new ColorTest(color)), wrapping);
  }

  getPainter(detectionResult) {
    return new (class Painter {
      constructor(loc) {
        this.pos = loc.position;
        this.matches = loc.matches;
        this.colors = loc.environment.around(this.pos.x, this.pos.y).map((test) => test && test.test instanceof ColorTest ? test.test.color : null);
        this.test = new MatchTest(loc.matches).invert();
        this.orient = loc.orientation;
      }

      paint(...cells) {
        return cells.map((cell) => new Paint(cell, this.colors[cell], this.test));
      }
      cleanup(eraseColor, eraseTargets, ...cells) {
        const eraseQual = this.test.and(new ColorBandTest(eraseTargets));
        return cells.map((cell) => new Paint(cell, eraseColor, eraseQual));
      }
    })(detectionResult);
  }
}

// HIGH-LEVEL LOGIC STARTS HERE //
const PARTNER = 1;

// TODO: Do a 180 when 3 workers are in front of us
function logicOrthogonal(frontC, sideC, backC, backCells, moveCells) {
  const a = [frontC, sideC, backC, backCells, moveCells];
  const f = new FoodTest;
  return Action.tryAll(
    ...Move.many([frontC, sideC], f),
    f.some(backCells) ? new Move(backC) : null,
    ...Move.many(moveCells),
    new NOP
  );
}
function logicDiagonal(adjacentC) {
  return Action.tryAll(...Move.many(adjacentC), new NOP);
}
function logic(partnerTest, partnerOrthC, partnerDiagC, frontC, sideC, backC, backCells, moveCells, adjacentC) {
  function detectEnv(c) {
    return new Environment(createArray((i) => i === c ? partnerTest : undefined, 9), new WrapProperties(false, false, new XY(3, 3), null)).detect(new XY(1, 1));
  }
  const orth = detectEnv(partnerOrthC);
  const diag = detectEnv(partnerDiagC);
  return orth.score === 1 ? new RotationContext(orth.orientation).apply(() => logicOrthogonal(frontC, sideC, backC, backCells, moveCells)) : 
    diag.score === 1 ? new RotationContext(diag.orientation).apply(() => logicDiagonal(adjacentC)) : 
    error("How did we get here?");
}

if (ME.type === QUEEN) {
  const partner = new AntTest(true, PARTNER);
  if (partner.some(DIRECTIONS)) {
    return logic(partner, 5, 8, 2, 1, 7, [0, 3, 6, 7], [2, 7, 1, 8], [5, 7]);
  } else {
    const COLOR = 5;
    const bgTest = new ColorTest(WHITE);
    if (bgTest.run(CENTER)) {
      return new Paint(CENTER, COLOR).attempt() || error("Something went terribly wrong while painting own cell");
    }

    const food = new FoodTest().find(DIRECTIONS);
    if (food !== undefined) {
      return new Move(food);
    }

    const det = new ColoredEnvironment([
      WHITE, WHITE, WHITE, 
      WHITE, undefined, undefined,
      WHITE, undefined, COLOR
    ], new WrapProperties(false, false, new XY(3, 3))).detect(new XY(1, 1));
    return (ME.food > 0 ? Action.tryAll(...Spawn.many(ORTHOGONALS, PARTNER)) : null) ||
      (det.score === 6 ? new RotationContext(det.orientation).apply(() => Action.tryAll(...Move.many([0, 2, 6, 1, 3, 5, 7, 8]))) : null) ||
      Action.tryAll(...Move.many(DIAGONALS_ORTHOGONALS), new NOP);
  }
} else {
  return logic(new AntTest(true, QUEEN), 1, 0, 2, 5, 3, [8, 7, 6, 3], [2, 3, 5, 0], [1, 3]);
}

Explicación

Esta es una hormiga tan simple que me sorprende que nadie haya pensado en eso ...

Esta hormiga produce un compañero después de recolectar 1 comida con el enfoque clásico. Después de esto, la Reina y el Compañero viajan en línea recta y diagonal a la mayor velocidad posible (una celda por turno) usando la posición del otro. No pintan ninguna celda. Examinan un promedio de 6 celdas por turno , obteniendo un total teórico de 180 alimentos por juego en un mapa vacío, lo que logran de manera constante.

¡Ya salió la versión 2.0+! Incluye comentarios en código que explican los detalles de esta entrada.


Registro de cambios

Version 1.0

  • Versión inicial

Versión 2.0

  • maniobras completamente renovadas
    • ahora utiliza adyacencia diagonal para más opciones de movimiento
    • comportamiento cambiado para agarrar comida
      • la tasa promedio de recolección permanece sin cambios, pero el sistema es más robusto
      • evita el estancamiento cuando hay más de un alimento presente, lo que aumenta significativamente la consistencia
      • reducido el índice de cambio de dirección
      • puede agarrar comida detrás de sí mismo
    • comportamiento cambiado para evitar obstáculos
      • reduce la posibilidad de un punto muerto, aumentando aún más la consistencia
      • no gira en U a menos que sea absolutamente necesario, aumentando el área total promedio cubierta
  • código limpiado
  • comentarios agregados

Versión 2.1

  • resuelto un punto muerto exótico

Version 2.2

  • resuelto otro punto muerto exótico

Versión 2.3

  • evitar enemigos ahora es significativamente más efectivo

Version 2.3.1

  • evitar enemigos es un poco más efectivo aún

Versión 2.4

  • Marco Fórmico actualizado a la versión 5.0.4 (desde 1.0)
  • código refactorizado (comportamiento casi idéntico a la versión 2.3.1)

Versión 2.5

  • Marco Fórmico actualizado a la versión 6.1.10 (desde 5.0.4)
  • código refactorizado para que coincida con el nuevo estándar de codificación (comportamiento casi idéntico a la versión 2.4)
  • comentarios de código eliminado :(

Versión 2.5.0.1

  • correcciones menores

Versión 2.5.0.2

  • Se corrigió el error de descalificación con la ayuda de dzaima en el chat

Versión 2.5.0.3

  • depuración deshabilitada

8

Borrador de rastro

var i, j
var orthogonals = [1, 3, 7, 5]  // These are the non-diagonal cells
if(view[4].ant.type == 5) {
//Queen moves straight to get food
// Color own cell if white
if (view[4].color != 6) { 
    return {cell:4, color:6}
}
var specified = null;
// Otherwise move to a white cell opposite a colored cell
for (i=0; i<4; i++) {
    j = (i+2) % 4
    if (view[orthogonals[i]].color !== 6 &&
        view[orthogonals[j]].color == 6 && !view[orthogonals[i]].ant) {
        specified = {cell:orthogonals[i]}
    } else if (view[4].ant.food < 8 && view[4].ant.food && view[orthogonals[i]].color !== 6 && !view[orthogonals[i]].ant && !view[orthogonals[i]].food && view[orthogonals[i]].color !== 1) {
        //create workers once I encounter a trail
        return {cell:orthogonals[i], type:(view[orthogonals[i]].color%4)+1};
    } else if (view[orthogonals[i]].food) {
        return {cell:orthogonals[i]}
    }
}
if(specified) { return specified; }
// Otherwise move to one of the vertical or horizontal cells if not occupied
for (i=1; i<9; i+=2) {
    if (!view[i].ant) {
        return {cell:i}
    }
}

// Otherwise move to one of the diagonal cells if not occupied
for (i=0; i<9; i+=2) {
    if (!view[i].ant) {
        return {cell:i};
    }
}

// Otherwise don't move at all
return {cell:4};
}
//workers erase their trails
//Follow the trail to erase
var move, color, enemyAnt = false;
var nearbyColoredCells = 0;
if(view[4].color != 1){
   color =  {cell:4, color:1}
}
for(i=0;i<9;i++) {
    if(i != 4 && view[i].color != 1 && !view[i].ant && (!view[4].ant.food || !view[i].food) && (!move || (view[i].color % 4 + 1) == view[4].type || (view[move.cell].color == 6 && view[i].color != 6))) {
        move = {cell:i}
    }
    if(view[i].ant && view[i].ant.friend && view[i].ant.type == 5){
       return {cell:4}
    }
    if(i != 4 && view[i].color != 1 && view[i].color != 6){
        nearbyColoredCells += 1;
    }
    if(view[i].ant && !view[i].ant.friend) {
         enemyAnt = i;
    }
}
if(nearbyColoredCells <= 1 || enemyAnt > 1) {
    // Either I'm following a standard trail or there are enemy workers; possibly decolor own cell and move
    if(color && (!move || !enemyAnt)) { return color; }
    if(move) { return move; }
} else if (nearbyColoredCells > 1){
   for (i = 0; i < 9; i++){
       if(view[i].color != 1){ return {cell:i, color:1} }
   }
}
// uh-oh, our trail ended or we got lost -- random walk
// find a safe place to move
for (i=0;i<9;i+=1) {
    if (!view[i].ant && (!view[4].ant.food || !view[i].food)) {
       return {cell:i}
    }
}
return {cell:4}

Esta hormiga, aunque moderadamente buena para encontrar comida (pero no tan buena como las hormigas romanas o las hormigas forenses) intenta confundir a otras hormigas. Lo hace creando un trabajador cuyo único propósito es borrar los rastros cada vez que se encuentra con un camino cruzado de color. Los trabajadores que llegan al final de su camino caminan inútilmente al azar hasta que encuentran otro camino. Para preservar los alimentos y posiblemente mejorar, esta hormiga cambiará las estrategias a una de no producir más trabajadores una vez que llegue a ocho alimentos, lo que debería estar en el juego tardío solo porque tiende a requerir un combo específico para preservar los alimentos y no solo úsalo todo.


1
¡Sabotaje! 😮 ¿Qué te hicieron los romanos?
Dave

Esta entrada se está divirtiendo mucho jugando con los agujeros negros ...
Frenzy Li

2
@Dave Presentaron una entrada competitiva para este desafío ...
pppery

2
Yah, este reproductor veces pierde todo su alimento, ya que se confunde por las hormigas romanos
pppery

2
Segunda actualización: ya no acapara comida en principio, en lugar comienza a recoger los alimentos en lugar de sabotear tarde
pppery

8

Hyperwave

Todas mis respuestas contendrán una lógica similar de bajo nivel en forma del Marco de funciones fórmicas. "LA LÓGICA DE ALTO NIVEL COMIENZA AQUÍ" marca el final del código del Marco.

 //  FORMIC FRAMEWORK  //
// Version 6.1.10     //
const WHITE = 1;
const QUEEN = 5;
const CENTER = 4;
const HERE = view[CENTER];
const ME = HERE.ant;
const ORTHOGONALS = [1, 3, 5, 7];
const DIAGONALS = [0, 2, 6, 8];
const DIAGONALS_ORTHOGONALS = [0, 2, 6, 8, 1, 3, 5, 7];
const DIRECTIONS = [0, 1, 2, 3, 5, 6, 7, 8];
const CLOCKWISE_DIRECTIONS = [0, 1, 2, 5, 8, 7, 6, 3];
const CELLS = [0, 1, 2, 3, 4, 5, 6, 7, 8];
const ROTATIONS = [
  [0, 1, 2,
   3, 4, 5,
   6, 7, 8],

  [6, 3, 0,
   7, 4, 1,
   8, 5, 2],

  [8, 7, 6,
   5, 4, 3,
   2, 1, 0],

  [2, 5, 8,
   1, 4, 7,
   0, 3, 6]
];
const NEIGHBORS = [
  [1, 4, 3],
  [2, 5, 4, 3, 0],
  [5, 4, 1],
  [0, 1, 4, 7, 6],
  [0, 1, 2, 5, 8, 7, 6, 3],
  [8, 7, 4, 1, 2],
  [3, 4, 7],
  [6, 3, 4, 5, 8],
  [7, 4, 5]
];
const HORIZONTAL_FLIP = [2, 1, 0, 5, 4, 3, 8, 7, 6];
const VERTICAL_FLIP = [6, 7, 8, 3, 4, 5, 0, 1, 2];

const DEBUG_MODE = true;
function dump() {
  if (DEBUG_MODE) {
    throw "dump() not implemented";
  }
}
function log(...args) {
  if (DEBUG_MODE) {
    console.log(...args);
  }
}
function error(...args) {
  log("Transformed view state:", view);
  log(...args);
  throw "A critical error has occurred!";
}

function createArray(func, length) {
  const arr = [];
  for (let i = 0; i < length; i++) {
    arr.push(func(i, arr));
  }
  return arr;
}

class Test {
  run(cell) {
    error("No run method defined for this instance of Test:", this);
  }
  find(cells = CELLS) {
    return cells.find((c) => this.run(c));
  }
  findIndex(cells = CELLS) {
    return cells.findIndex((c) => this.run(c));
  }
  filter(cells = CELLS) {
    return cells.filter((c) => this.run(c));
  }
  every(cells = CELLS) {
    return cells.every((c) => this.run(c));
  }
  some(cells = CELLS) {
    return cells.some((c) => this.run(c));
  }
  count(cells = CELLS) {
    return this.filter(cells).length;
  }
  invert() {
    return new InverseTest(this);
  }
  and(test) {
    return new EveryTest(this, test);
  }
  or(test) {
    return new SomeTest(this, test);
  }
}

class InverseTest extends Test {
  constructor(test) {
    super();
    this.test = test;
  }
  run(cell) {
    return !this.test.run(cell);
  }
  invert() {
    return this.test;
  }
}

class CombinedTest extends Test {
  constructor(...tests) {
    super();
    this.tests = tests;
  }
  append(test) {
    this.tests.push(test);
    return this;
  }
}
class EveryTest extends CombinedTest {
  run(cell) {
    return this.tests.every((test) => test.run(cell));
  }
  and(test) {
    return this.append(test);
  }
}
class SomeTest extends CombinedTest {
  run(cell) {
    return this.tests.some((test) => test.run(cell));
  }
  or(test) {
    return this.append(test);
  }
}

class ColorTest extends Test {
  constructor(color) {
    super();
    this.color = color;
  }
  run(cell) {
    return view[cell].color === this.color;
  }
}
class ColorBandTest extends SomeTest {
  constructor(colorBand) {
    super(...colorBand.map((color) => new ColorTest(color)));
  }
}

class FoodTest extends Test {
  constructor(hasFood = true) {
    super();
    this.food = hasFood ? 1 : 0;
  }
  run(cell) {
    return view[cell].food === this.food;
  }
}

class AntTest extends Test {
  constructor(friend, type, food) {
    super();
    this.friend = friend;
    this.type = type;
    this.food = food;
  }
  run(cell) {
    const ant = view[cell].ant;
    return ant !== null && (this.type === undefined || ant.type === this.type) && (this.friend === undefined || ant.friend === this.friend) && (this.food === undefined || (this.food ? ant.food > 0 : ant.food === 0));
  }
}

class NeighborTest extends Test {
  constructor(test) {
    super();
    this.test = test;
  }
  run(cell) {
    return this.test.some(NEIGHBORS[cell]);
  }
}

class MatchTest extends Test {
  constructor(matches) {
    super();
    this.matches = matches;
  }
  run(cell) {
    return this.matches[cell];
  }
}

class CustomTest extends Test {
  constructor(func, ...args) {
    super();
    this.func = func;
    this.args = args;
  }
  run(cell) {
    return this.func(cell, ...this.args);
  }
}

class Action {
  constructor(cell, test) {
    this.cell = cell;
    this.test = test;
  }

  valid() {
    return this.cell >= 0 && this.cell < 9 && (!this.test || this.test.run(this.cell));
  }
  attempt() {
    return this.valid() ? this : null;
  }
  static tryAll(...actions) {
    return actions.find((action) => action instanceof this && action.valid()) || null;
  }
}
class Move extends Action {
  constructor(cell, test) {
    super(cell, test);
  }

  valid() {
    return super.valid() && view[this.cell].ant === null && (view[this.cell].food === 0 || ME.food === 0 || ME.type === QUEEN);
  }
  static many(cells, test) {
    return cells.map((cell) => new this(cell, test));
  }
}
class Paint extends Action {
  constructor(cell, color, test) {
    super(cell, test);
    this.color = color;
  }

  valid() {
    return super.valid() && view[this.cell].color !== this.color && this.color >= 1 && this.color <= 8;
  }
  static many(cells, colors, test) {
    return cells.map((cell, i) => new this(cell, colors[i % colors.length], test));
  }
}
class Spawn extends Action {
  constructor(cell, type, test) {
    super(cell, test);
    this.type = type;
  }

  valid() {
    return super.valid() && view[this.cell].ant === null && view[this.cell].food === 0 && ME.food > 0 && ME.type === QUEEN && this.type >= 1 && this.type <= 4;
  }
  static many(cells, type, test) {
    return cells.map((cell, i) => new this(cell, type, test));
  }
}
class NOP extends Action {
  constructor() {
    super(CENTER);
  }

  valid() {
    return true;
  }
}

class Context {
  apply(func, ...args) {
    const hiddenView = view;
    if (this.viewTranslator) {
      view = this.viewTranslator(hiddenView);
    }

    let output = func(...args);
    if (output instanceof Action && this.outputTranslator) {
      this.outputTranslator(output);
    }

    view = hiddenView;
    return output;
  }
}

class TranslationContext extends Context {
  constructor(translationArray) {
    super();
    this.translationArray = translationArray;
  }

  viewTranslator(oldView) {
    const newView = [];
    for (let i = 0; i < 9; i++) {
      newView.push(oldView[this.translationArray[i]]);
    }
    return newView;
  }

  outputTranslator(out) {
    out.cell = this.translationArray[out.cell];
  }
}
class RotationContext extends TranslationContext {
  constructor(orientation) {
    super(ROTATIONS[orientation]);
    this.orientation = orientation;
  }
}
class OffsetContext extends TranslationContext {
  constructor(centerCell) {
    throw "OffsetContext not implemented";
  }
}
class HorizontalReflectionContext extends TranslationContext {
  constructor() {
    super(HORIZONTAL_FLIP);
  }
}
class VerticalReflectionContext extends TranslationContext {
  constructor() {
    super(VERTICAL_FLIP);
  }
}

class ColorMapContext extends Context {
  constructor(map, unmap) {
    super();
    this.map = map;
    this.unmap = unmap;
  }

  viewTranslator(oldView) {
    return oldView.map((cell) => ({color: this.map[cell.color - 1], food: cell.food, ant: cell.ant}));
  }

  outputTranslator(out) {
    out.color = this.unmap[out.color - 1];
  }
}

class XY {
  constructor(x = 0, y = 0) {
    this.x = x;
    this.y = y;
  }

  static fromTuples(...xyTuples) {
    return xyTuples.map((xy) => new this(xy[0], xy[1]));
  }
}

class WrapProperties {
  constructor(horizontal, vertical, size, wrapOffsets) {
    this.horizontal = !!horizontal;
    this.vertical = !!vertical;
    this.size = size;
    this.wrapOffsets = wrapOffsets || {};
  }
}

class ScoredTest {
  constructor(test, score = 1) {
    this.test = test;
    this.score = score;
  }

  run(cell) {
    return this.test.run(cell) ? this.score : 0;
  }
}

class Environment {
  constructor(tests, wrapping) {
    this.tests = tests.map((test) => test instanceof Test ? new ScoredTest(test) : test);
    this.wrapping = wrapping;
  }

  at(x, y) {
    const w = this.wrapping;
    while ((w.horizontal && (x < 0 || x >= w.size.x)) || (w.vertical && (y < 0 || y >= w.size.y))) {
      if (w.horizontal) {
        if (x < 0) {
          x += w.size.x;
          y += w.wrapOffsets.left || 0;
        } else if (x >= w.size.x) {
          x -= w.size.x;
          y += w.wrapOffsets.right || 0;
        }
      }

      if (w.vertical) {
        if (y < 0) {
          y += w.size.y;
          x += w.wrapOffsets.up || 0;
        } else if (y >= w.size.y) {
          y -= w.size.y;
          x += w.wrapOffsets.down || 0;
        }
      }
    }

    if ((!w.horizontal || (x >= 0 && x < w.size.x)) && (!w.vertical || (y >= 0 || y < w.size.y))) {
      return this.tests[x + y * w.size.x];
    } else {
      return null;
    }
  }
  around(x, y) {
    const arr = [];
    for (let oy = -1; oy <= 1; oy++) {
      for (let ox = -1; ox <= 1; ox++) {
        arr.push(this.at(x + ox, y + oy));
      }
    }
    return arr;
  }

  detect(...positions) {
    return createArray((i) => new RotationContext(i), 4).reduce((best, context) => {
      const next = context.apply(() => {
        return positions.reduce((best, pos, i) => {
          let score = 0;
          const matches = this.around(pos.x, pos.y).map((test, i) => {
            if (test && (test.test instanceof Test)) {
              const result = test.run(i);
              if (result) {
                score += result;
                return true;
              } else {
                return false;
              }
            } else {
              return null;
            }
          });
          if (score > best.score) {
            return {position: pos, positionIndex: i, orientation: context.orientation, environment: this, matches: matches, score: score, confidence: score - best.score};
          } else {
            best.confidence = Math.min(best.score - score, best.confidence);
            return best;
          }
        }, {position: positions[0], positionIndex: 0, orientation: 0, environment: this, matches: [], score: 0, confidence: 0});
      });
      if (next.score > best.score) {
        next.confidence = next.score - best.score;
        return next;
      } else {
        best.confidence = Math.min(best.score - next.score, best.confidence);
        return best;
      }
    }, {position: positions[0], positionIndex: 0, orientation: 0, environment: this, matches: [], score: 0, confidence: 0});
  }

  static chooseBest(...detectionResults) {
    const r = detectionResults.reduce((best, result, i) => {
      if (result.score > best.score) {
        result.index = i;
        result.confidence = result.score - best.score;
        return result;
      } else {
        best.confidence = Math.min(best.score - result.score, best.confidence);
        return best;
      }
    });
    r.index = r.index || 0;
    return r;
  }
}

class ColoredEnvironment extends Environment {
  constructor(colors, wrapping) {
    super(colors.map((color) => new ColorTest(color)), wrapping);
  }

  getPainter(detectionResult) {
    return new (class Painter {
      constructor(loc) {
        this.pos = loc.position;
        this.matches = loc.matches;
        this.colors = loc.environment.around(this.pos.x, this.pos.y).map((test) => test && test.test instanceof ColorTest ? test.test.color : null);
        this.test = new MatchTest(loc.matches).invert();
        this.orient = loc.orientation;
      }

      paint(...cells) {
        return cells.map((cell) => new Paint(cell, this.colors[cell], this.test));
      }
      cleanup(eraseColor, eraseTargets, ...cells) {
        const eraseQual = this.test.and(new ColorBandTest(eraseTargets));
        return cells.map((cell) => new Paint(cell, eraseColor, eraseQual));
      }
    })(detectionResult);
  }
}

// HIGH-LEVEL LOGIC STARTS HERE //
// TODO:
// - more food checkpoints (no disadvantages because it's illogical for WFW to "premanently lose" workers)
// - randomly shifting 1 up (5% chance? watch out for hoarding stealing your randomness!)
// - randomly skip painting a tiny bit of local cells (prevent deadlock against ants outside of view)
// - escape routine when situation is dire (many workers near the queen/partner)

const COLOR_BAND = [4, 7, 3, 2, 8];

const PARTNER = 2;
const WORKER = 1;

const START_FOOD = 6;
const MIN_CONFIDENCE = 2;

const PATTERN = new ColoredEnvironment(COLOR_BAND, new WrapProperties(true, true, new XY(COLOR_BAND.length, 1), {up: 2, down: -2})).detect(...createArray((i) => new XY(i, 0), COLOR_BAND.length));

function checkpoint(val, tolerance) {
  return ME.food >= val - tolerance && ME.food <= val;
}
function shouldSpawn() {
  return PATTERN.orientation === 0 && PATTERN.positionIndex % 3 === 0 &&
    ME.food < 400 &&
    (ME.food < 75 || PATTERN.positionIndex === 0) && 
    !checkpoint(300, 4) &&
    !checkpoint(200, 5) &&
    !checkpoint(160, 3) &&
    !checkpoint(130, 2) &&
    !checkpoint(100, 2) &&
    !checkpoint(75, 2) &&
    !checkpoint(50, 2) &&
    !checkpoint(35, 1) &&
    !checkpoint(20, 1) &&
    !checkpoint(10, 0);
}

function lightspeed() {
  // TODO: Do a 180 when 3 workers are in front of us
  function logicOrthogonal(frontC, sideC, backC, backCells, moveCells) {
    const a = [frontC, sideC, backC, backCells, moveCells];
    const f = new FoodTest;
    return Action.tryAll(
      ...Move.many([frontC, sideC], f),
      f.some(backCells) ? new Move(backC) : null,
      ...Move.many(moveCells),
      new NOP
    );
  }
  function logicDiagonal(adjacentC) {
    return Action.tryAll(...Move.many(adjacentC), new NOP);
  }
  function logic(partnerTest, partnerOrthC, partnerDiagC, frontC, sideC, backC, backCells, moveCells, adjacentC) {
    function detectEnv(c) {
      return new Environment(createArray((i) => i === c ? partnerTest : undefined, 9), new WrapProperties(false, false, new XY(3, 3), null)).detect(new XY(1, 1));
    }
    const orth = detectEnv(partnerOrthC);
    const diag = detectEnv(partnerDiagC);
    return orth.score === 1 ? new RotationContext(orth.orientation).apply(() => logicOrthogonal(frontC, sideC, backC, backCells, moveCells)) : 
      diag.score === 1 ? new RotationContext(diag.orientation).apply(() => logicDiagonal(adjacentC)) : 
      error("How did we get here?");
  }

  if (ME.type === QUEEN) {
    const partner = new AntTest(true, PARTNER);
    if (partner.some(DIRECTIONS)) {
      return logic(partner, 5, 8, 2, 1, 7, [0, 3, 6, 7], [2, 7, 1, 8], [5, 7]);
    } else {
      const COLOR = 5;
      const bgTest = new ColorTest(WHITE);
      if (bgTest.run(CENTER)) {
        return new Paint(CENTER, COLOR).attempt() || error("Something went terribly wrong while painting own cell");
      }

      const food = new FoodTest().find(DIRECTIONS);
      if (food !== undefined) {
        return new Move(food);
      }

      const det = new ColoredEnvironment([
        WHITE, WHITE, WHITE, 
        WHITE, undefined, undefined,
        WHITE, undefined, COLOR
      ], new WrapProperties(false, false, new XY(3, 3))).detect(new XY(1, 1));
      return (ME.food > 0 ? Action.tryAll(...Spawn.many(ORTHOGONALS, PARTNER)) : null) ||
        (det.score === 6 ? new RotationContext(det.orientation).apply(() => Action.tryAll(...Move.many([0, 2, 6, 1, 3, 5, 7, 8]))) : null) ||
        Action.tryAll(...Move.many(DIAGONALS_ORTHOGONALS), new NOP);
    }
  } else {
    return logic(new AntTest(true, QUEEN), 1, 0, 2, 5, 3, [8, 7, 6, 3], [2, 3, 5, 0], [1, 3]);
  }
}

function queen() {
  const partnerTest = new AntTest(true, PARTNER);
  if (PATTERN.confidence < MIN_CONFIDENCE && (ME.food < START_FOOD || partnerTest.some(DIAGONALS))) return lightspeed();
  return new RotationContext(PATTERN.orientation).apply(() => {
    const partnerCell = new AntTest(true, PARTNER).find(DIRECTIONS);
    const p = PATTERN.environment.getPainter(PATTERN);
    const e = new AntTest(false);
    const enemy = e.some(DIRECTIONS);
    return Action.tryAll(
      ...!PATTERN.matches[8] ? [
        ...!enemy ? [...p.paint(7, 4, 5, 1, 2), ...shouldSpawn() && PATTERN.score === 8 ? Spawn.many([0, 2], WORKER) : []] : [],
        ...partnerCell === 1 ? Move.many(e.run(5) ? [0, 2] : PATTERN.orientation === 1 && PATTERN.positionIndex % 3 === 1 ? [2, 0, 5] : [5, 2, 0]) : 
          partnerCell === 0 ? Move.many(e.run(1) ? [3] : enemy ? [1, 3] : []) :
          partnerCell === 2 ? Move.many(e.run(1) ? [5] : []) :
          []
      ] : [
        ...!enemy ? p.paint(8, 7, 6, 5, 4, 3, 2, 1, 0) : [],
        ...Move.many(partnerCell === 1 ? [2, 0] : partnerCell === 0 ? [1, 3] : partnerCell === 2 && e.run(1) ? [5] : [])
      ],
      new NOP
    )
  });
}
function partner() {
  const queenTest = new AntTest(true, QUEEN)
  const queenCell = queenTest.find(DIRECTIONS);
  if (queenCell === undefined) {
    return new NOP; // TODO: What do we do if we've lost our queen?
  }
  if (PATTERN.confidence < MIN_CONFIDENCE && (view[queenCell].ant.food < START_FOOD || DIAGONALS.includes(queenCell))) return lightspeed();
  return PATTERN.confidence >= MIN_CONFIDENCE ? new RotationContext(PATTERN.orientation).apply(() => {
    const queenCell = queenTest.find(DIRECTIONS);
    const e = new AntTest(false);
    const enemy = e.some(DIRECTIONS);
    return Action.tryAll(
      ...!enemy ? PATTERN.environment.getPainter(PATTERN).paint(...CELLS) : [],
      ...Move.many([
        [1],
        [0, 2],
        [1],
        [0, 1],
        [], // Queen can't be on cell 4 - I'm here, after all!
        [2, 1],
        [3],
        [],
        [5]
      ][queenCell]),
      new NOP
    )
  }) : new NOP;
}
function worker() {
  const m = new MatchTest(PATTERN.matches);
  const n = m.invert();
  const u = new AntTest(true, WORKER, false);
  const l = new AntTest(true, WORKER, true);
  const q = new AntTest(true, QUEEN);
  const pt = new AntTest(true, PARTNER);
  const p = PATTERN.environment.getPainter(PATTERN);
  return new RotationContext(PATTERN.orientation).apply(() => { // TODO: Unique (random?) behavior when confidence low
    if (ME.food === 0) {
      const f = new FoodTest();
      const count = n.count([6, 7, 8]);
      return Action.tryAll(
        ...PATTERN.confidence >= 2 ? p.paint(4, 0, 1, 2) : [],
        //...p.cleanup(WHITE, COLOR_BAND, ...CELLS),
        ...((food) => food !== undefined ? [...p.paint(...NEIGHBORS[food], food), new Move(food)] : [])(f.find(DIRECTIONS)),
        ...q.or(pt).some(DIRECTIONS) || u.some([6, 7, 8, 5, 2]) ? Move.many([0, 1, 3], m) : [],
        ...count > 1 ? p.paint(...[6, 7, 8]) : [],
        ...count === 1 ? [...p.paint(...[3, 5]), ...Move.many([7, 8, 6, 3], m)] : [],
        /*n.run(6) ? new Move(3, m) : null,
        ...n.run(7) ? Move.many([6, 3], m) : [],
        n.run(8) ? new Move(7, m) : null,*/
        n.run(5) ? new Move(5) : null,
        ...Move.many([2, 1, 0, 3], m),
        new NOP
        /*
        ...(PATTERN.confidence >= 2 ? [...(PATTERN.score < 8 || new AntTest(false).some(DIRECTIONS) ? p.paint(4, 3, 0, 1, 2, 5) : []), ...p.cleanup(WHITE, COLOR_BAND, ...CELLS)] : []),
        ...((food) => food !== undefined ? [...p.paint(...NEIGHBORS[food]), new Move(food)] : [])(f.find(DIRECTIONS)), ...(
          w ? Move.many([1, 0, 2]) :
          m.some([4, 3]) ? p.paint(4, 3) :
          m.some([0, 1, 2]) ? Move.many([1, 5]) :
          m.run(6) ? [new Move(3)] :
          m.run(7) ? Move.many([6, 3]) :
          m.run(8) ? [new Move(7)] :
          m.run(5) ? Move.many([5, 7]) :
          Move.many([2, 1, 5])
        )
        new NOP*/
      );
    } else {
      return Action.tryAll(
        //...Move.many(new AntTest(true, WORKER).some([2, 5, 8, 7]) || PATTERN.score < 9 ? [8, 7, 6, 3] : [5, 8, 2], m.invert()),
        ...((test) => createArray((i) => new Move(CLOCKWISE_DIRECTIONS[(6 - i) % 8], test), 5))(new CustomTest((cell, moveTest, blockTest) => {
          const i = CLOCKWISE_DIRECTIONS.findIndex((c) => c === cell);
          return moveTest.run(CLOCKWISE_DIRECTIONS[i]) && blockTest.run(CLOCKWISE_DIRECTIONS[((i - 1) + 8) % 8]);
        }, m, n.or(new AntTest().and(l.invert())))),
        ...Move.many([2, 5, 1, 8], m),
        //...Move.many([...(PATTERN.score === 9 && !new AntTest(true, WORKER).some(DIRECTIONS) ? [2] : []), 5, 8, 7, 6, 3], m),
        new NOP
      );
    }
  });
}

switch (ME.type) {
  case QUEEN: {
    return queen();
  }
  case PARTNER: {
    return partner();
  }
  case WORKER: {
    return worker();
  }
}

He eliminado temporalmente toda la descripción de esta entrada debido a la presión del tiempo. Agregaré una descripción detallada de esta importante actualización en una fecha posterior.


Registro de cambios

Version 1.0

  • Versión inicial

Versión 2.0

  • reemplazó Highway con Hyperwave

Version 2.0.1

  • mecanismo de acumulación de revisión

Este comienza hermoso para ver, luego se vuelve aterrador ...
trichoplax

1
Es hora de promulgar el edicto vampírico contra las carreteras.
Draco18s

Y solo voy a alimentar al Vampiro más a medida que pase el tiempo en @ Draco18s: hay muchas mejoras que deseo hacer.
Alion

3
Primera entrada que he visto, que puede incluir por completo el tablero dentro del tiempo de juego estándar Muy impresionante.
Dave

7

Hormigas romanas Mk.2

Todas mis respuestas comparten el mismo conjunto de funciones auxiliares de bajo nivel. Busque "La lógica de alto nivel comienza aquí" para ver el código específico de esta respuesta.

// == Shared low-level helpers for all solutions ==

var QUEEN = 5;

var WHITE = 1;
var COL_MIN = WHITE;
var COL_LIM = 9;

var CENTRE = 4;

var NOP = {cell: CENTRE};

var DIR_FORWARDS = false;
var DIR_REVERSE = true;
var SIDE_RIGHT = true;
var SIDE_LEFT = false;

function sanity_check(movement) {
  var me = view[CENTRE].ant;
  if(!movement || movement.cell < 0 || movement.cell > 8) {
    return false;
  }
  if(movement.type) {
    if(movement.color) {
      return false;
    }
    if(movement.type < 1 || movement.type > 4) {
      return false;
    }
    if(view[movement.cell].ant || view[movement.cell].food) {
      return false;
    }
    if(me.type !== QUEEN || me.food < 1) {
      return false;
    }
    return true;
  }
  if(movement.color) {
    if(movement.color < COL_MIN || movement.color >= COL_LIM) {
      return false;
    }
    if(view[movement.cell].color === movement.color) {
      return false;
    }
    return true;
  }
  if(view[movement.cell].ant) {
    return false;
  }
  if(view[movement.cell].food + me.food > 1 && me.type !== QUEEN) {
    return false;
  }
  return true;
}

function as_array(o) {
  if(Array.isArray(o)) {
    return o;
  }
  return [o];
}

function best_of(movements) {
  var m;
  for(var i = 0; i < movements.length; ++ i) {
    if(typeof(movements[i]) === 'function') {
      m = movements[i]();
    } else {
      m = movements[i];
    }
    if(sanity_check(m)) {
      return m;
    }
  }
  return null;
}

function play_safe(movement) {
  // Avoid disqualification: no-op if moves are invalid
  return best_of(as_array(movement)) || NOP;
}

var RAND_SEED = (() => {
  var s = 0;
  for(var i = 0; i < 9; ++ i) {
    s += view[i].color * (i + 1);
    s += view[i].ant ? i * i : 0;
    s += view[i].food ? i * i * i : 0;
  }
  return s % 29;
})();

var ROTATIONS = [
  [0, 1, 2, 3, 4, 5, 6, 7, 8],
  [6, 3, 0, 7, 4, 1, 8, 5, 2],
  [8, 7, 6, 5, 4, 3, 2, 1, 0],
  [2, 5, 8, 1, 4, 7, 0, 3, 6],
];

function try_all(fns, limit, wrapperFn, checkFn) {
  var m;
  fns = as_array(fns);
  for(var i = 0; i < fns.length; ++ i) {
    if(typeof(fns[i]) !== 'function') {
      if(checkFn(m = fns[i])) {
        return m;
      }
      continue;
    }
    for(var j = 0; j < limit; ++ j) {
      if(checkFn(m = wrapperFn(fns[i], j))) {
        return m;
      }
    }
  }
  return null;
}

function identify_rotation(testFns) {
  // testFns MUST be functions, not constants
  return try_all(
    testFns,
    4,
    (fn, r) => fn(ROTATIONS[r]) ? ROTATIONS[r] : null,
    (r) => r
  );
}

function near(a, b) {
  return (
    Math.abs(a % 3 - b % 3) < 2 &&
    Math.abs(Math.floor(a / 3) - Math.floor(b / 3)) < 2
  );
}

function try_all_angles(solverFns) {
  return try_all(
    solverFns,
    4,
    (fn, r) => fn(ROTATIONS[r]),
    sanity_check
  );
}

function try_all_cells(solverFns, skipCentre) {
  return try_all(
    solverFns,
    9,
    (fn, i) => ((i === CENTRE && skipCentre) ? null : fn(i)),
    sanity_check
  );
}

function try_all_cells_near(p, solverFns) {
  return try_all(
    solverFns,
    9,
    (fn, i) => ((i !== p && near(p, i)) ? fn(i) : null),
    sanity_check
  );
}

function ant_type_at(i, friend) {
  return (view[i].ant && view[i].ant.friend === friend) ? view[i].ant.type : 0;
}

function friend_at(i) {
  return ant_type_at(i, true);
}

function foe_at(i) {
  return ant_type_at(i, false);
}

function foe_near(p) {
  for(var i = 0; i < 9; ++ i) {
    if(foe_at(i) && near(i, p)) {
      return true;
    }
  }
  return false;
}

function move_agent(agents) {
  var me = view[CENTRE].ant;
  var buddies = [0, 0, 0, 0, 0, 0];
  for(var i = 0; i < 9; ++ i) {
    ++ buddies[friend_at(i)];
  }

  for(var i = 0; i < agents.length; i += 2) {
    if(agents[i] === me.type) {
      return agents[i+1](me, buddies);
    }
  }
  return null;
}

function grab_nearby_food() {
  return try_all_cells((i) => (view[i].food ? {cell: i} : null), true);
}

function go_anywhere() {
  return try_all_cells((i) => ({cell: i}), true);
}

function colours_excluding(cols) {
  var r = [];
  for(var i = COL_MIN; i < COL_LIM; ++ i) {
    if(cols.indexOf(i) === -1) {
      r.push(i);
    }
  }
  return r;
}

function generate_band(start, width) {
  var r = [];
  for(var i = 0; i < width; ++ i) {
    r.push(start + i);
  }
  return r;
}

function colour_band(colours) {
  return {
    contains: function(c) {
      return colours.indexOf(c) !== -1;
    },
    next: function(c) {
      return colours[(colours.indexOf(c) + 1) % colours.length];
    }
  };
}

function random_colour_band(colours) {
  return {
    contains: function(c) {
      return colours.indexOf(c) !== -1;
    },
    next: function() {
      return colours[RAND_SEED % colours.length];
    }
  };
}

function fast_diagonal(colourBand) {
  var m = try_all_angles([
    // Avoid nearby checked areas
    (rot) => {
      if(
        !colourBand.contains(view[rot[0]].color) &&
        colourBand.contains(view[rot[5]].color) &&
        colourBand.contains(view[rot[7]].color)
      ) {
        return {cell: rot[0]};
      }
    },

    // Go in a straight diagonal line if possible
    (rot) => {
      if(
        !colourBand.contains(view[rot[0]].color) &&
        colourBand.contains(view[rot[8]].color)
      ) {
        return {cell: rot[0]};
      }
    },

    // When in doubt, pick randomly but avoid doubling-back
    (rot) => (colourBand.contains(view[rot[0]].color) ? null : {cell: rot[0]}),

    // Double-back when absolutely necessary
    (rot) => ({cell: rot[0]})
  ]);

  // Lay a colour track so that we can avoid doubling-back
  // (and mess up our foes as much as possible)
  if(!colourBand.contains(view[CENTRE].color)) {
    var prevCol = m ? view[8-m.cell].color : WHITE;
    return {cell: CENTRE, color: colourBand.next(prevCol)};
  }

  return m;
}

function follow_edge(obstacleFn, side) {
  // Since we don't know which direction we came from, this can cause us to get
  // stuck on islands, but the random orientation helps to ensure we don't get
  // stuck forever.

  var order = ((side === SIDE_LEFT)
    ? [0, 3, 6, 7, 8, 5, 2, 1, 0]
    : [0, 1, 2, 5, 8, 7, 6, 3, 0]
  );
  return try_all(
    [obstacleFn],
    order.length - 1,
    (fn, i) => (fn(order[i+1]) && !fn(order[i])) ? {cell: order[i]} : null,
    sanity_check
  );
}

function start_dotted_path(colourBand, side, protectedCols) {
  var right = (side === SIDE_RIGHT);
  return try_all_angles([
    (rot) => ((
      !protectedCols.contains(view[rot[right ? 5 : 3]].color) &&
      !colourBand.contains(view[rot[right ? 5 : 3]].color) &&
      !colourBand.contains(view[rot[right ? 2 : 0]].color) &&
      !colourBand.contains(view[rot[1]].color)
    )
      ? {cell: rot[right ? 5 : 3], color: colourBand.next(WHITE)}
      : null)
  ]);
}

function lay_dotted_path(colourBand, side, protectedCols) {
  var right = (side === SIDE_RIGHT);
  return try_all_angles([
    (rot) => {
      var ahead = rot[right ? 2 : 0];
      var behind = rot[right ? 8 : 6];
      if(
        colourBand.contains(view[behind].color) &&
        !protectedCols.contains(view[ahead].color) &&
        !colourBand.contains(view[ahead].color) &&
        !colourBand.contains(view[rot[right ? 6 : 8]].color)
      ) {
        return {cell: ahead, color: colourBand.next(view[behind].color)};
      }
    }
  ]);
}

function follow_dotted_path(colourBand, side, direction) {
  var forwards = (direction === DIR_REVERSE) ? 7 : 1;
  var right = (side === SIDE_RIGHT);

  return try_all_angles([
    // Cell on our side? advance
    (rot) => {
      if(
        colourBand.contains(view[rot[right ? 5 : 3]].color) &&
        // Prevent sticking / trickery
        !colourBand.contains(view[rot[right ? 3 : 5]].color) &&
        !colourBand.contains(view[rot[0]].color) &&
        !colourBand.contains(view[rot[2]].color)
      ) {
        return {cell: rot[forwards]};
      }
    },

    // Cell ahead and behind? advance
    (rot) => {
      var passedCol = view[rot[right ? 8 : 6]].color;
      var nextCol = view[rot[right ? 2 : 0]].color;
      if(
        colourBand.contains(passedCol) &&
        nextCol === colourBand.next(passedCol) &&

        // Prevent sticking / trickery
        !colourBand.contains(view[rot[right ? 3 : 5]].color) &&
        !colourBand.contains(view[rot[right ? 0 : 2]].color)
      ) {
        return {cell: rot[forwards]};
      }
    }
  ]);
}

function escape_dotted_path(colourBand, side, newColourBand) {
  var right = (side === SIDE_RIGHT);
  if(!newColourBand) {
    newColourBand = colourBand;
  }

  return try_all_angles([
    // Escape from beside the line
    (rot) => {
      var approachingCol = view[rot[right ? 2 : 0]].color;
      if(
        !colourBand.contains(view[rot[right ? 8 : 6]].color) ||
        !colourBand.contains(approachingCol) ||
        colourBand.contains(view[rot[7]].color) ||
        colourBand.contains(view[rot[right ? 6 : 8]].color)
      ) {
        // not oriented, or in a corner
        return null;
      }
      return best_of([
        {cell: rot[right ? 0 : 2], color: newColourBand.next(approachingCol)},
        {cell: rot[right ? 3 : 5]},
        {cell: rot[right ? 0 : 2]},
        {cell: rot[right ? 6 : 8]},
        {cell: rot[right ? 2 : 0]},
        {cell: rot[right ? 8 : 6]},
        {cell: rot[right ? 5 : 3]}
      ]);
    },

    // Escape from inside the line
    (rot) => {
      if(
        !colourBand.contains(view[rot[7]].color) ||
        !colourBand.contains(view[rot[1]].color) ||
        colourBand.contains(view[CENTRE].color)
      ) {
        return null;
      }
      return best_of([
        {cell: rot[3]},
        {cell: rot[5]},
        {cell: rot[0]},
        {cell: rot[2]},
        {cell: rot[6]},
        {cell: rot[8]}
      ]);
    }
  ]);
}

function latch_to_dotted_path(colourBand, side) {
  var right = (side === SIDE_RIGHT);

  return try_all_angles([
    (rot) => {
      var approachingCol = view[rot[right ? 2 : 0]].color;
      if(
        colourBand.contains(approachingCol) &&
        view[rot[right ? 8 : 6]].color === colourBand.next(approachingCol) &&
        !colourBand.contains(view[rot[right ? 5 : 3]].color)
      ) {
        // We're on the wrong side; go inside the line
        return {cell: rot[right ? 5 : 3]};
      }
    },

    // Inside the line? pick a side
    (rot) => {
      var passedCol = view[rot[7]].color;
      var approachingCol = view[rot[1]].color;
      if(
        !colourBand.contains(passedCol) ||
        !colourBand.contains(approachingCol) ||
        colourBand.contains(view[CENTRE].color)
      ) {
        return null;
      }
      if((approachingCol === colourBand.next(passedCol)) === right) {
        return best_of([{cell: rot[3]}, {cell: rot[6]}, {cell: rot[0]}]);
      } else {
        return best_of([{cell: rot[5]}, {cell: rot[2]}, {cell: rot[8]}]);
      }
    }
  ]);
}


// == High-level logic begins here ==


var QUEEN_COL = colour_band(generate_band(3, 3));
var WORKER_COL = colour_band(generate_band(6, 3));
var AVOID_COL = colour_band([2]);
var INVERT_COL = colour_band([WHITE, 2]);

var MIN_FOOD = 5;
var MAX_WORKER_FOOD = 10;

function decide() {
  var me = view[CENTRE].ant;
  var queen = me.type === QUEEN;

  if(queen && me.food > MIN_FOOD && me.food < MAX_WORKER_FOOD) {
    var m = try_all_cells((i) => {
      if(view[i].food && !foe_near(i)) {
        // Try to spawn a worker next to the food;
        // the worker will pick up the food on the next turn
        return try_all_cells_near(i, (j) => ({cell: j, type: 1}));
      }
    }, true);
    if(sanity_check(m)) {
      return m;
    }
  }

  if(!queen && me.food) {
    return best_of([
      // Look for queen
      follow_dotted_path.bind(null, QUEEN_COL, SIDE_RIGHT, DIR_FORWARDS),
      latch_to_dotted_path.bind(null, QUEEN_COL, SIDE_RIGHT),

      // Failed to find queen's trail; try following worker trails backwards
      follow_dotted_path.bind(null, WORKER_COL, SIDE_RIGHT, DIR_REVERSE),
      latch_to_dotted_path.bind(null, WORKER_COL, SIDE_RIGHT),

      // Failed to find any trail; cover ground as quickly as possible
      fast_diagonal.bind(null, AVOID_COL)
    ]);
  }

  var myCol = queen ? QUEEN_COL : WORKER_COL;
  return best_of([
    grab_nearby_food,

    // Disperse workers away from queen
    !queen && escape_dotted_path.bind(null, QUEEN_COL, SIDE_RIGHT, WORKER_COL),

    // Follow our own path
    follow_dotted_path.bind(null, myCol, SIDE_RIGHT, DIR_FORWARDS),

    // If our path looks suspicious, it could have wrapped; try to escape it
    escape_dotted_path.bind(null, myCol, SIDE_RIGHT),

    // Explore
    // Laying a path causes us to move at 2/3 c, so workers can catch up.
    lay_dotted_path.bind(null, myCol, SIDE_RIGHT, QUEEN_COL),
    start_dotted_path.bind(null, myCol, SIDE_RIGHT, QUEEN_COL),

    // Fall-back to white dots if we're inside a colour block
    lay_dotted_path.bind(null, myCol, SIDE_RIGHT, INVERT_COL),
    start_dotted_path.bind(null, myCol, SIDE_RIGHT, INVERT_COL),

    // Stuck for some reason; try to escape
    fast_diagonal.bind(null, AVOID_COL)
  ]);
}

return play_safe([
  decide,

  // No valid moves; try to find *anywhere* we can go.
  go_anywhere,

  // Try changing a nearby cell's colour for the heck of it.
  {cell: 1, color: view[1].color % 8 + 1}
]);

A las hormigas romanas les gusta construir caminos, rectos y rápidos. ¡Debido a que construyen caminos punteados, pueden moverse a 2/3 de la velocidad de la luz! Sus caminos también usan colores de ciclismo para que sepan si están siguiendo el camino hacia adelante o en reversa, y las hormigas obreras usan un conjunto de colores diferente al de la reina (los trabajadores comienzan a aparecer una vez que la reina tiene una cantidad no vergonzosa de comida disponible). En conjunto, esto significa que una vez que una hormiga obrera encuentra comida, puede trazar su propio camino hacia atrás y luego trazar el camino de la reina hacia adelante para devolver la comida (mientras traza un camino, las hormigas se mueven a la velocidad de la luz).

Si se pregunta cómo las hormigas pueden seguir una línea punteada a pesar de solo poder ver una cuadrícula de 3x3 en cualquier momento y sin saber su propia dirección: dibujan la línea a su derecha, no en su línea real de viaje. Entonces, si (por ejemplo) la hormiga ve un cuadrado lleno hacia el norte, sabe que el camino debe estar por encima, lo que significa que la dirección del viaje debe ser hacia el oeste (para mantener el camino a la derecha). Si la hormiga ve un cuadrado lleno hacia el noreste pero no hacia el noroeste o el sureste, debe haber pasado el final de la línea, por lo que pinta la celda hacia el noroeste y viaja hacia el oeste. Hay más complicaciones en torno al cambio de dirección una vez que se han encontrado alimentos, pero esa es la esencia de esto.

Otro punto que vale la pena mencionar es que cuando una hormiga obrera ve comida, aprovechará la oportunidad para agarrarla sin pensar en cómo volverá a casa (después de todo, ¡una hormiga enemiga podría estar lista para agarrarla!). Entonces, si una hormiga obrera alguna vez se pierde mientras transporta alimentos, cambiará el comportamiento a un patrón aleatorio de caminar, dejando un rastro amarillo detrás para evitar volver sobre sus pasos. Esto ayuda a las hormigas a redescubrir sus rastros e introduce suficiente aleatoriedad para evitar algunos de los bucles infinitos que de otra manera podrían ocurrir.

No funciona de manera sorprendente, y las hormigas tienen la costumbre de volver a rastrear sus propios pasos (son lo suficientemente tontos como para no saber si el camino que están siguiendo es antiguo o uno en el que están en proceso de dibujo!), que ocasionalmente conduce a bucles infinitos.

Finalmente, hay un método de comprobación de cordura aplicado a cualquier salida que asegura que esto no pueda ser descalificado (¡con suerte!)


La versión actualizada cambia la caminata aleatoria para un desplazamiento diagonal rápido, corrige un montón de errores y agrega algunos intentos de caminar usando caminos blancos si alguna hormiga se atasca dentro de un área grande de color. La mayoría de los errores se encontraron al convertirlos para usar una separación de pensamiento de alto nivel / habilidades de bajo nivel.


(aquí hay uno que preparé mientras estaba en beta )
Dave

Para un orden de magnitud aproximado: acabo de ejecutar esto y obtuve 30 alimentos + 6 hormigas obreras. Eso es más o menos consistente con los números que vi mientras lo desarrollaba.
Dave

Es un buen truco que deja espacios en el camino para un aumento de velocidad del 50%. También significa que las carreteras son difíciles de detectar al principio, me tomó un tiempo encontrar tu hormiga ... Pero supera fácilmente a los jugadores de ejemplo, especialmente una vez que los trabajadores comienzan a regresar. Algunos de los trabajadores terminan construyendo extensiones de patrón de tablero de ajedrez amarillo y blanco, ¿no están seguros de si eso es parte del plan?
trichoplax

1
@trichoplax oops; Olvidé poner eso en la explicación (¡olvidé que hicieron eso!). He actualizado la explicación. En resumen: es parte del plan, pero no es un gran plan.
Dave

¡Gran explicación!
trichoplax

7

Monocarril

Todavía es un trabajo en progreso, pero quiero sacar algo ahora solo porque estoy paranoico de que la competencia termine antes de que termine de lo contrario.

var c0=5 //red
var c1=4 //cyan
var c2=6 //green
var c3=3 //magenta
var c4=7 //blue
var c5=8 //black
var c6=2 //yellow
var cN=1 //white

var ws=4 //support
var wb=3 //bodyguard
var wg=1 //gather
var wq=5 //queen

var v=[[0, 1, 2, 3, 4, 5, 6, 7, 8],
       [8, 7, 6, 5, 4, 3, 2, 1, 0],
       [6, 3, 0, 7, 4, 1, 8, 5, 2],
       [2, 5, 8, 1, 4, 7, 0, 3, 6]]

var x1=[0,2,6,8]
var x2=[8,6,2,0]

var r1=[1,7,3,5]
var r2=[5,3,7,1]

switch(view[4].ant.type)
{
 case 5: return queen()
 case 4: return support()
 case 3: return bodyguard()
 case 1: return gather()
 default: return {cell:4}
}

function queen()
{
 if(fAlly(ws)<0)
 {
  if(view[4].color==c1&&view[4].ant.food>0)
  {
   var o=findOrient(c1,c2,c3)
   if(sOpen(v[o][7])) return {cell:v[o][7],type:ws}
   return doThing()
  }
  else if(view[4].color==c0&&view[4].ant.food>=6)
  {
   var o=findOrient(c1,c2,c3)
   if(view[v[o][1]].color!=c1) return {cell:v[o][1],color:c1}
   if(view[v[o][0]].color!=c2) return {cell:v[o][0],color:c2}
   if(view[v[o][2]].color!=c3) return {cell:v[o][2],color:c3}
   if(sOpen(v[o][7])) return {cell:v[o][7],type:ws}
  }
  return wander(c0)
 }
 else
 {
  if(view[4].color==c0&&view[4].ant.food<7)
  {
   if(view[4].ant.food >=5)
   {
    var o=findOrient(c1,c2,c3)
    if(sOpen(v[o][1])) return {cell:v[o][1],type:wb}
    if(sOpen(v[o][0])) return {cell:v[o][0],type:wb}
    if(sOpen(v[o][2])) return {cell:v[o][2],type:wb}
   }
   if(view[4].ant.food>0)
   {
    var op=fOpen()
    if(op>=0) return {cell:op,type:wg}
   }
  }
  return doThing()
 }
}

function doThing()
{
 if(view[4].color!=c1) return {cell:4,color:c1}
 var o=findOrient(c1,c2,c3)
 if(view[4].ant.food>0&&fAlly(wg)>=0&&o==0)
 {
  var op=fOpen()
  if(op>=0) return {cell:op,type:wg}
 }
 if(view[v[o][1]].color!=c1&&pootis(v[o][1])) return {cell:v[o][1],color:c1}
 if(view[v[o][0]].color!=c2&&pootis(v[o][0])) return {cell:v[o][0],color:c2}
 if(view[v[o][2]].color!=c3&&pootis(v[o][2])) return {cell:v[o][2],color:c3}
 if(mOpen(v[o][1])) return {cell:v[o][1]}
 if(view[v[o][3]].color!=c2&&pootis(v[o][3])) return {cell:v[o][3],color:c2}
 if(view[v[o][5]].color!=c3&&pootis(v[o][5])) return {cell:v[o][5],color:c3}
 if(view[v[o][6]].color!=c2&&pootis(v[o][6])) return {cell:v[o][6],color:c2}
 if(view[v[o][8]].color!=c3&&pootis(v[o][8])) return {cell:v[o][8],color:c3}
 if(view[v[o][7]].color!=c1&&pootis(v[o][7])) return {cell:v[o][7],color:c1}
 return {cell:4}
}

function support()
{
 var o = findOrient(c1,c2,c3)
 var p = fAlly(wq)

 switch(p)
 {
  case v[o][0]:
   //if(mOpen(v[o][3])) return {cell:v[o][3]}
   //if(mOpen(v[o][1])) return {cell:v[o][1]}
   break
  case v[o][1]:
   //if(view[v[o][0]].food&&mOpen([v[o][0]])) return {cell:v[o][0]}
   //if(view[v[o][2]].food&&mOpen([v[o][2]])) return {cell:v[o][2]}
   break
  case v[o][2]:
   //if(mOpen(v[o][5])) return {cell:v[o][5]}
   //if(mOpen(v[o][1])) return {cell:v[o][1]}
   break
  case v[o][3]:
   //if(mOpen(v[o][6])) return {cell:v[o][6]}
   break
  case v[o][5]:
   //if(mOpen(v[o][8])) return {cell:v[o][8]}
   break
  case v[o][6]: break
  case v[o][7]: break
  case v[o][8]: break
  default:
   if(sOpen(v[o][1])) return {cell:v[o][1]}
   break
 }
 return {cell:4}
}

function bodyguard()
{
 var o=0
 switch(view[4].color)
 {
  case c1: o=findOrient(c1,c2,c3);break
  case c2: o=findOrient(c2,c6,c1);break
  case c3: o=findOrient(c3,c1,c6);break
  default: return {cell:4}
 }
 var p = fAlly(wq)
 if(view[4].ant.food>0)
 {
  switch(p)
  {
   case v[o][0]:
    if(sOpen(v[o][1])) return {cell:v[o][1]}
    if(sOpen(v[o][3])) return {cell:v[o][3]}
    break
   case v[o][1]:
    if(sOpen([v[o][0]])) return {cell:v[o][0]}
    if(sOpen([v[o][2]])) return {cell:v[o][2]}
    break
   case v[o][2]:
    if(sOpen(v[o][1])) return {cell:v[o][1]}
    if(sOpen(v[o][5])) return {cell:v[o][5]}
    break
   case v[o][3]:
    if(sOpen([v[o][0]])) return {cell:v[o][0]}
    if(sOpen([v[o][1]])) return {cell:v[o][1]}
    break
   case v[o][5]:
    if(sOpen([v[o][2]])) return {cell:v[o][2]}
    if(sOpen([v[o][1]])) return {cell:v[o][1]}
    break
   case v[o][6]:
    if(sOpen([v[o][0]])) return {cell:v[o][0]}
    if(sOpen([v[o][1]])) return {cell:v[o][1]}
    if(sOpen([v[o][3]])) return {cell:v[o][3]}
    break
   case v[o][7]:
    if(sOpen([v[o][1]])) return {cell:v[o][1]}
    if(sOpen([v[o][0]])) return {cell:v[o][0]}
    if(sOpen([v[o][2]])) return {cell:v[o][2]}
    break
   case v[o][8]:
    if(sOpen([v[o][2]])) return {cell:v[o][2]}
    if(sOpen([v[o][1]])) return {cell:v[o][1]}
    if(sOpen([v[o][5]])) return {cell:v[o][5]}
    break
   default:
  }
 }
 else
 {
  switch(p)
  {
   case v[o][0]:
    if(mOpen(v[o][1])) return {cell:v[o][1]}
    if(mOpen(v[o][3])) return {cell:v[o][3]}
    break
   case v[o][1]:
    if(view[v[o][2]].food&&mOpen([v[o][2]])) return {cell:v[o][2]}
    if(mOpen([v[o][0]])) return {cell:v[o][0]}
    if(mOpen([v[o][2]])) return {cell:v[o][2]}
    break
   case v[o][2]:
    if(mOpen(v[o][1])) return {cell:v[o][1]}
    if(mOpen(v[o][5])) return {cell:v[o][5]}
    break
   case v[o][3]:
    if(view[v[o][1]].food&&mOpen([v[o][1]])) return {cell:v[o][1]}
    if(mOpen([v[o][0]])) return {cell:v[o][0]}
    if(mOpen([v[o][1]])) return {cell:v[o][1]}
    break
   case v[o][5]:
    if(view[v[o][1]].food&&mOpen([v[o][1]])) return {cell:v[o][1]}
    if(mOpen([v[o][2]])) return {cell:v[o][2]}
    if(mOpen([v[o][1]])) return {cell:v[o][1]}
    break
   case v[o][6]:
    if(view[v[o][1]].food&&mOpen([v[o][1]])) return {cell:v[o][1]}
    if(mOpen([v[o][0]])) return {cell:v[o][0]}
    if(mOpen([v[o][1]])) return {cell:v[o][1]}
    if(mOpen([v[o][3]])) return {cell:v[o][3]}
    break
   case v[o][7]:
    if(view[v[o][0]].food&&mOpen([v[o][0]])) return {cell:v[o][0]}
    if(view[v[o][2]].food&&mOpen([v[o][2]])) return {cell:v[o][2]}
    if(mOpen([v[o][1]])) return {cell:v[o][1]}
    if(mOpen([v[o][0]])) return {cell:v[o][0]}
    if(mOpen([v[o][2]])) return {cell:v[o][2]}
    break
   case v[o][8]:
    if(view[v[o][1]].food&&mOpen([v[o][1]])) return {cell:v[o][1]}
    if(mOpen([v[o][2]])) return {cell:v[o][2]}
    if(mOpen([v[o][1]])) return {cell:v[o][1]}
    if(mOpen([v[o][5]])) return {cell:v[o][5]}
    break
   default:
  }
 }
 if(view[4].color==c1)
 {
  if(view[v[o][1]].color!=c1&&pootis(v[o][1])) return {cell:v[o][1],color:c1}
  if(view[v[o][0]].color!=c2&&pootis(v[o][0])) return {cell:v[o][0],color:c2}
  if(view[v[o][2]].color!=c3&&pootis(v[o][2])) return {cell:v[o][2],color:c3}
  if(view[v[o][3]].color!=c2) return {cell:v[o][3],color:c2}
  if(view[v[o][5]].color!=c3) return {cell:v[o][5],color:c3}
  if(view[v[o][6]].color!=c2) return {cell:v[o][6],color:c2}
  if(view[v[o][8]].color!=c3) return {cell:v[o][8],color:c3}
  if(view[v[o][7]].color!=c1) return {cell:v[o][7],color:c1}
 }
 return {cell:4}
}

function gather()
{
 if(view[4].ant.food>0)
 {
  if(view[4].color==c1&&(testSQ(c1,c2)||testSQ(c1,c3))) return gDoThing(c1,c3,c2)
  if(view[4].color==c2&&testSQ(c2,c1)) return gDoThing(c2,c1,c6)
  if(view[4].color==c3&&testSQ(c3,c1)) return gDoThing(c3,c6,c1)
  return wander(c5)
 }
 var n=fAlly(wq)
 if(n<0) return wander(c4)
 switch(n)
 {
  case 0:
   if(mOpen(8)) return {cell:8}
   if(mOpen(7)) return {cell:7}
   if(mOpen(5)) return {cell:5}
   break
  case 1:
   if(mOpen(6)) return {cell:6}
   if(mOpen(8)) return {cell:8}
   if(mOpen(7)) return {cell:7}
   break
  case 2:
   if(mOpen(6)) return {cell:6}
   if(mOpen(3)) return {cell:3}
   if(mOpen(7)) return {cell:7}
   break
  case 3:
   if(mOpen(8)) return {cell:8}
   if(mOpen(2)) return {cell:2}
   if(mOpen(5)) return {cell:5}
   break
  case 5:
   if(mOpen(0)) return {cell:0}
   if(mOpen(6)) return {cell:6}
   if(mOpen(3)) return {cell:3}
   break
  case 6:
   if(mOpen(2)) return {cell:2}
   if(mOpen(5)) return {cell:5}
   if(mOpen(1)) return {cell:1}
   break
  case 7:
   if(mOpen(2)) return {cell:2}
   if(mOpen(0)) return {cell:0}
   if(mOpen(1)) return {cell:1}
   break
  case 8:
   if(mOpen(0)) return {cell:0}
   if(mOpen(1)) return {cell:1}
   if(mOpen(3)) return {cell:3}
   break
  default:
   break
 }
 return {cell:4}
}

function testSQ(ac1,ac2)
{
 for(var i=0;i<4;i++)
 {
  if(view[r1[i]].color==ac1)
  {
   if(view[v[i][0]].color==ac2&&view[v[i][3]].color==ac2) return 1
   if(view[v[i][2]].color==ac2&&view[v[i][5]].color==ac2) return 1
  }
 }
 return 0
}

function gDoThing(ac1,ac2,ac3)
{
 var o=findOrient(ac1,ac2,ac3)
 if(view[v[o][1]].color!=ac1&&pootis(v[o][1])) return {cell:v[o][1],color:ac1}
 if(view[v[o][0]].color!=ac2&&pootis(v[o][0])) return {cell:v[o][0],color:ac2}
 if(view[v[o][2]].color!=ac3&&pootis(v[o][2])) return {cell:v[o][2],color:ac3}
 if(sOpen(v[o][1])) return {cell:v[o][1]}
 if(ac1==c2)
 {
  if(sOpen(v[o][0])) return {cell:v[o][0]}
  if(sOpen(v[o][3])) return {cell:v[o][3]}
  if(sOpen(v[o][6])) return {cell:v[o][6]}
 }
 else if(ac1==c3)
 {
  if(sOpen(v[o][2])) return {cell:v[o][2]}
  if(sOpen(v[o][5])) return {cell:v[o][5]}
  if(sOpen(v[o][8])) return {cell:v[o][8]}
 }
 else
 {
  if(sOpen(v[o][0])) return {cell:v[o][0]}
  if(sOpen(v[o][2])) return {cell:v[o][2]}
  if(sOpen(v[o][3])) return {cell:v[o][3]}
  if(sOpen(v[o][5])) return {cell:v[o][5]}
 }
 return {cell:4}
}

function pootis(p)
{
 var a=view[p].ant
 if(a!=null&&a.friend&&a.type==wg&&(view[p].color==c4||view[p].color==c5)) return 0
 return 1
}

function fAlly(t)
{
 var a=view[4].ant
 for(var i=0;i<9;i++)
 {
  if(i==4) i++
  a=view[i].ant
  if(a!=null&&a.friend&&a.type==t) return i
 }
 return -1
}

function fOpen()
{
 for(var i=0;i<9;i++)
 {
  if(i==4) i++
  if(sOpen(i)) return i
 }
 return -1
}

function sOpen(p)
{
 return (view[p].ant==null&&!view[p].food)
}

function mOpen(p)
{
 return (view[p].ant==null)
}

function wander(ac)
{
 if(view[4].ant.type==5||view[4].ant.food==0)
 {
  var vf = vFood()
  if(vf>=0) return {cell:vf}
  if(view[4].color!=ac) return {cell:4,color:ac}
  for(var i=0;i<4;i++)
  {
   if(view[x1[i]].color==ac&&view[x2[i]].color!=ac&&view[x2[i]].color!=c1&&mOpen(x2[i])) return {cell:x2[i]}
  }
  for(var i=0;i<4;i++)
  {
   if(mOpen(x1[i])&&view[x1[i]].color!=c1) return {cell:x1[i]}
  }
 }
 else
 {
  if(view[4].color!=ac) return {cell:4,color:ac}
  for(var i=0;i<4;i++)
  {
   if(view[x1[i]].color==ac&&view[x2[i]].color!=ac&&sOpen(x2[i])) return {cell:x2[i]}
  }
  for(var i=0;i<4;i++)
  {
   if(sOpen(x1[i])) return {cell:x1[i]}
  }
 }
 return {cell:4}
}

function findOrient(ac1,ac2,ac3)
{
 var w=[0,0,0,0]
 w[0]=DI(view[0].color,view[1].color,view[2].color,0,ac1,ac2,ac3)
 w[1]=DI(view[8].color,view[7].color,view[6].color,1,ac1,ac2,ac3)
 w[2]=DI(view[6].color,view[3].color,view[0].color,2,ac1,ac2,ac3)
 w[3]=DI(view[2].color,view[5].color,view[8].color,3,ac1,ac2,ac3)
 var t=[0,0,0,0]
 for(var i=0;i<4;i++)
 {
  switch(w[i])
  {
   case 4: t[0]++;break
   case 5: t[1]++;break
   case 6: t[2]++;break
   case 7: t[3]++;break
   case 8: t[0]+=2;break
   case 9: t[1]+=2;break
   case 10: t[2]+=2;break
   case 11: t[3]+=2;break
   case 12: t[0]+=3;break
   case 13: t[1]+=3;break
   case 14: t[2]+=3;break
   case 15: t[3]+=3;break
   default: break
  }
 }
 var m=Math.max(...t)
 for(var i=0;i<4;i++)
 {
  if(t[i]==m) return i
 }
 return 0
}

function DI(v1,v2,v3,d,ac1,ac2,ac3)
{
 var t=[0,0,0,0]
 switch(v1)
 {
  case ac2: t[0]++;t[3]++;break
  case ac3: t[1]++;t[2]++;break
  default: break
 }
 switch(v2)
 {
  case ac1: t[0]++;t[1]++;break
  case ac2: t[3]++;break
  case ac3: t[2]++;break
  default: break
 }
 switch(v3)
 {
  case ac2: t[1]++;t[3]++;break
  case ac3: t[0]++;t[2]++;break
  default: break
 }
 var m=Math.max(...t)
 if(m==0) return 0
 var n=0
 for(var i=0;i<4;i++)
 {
  if(t[i]==m){n=i;break}
 }
 if((d==2&&n==2)||(d==3&&n==3)) n=1
 else if((d==2&&n==3)||(d==3&&n==2)) n=0
 else n^=d
 return m*4+n
}

function vFood()
{
 for(var i=0;i<9;i++)
 {
  if(view[i].food) return i
 }
 return -1
}

function nColor(c)
{
 var t=0
 for(var i=0;i<9;i++)
 {
  if(view[i].color==c) t++
 }
 return t
}

Para resumir, la reina se mueve en línea recta, creando el patrón detrás de ella. Se crea un trabajador de apoyo para moverse justo detrás de ella y mantenerla en línea. También hay recolectores, que buscan comida para un lobo solitario o una reina soltera, que continuarán hasta que adquieran algo para llevar a la barandilla, que luego los llevará de regreso a la reina.

Muy bien, aquí está la versión 2. Ahora los recolectores realmente hacen algo.

Versión 2.1 ahora. Se han cambiado las marcas amarillas / cian para evitar que Black Hole se coma todo el camino cada vez que aparecen juntas en el mismo juego.

La versión 3. Bodyguard se ha agregado para proporcionar protección adicional desde el frente (y agarrar comida en el riel), mientras que los recolectores ahora dibujan bordes negros para alejar el borrador del rastro y posiblemente ayudar a proteger del Agujero Negro. Además, la reina evita las fichas cian en modo recolector para evitar el despliegue prematuro.

Muy bien, hora de la versión 3.1. Los colores se han cambiado nuevamente para mantener a raya el borrador de rastro sin incitar la ira de Wildfire. Los recolectores también se han editado para seguir e identificar mejor el riel (menos rescatar / hacer nuevos rieles). También hay otras cosas menores que realmente no puedo molestar en mencionar.

Versión 3.2: se corrigieron algunos problemas con el guardaespaldas. Ya no intenta agarrar comida si ya tiene algo, es menos propenso a atascarse y dibujará rieles si no puede encontrar a la reina.


Mientras haya nuevas entradas / ediciones, estaré ejecutando nuevos torneos para ver cómo se ve la tabla de clasificación. No hay fecha de cierre. Tal vez le queden unos días al torneo actual antes de que converja en el primer, segundo y tercer lugar únicos, luego comenzaré un nuevo torneo, incluido este nuevo jugador. Me temo que tomará más de una semana antes de que muestre qué posición alcanzas, pero te avisaré cuando lo haga.
trichoplax

@QuoteBeta Entiendo tu paranoia ... Acabo de ver este desafío, así que estoy en el proceso de crear una entrada antes de que se detenga el impulso del desafío.
Moogie

De acuerdo entonces. No estaba seguro de si esto iba a terminar pronto o no, con las actualizaciones disminuyendo un poco.
QuoteBeta

La mayoría de la gente probablemente ya haya terminado, pero estamos esperando en las tablas de clasificación. Y esos están tomando un tiempo.
Draco18s

Parece que tus hormigas pueden querer parte de mi código de limpieza de senderos (ver Agujero negro, cómo las hormigas perdidas en el interior limpian viejos senderos). i.stack.imgur.com/DTmA6.png
Draco18s

6

Reina claustrofóbica

Un enfoque de solo reina que realiza una caminata aleatoria mientras intenta evitar las áreas coloreadas. No es un gran contendiente, pero moderadamente exitoso y a prueba de manipulaciones. Ajuste de parámetros en progreso.

var i, j
var orthogonals = [1, 3, 7, 5]  // These are the non-diagonal cells
var move;
var scores = [];   // An array of how desirable each potential move is
var score, neighbor, claustrophobia, newColor;
var crowdedNeighbors = null;   // How many diagonal neighbors are colored CROWDED?
var runningFrom = null;    // When in running phase, which direction did we come from?
var runningTo = null;      // When in running phase, which direction should we head?

// Assign color magic numbers to variables
var EMPTY = 1;
var VISITED = 4;
var CROWDED = 7;
var RUNNING = 8;

function neighbors(cell) {
    switch (cell) {
        case 0: return [1, 3];
        case 1: return [0, 2];
        case 2: return [1, 5];
        case 3: return [0, 6];
        case 4: return orthogonals;
        case 5: return [2, 8];
        case 6: return [3, 7];
        case 7: return [6, 8];
        case 8: return [7, 5];
        default: return null;
    }
}

function isHungry(ant) {
    if (ant.type === 5 || ant.food === 0) {
        return true;
    } else {
        return false;
    }
}

// Color own cell based on the number of neighbors that are colored
claustrophobia = 0;
for (i=0; i<9; i++) {
    if (view[i].color !== EMPTY || i === 4) {
        claustrophobia++;
    }
    if (i % 2 === 0 && i !== 4) {
        if (view[i].color === CROWDED) {
            crowdedNeighbors++;
        } else if (view[i].color === RUNNING) {
            crowdedNeighbors++;
            runningFrom = i;
        }
    }
}

if (claustrophobia > 4) {
    if (crowdedNeighbors > 1 || runningFrom !== null) {
        // We're entering or currently in a straight-line running state
        // in which we keep going until we find sufficient whitespace
        newColor = RUNNING;
    } else {
        newColor = CROWDED;
    }
} else {
    newColor = VISITED;
}
if (view[4].color !== newColor) {
    return {cell:4, color:newColor}
}

// If we've already colored the current cell properly, and we're in running mode,
// then move diametrically away from the runningFrom cell
switch (runningFrom) {
    case 0:
        runningTo = 8;
        break;
    case 2:
        runningTo = 6;
        break;
    case 6:
        runningTo = 2;
        break;
    case 8:
        runningTo = 0;
        break;
    default:
        break;
}

// Calculate a score for each potential move
// Lower numbers are better; null means illegal move
// Unexplored areas are better; food is the best (as long as ant can eat); don't move onto other ants
for (i=0; i<9; i++) {
    // Base score of tile is 2 times color of tile
    score = 2 * (view[i].color);
    // Add colors of neighboring tiles
    for (neighbor of neighbors(i)) {
        score += view[neighbor].color;
    }
    // Give very good score to runningTo tile, unless it's also RUNNING color
    if (i === runningTo && view[i].color !== RUNNING) {
        score -= 4;   // Magic number, possibly to be tweaked
    }
    if (i!==4 && view[i].ant) {
        // Tile contains another ant; give very bad score
        score = null;
    } else if (view[i].food) {
        // If a tile contains food, it's either highly desirable if the ant can eat, or illegal if it can't
        if (isHungry(view[4].ant)) {
            // Ant can eat; give food tile very good score
            score = -1;
        } else {
            // Ant cannot eat; give food tile very bad score
            score = null;
        }
    }
    scores.push(score);
}

// Select best move based on the scores array
move = 4;   // By default, stay put (this probably won't be the best move)
for (i=0; i<9; i++) {
    if (scores[i] !== null && scores[i] < scores[move]) {
        move = i;
    }
}

return {cell:move};

La reina deja un rastro de cian mientras se mueve. Ella prioriza pasar a celdas en blanco y celdas con vecinos en blanco. La forma en que salen las matemáticas en este momento, esto resulta en un movimiento principalmente diagonal y un patrón de tablero de ajedrez. Si la celda actual tiene cuatro o más vecinos coloreados, es de color azul en lugar de cian; las celdas azules se evitan con mayor prioridad. Finalmente, si la reina está adyacente a dos celdas azules, comienza en una línea diagonal de negro hasta que alcanza un área abierta nuevamente.

ingrese la descripción de la imagen aquí


No a prueba de manipulaciones; el borrador puede borrar su rastro, lo que llevará a la hormiga a dar vueltas en círculos
pppery

1
Er, en cuadrados?
pppery

1
@ppperry Dije " moderadamente ... a prueba de manipulaciones". ;) Lo único que puede hacer Trail-Eraser es hacer que sea más probable que cubra el terreno que ya ha sido cubierto; pero podría seguir moviéndose fácilmente en territorio inexplorado.
DLosc

6

Hoppemaur

En primer lugar, quiero agradecer a Trichoplax por crear este increíble desafío, que me hizo registrarme en este sitio y comenzar a programar en javascript. También quiero agradecerles a las otras personas que todavía acechan en la sala de chat de esta pregunta, incluso exactamente 3 meses después de que se haya formulado.

Mi bot no es un contendiente serio para el primer lugar, sino una sola reina / auto evitando el enfoque de caminata aleatoria, un poco como una reina claustrofóbica saltadora .

Detalle del bot Hoppemaur con patrón pintado

Código

//Hoppemaur
//å hoppe: to jump
//maur: ant

var WHITE = 1;
var OWN = 2;
var FOOD = 6;
var ESCAPE = 3;
var paint = 0;
var score = {0:2,1:-3,2:2,3:-3,4:-1,5:-3,6:2,7:-3,8:2}; 
// The ant should only walk diagonal (except when feeding)
var highest = 0;
var scoreindex;
var diagonals = [0, 2, 6, 8];
var diagonalsandself = [0, 2, 4, 6, 8]
var inversdiagonals = [8, 6, 2, 0];
var orthogonals = [1, 3, 5, 7];
var inverseorthogonals = [7, 5, 3, 1];
var rotate1orthogonals = [3, 1, 7, 5];
var rotate2orthogonals = [5, 7, 1, 3];

//checks if one of the diagonals or the own tile are painted
function checkforemptypattern() {
  for (var i=0; i<diagonalsandself.length; i++) {
    if (view[diagonalsandself[i]].color == OWN){
     return false;}
  }
  return true;
}

//counts the diagonals painted in the requestest colour
function checktrapped(pattern) {
  var diags=0;
  for (var i=0; i<diagonals.length; i++) {
    if (view[diagonals[i]].color == pattern){
     diags=diags+1;
    }
  }
return diags;
}

//Biggest threat to this ant is food on orthogonals,
//it messes up the pattern if not dealt with it
if (view[4].color !== FOOD){
    for (var i=0; i<orthogonals.length; i++) {
        if (view[orthogonals[i]].food) {
            return {cell:4, color:FOOD};
            }
        }
    }

if (view[4].color == FOOD){
    for (var i=0; i<orthogonals.length; i++) {
        if (view[orthogonals[i]].food) {
        if (!view[orthogonals[i]].ant){
            return {cell:orthogonals[i]};
            }
        }
        }
    }

//If food shows up on diagonals while out of pattern,
//before grabbing food, the pattern must be painted
for (var i=0; i<diagonals.length; i++){
    if (view[diagonals[i]].food){
        if (checkforemptypattern()){
            return {cell:4, color: OWN}
            }
        }
    }


//Otherwise, food can easily be grabbed if not ant in way
for (var i=0; i<9; i++) {
    if (view[i].food) {
        if(!view[i].ant){
        return {cell:i}
        }
    }
}


//After food has been grabbed orthogonal, back to food pile
if (view[4].color == WHITE){
    for (i=0; i<orthogonals.length; i++) {
        if (view[orthogonals[i]].color == FOOD && checktrapped(FOOD) == 0 && view[inverseorthogonals[i]].color !== FOOD && view[rotate1orthogonals[i]].color !== FOOD && view[rotate2orthogonals[i]].color !== FOOD){
                 if (!view[orthogonals[i]].ant){
                     return {cell:orthogonals[i]};
                     }
                 }
        }
    }

//First part of scoring
// Scoring to determine next move
// Scoring everything higher than own pattern and escape
for (var i=0; i<9; i++) {
  if (view[i].color !== OWN) {
      score[i] = score[i]+3;
  }
  if (view[i].color !== ESCAPE){
      score[i] = score[i]+5;
  }
}

// Scoring while in painted area (f.e. wildfire)

var l = 0;
for (var i=2; i<9; i++) {
                          var k = 0;
    for (var j=0; j<9; j++) {
                             if (view[j].color == i) {
            k=k+1;
            if (k > 6){
            paint=i;
            }
        if (view[j].color !==WHITE) {
          l=l+1;

        }
    }
}
}

if (paint !== OWN && l >7) {
    for (var i=0; i<diagonals.length; i++){
        if (view[diagonals[i]].color == OWN) {
            score[inversdiagonals[i]]=score[inversdiagonals[i]]+7;
            }
        if (view[diagonals[i]].color == WHITE) {
          score[diagonals[i]]=score[diagonals[i]]+7
        }
        }
    }


if (paint == OWN && l >7) {
    for (var i=0; i<diagonals.length; i++){
        if (view[diagonals[i]].color == ESCAPE) {
            score[inversdiagonals[i]]=score[inversdiagonals[i]]+7;
            }
        if (view[diagonals[i]].color == WHITE) {
          score[diagonals[i]]=score[diagonals[i]]+7
        }
        }
    }

// the following might lead to some traps?
// score diagonals adjactant to white higher
  if (view[1].color === WHITE) {
    score[0] = score[0]+1;
    score[2] = score[2]+1;
   }
  if (view[3].color === WHITE) {
    score[0] = score[0]+1;
    score[6] = score[6]+1;
   }
  if (view[5].color === WHITE) {
    score[2] = score[2]+1;
    score[8] = score[8]+1;
   }
  if (view[7].color === WHITE) {
    score[6] = score[6]+1;
    score[8] = score[8]+1;
   }


//Don't move next to others, they steal your food!
  if (view[0].ant || view[1].ant || view[2].ant){
      score[6] = score [6]+10;
      score[8] = score [8]+10;
  }

  if (view[0].ant || view[3].ant || view[6].ant){
      score[2] = score [2]+10;
      score[8] = score [8]+10;
  }

  if (view[6].ant || view[7].ant || view[8].ant){
      score[0] = score [0]+10;
      score[2] = score [2]+10;

  }
   if (view[2].ant || view[5].ant || view[8].ant){
      score[0] = score [0]+10;
      score[6] = score [6]+10;

  }
//don't step on others!
for (var i=0; i<9; i++) {
  if (i!==4 && view[i].ant) {
        score[i] = -5;
 }
}

//end of scoring, calculate best
for (var i=0; i<9; i++) {
  if (score[i] > highest) {
    highest = score[i];
    scoreindex = i;
    }
  }

//Basic enemy avoidance
for (var i=0; i<9; i++) {
  if (i!==4 && view[i].ant) {
        return {cell:scoreindex}
        }
  }

//basic movement

//when surrounded by other paint
if (paint == ESCAPE && l>7){
    if(view[4].color == OWN){
      return{cell:scoreindex}
    }
}

if (paint !== OWN && paint !== 0 && l>7){
  if(view[4].color !== OWN){
    return{cell:4, color:OWN}
  }
}


if (paint == OWN && l>7){
  if(view[4].color !== ESCAPE){
    return{cell:4, color:ESCAPE}
  }
}

//a) when off pattern
if (view[4].color !== OWN) {
    if (view[4].color == ESCAPE){
         if (checktrapped(ESCAPE)==4){
            return{cell:scoreindex}
            }
        }
        if (view[4].color == ESCAPE){
         if (checktrapped(ESCAPE)==3){
            return{cell:scoreindex}
            }
        }
    if (checkforemptypattern()) {
    return{cell:4, color:OWN};
    }

    //Am I trapped? Different possible traps follow here
    if (view[4].color !== ESCAPE){
         if (checktrapped(OWN)==4){
            return{cell:4, color:ESCAPE}
            }
    }
    if (view[4].color !== ESCAPE){
         if (checktrapped(OWN)==3 && checktrapped(ESCAPE)==1){
            return{cell:4, color:ESCAPE}
            }
    }
    if (view[4].color !== ESCAPE){
         if (checktrapped(OWN)==2 && checktrapped(ESCAPE)==1){
            return{cell:4, color:ESCAPE}
            }
    }
    if (view[4].color !== ESCAPE){
         if (checktrapped(OWN)==2 && checktrapped(ESCAPE)==2){
            return{cell:4, color:ESCAPE}
            }
    }
    if (view[4].color !== ESCAPE){
         if (checktrapped(OWN)==1 && checktrapped(ESCAPE)==2){
            return{cell:4, color:ESCAPE}
            }
    }
    if (view[4].color !== ESCAPE){
         if (checktrapped(OWN)==1 && checktrapped(ESCAPE)==1){
            return{cell:4, color:ESCAPE}
            }
    }
    if (view[4].color !== ESCAPE){ //when the orthogonals are painted, some other guy was here before and movement traps are likely
         if (view[1].color == OWN || view[7].color == OWN || view[3].color == OWN || view[5].color == OWN){
            return{cell:4, color:ESCAPE}
            }
    }
    if (view[4].color !== ESCAPE){ //when the orthogonals are painted, some other guy was here before and movement traps are likely
         if (view[1].color == ESCAPE || view[7].color == ESCAPE || view[3].color == ESCAPE || view[5].color == ESCAPE){
            return{cell:4, color:ESCAPE}
            }
    }
}

//b) when on pattern check surroundings for escape route
if (checktrapped(ESCAPE)==3){
    return{cell:4, color:ESCAPE}
}
if (checktrapped(ESCAPE)==4){
    return{cell:4, color:ESCAPE}
}

//otherwise just move on
return{cell:scoreindex}

Explicación

La idea principal de este bot era acortar el tiempo de pintura sin dejar de identificar el área ya visitada. Para lograr esto, la reina normalmente solo pintará después de cada segundo movimiento. Sin embargo, la información de la dirección del movimiento se pierde al hacerlo, lo que resulta en un patrón de salto no dirigido. Para evitar una verdadera caminata aleatoria, la reina valora los azulejos no pintados más altos que los ya pintados y, en caso de retroceso, usa un color rosa de escape para indicar que estuvo allí antes. Un mecanismo de puntuación que incorpora lo anterior proporciona la columna vertebral del movimiento general.

Un gran riesgo son las pilas de alimentos fuera de su patrón de movimiento diagonal. Si se topa con eso, usará el color verde para marcar su punto de origen al que volverá después de agarrar la comida para no salirse del patrón. La última parte del bot se ocupa de diferentes situaciones en las que se usará el color de escape rosa.

Como complemento, también se incluyen la evasión básica del enemigo y un movimiento diagonal en áreas ya pintadas (pero aún no se han probado).

Por último, pero no menos importante, el bot dibuja algunos hermosos patrones abstractos, cuando se deja solo:

Patrón de descripción general del bot Hoppemaur al final del juego


3
Bienvenido al sitio! Los desafíos de KoTH son a menudo los más fáciles de atravesar aquí, aunque son mucho menos comunes. Creo que hay tres o cuatro más antiguos con controladores todavía disponibles que podrían ser interesantes de intentar, incluso si oficialmente han terminado. CodeBots 4 (bots que se inyectan el código entre ellos) y Prisoners Dillema 3 (placa de Petri). También Battle of the Fellowship y Worldwide Pandemic. Sé que PD estaba en Python y creo que CB estaba en Java, no recuerdo los otros.
Draco18s

Gracias, @ Draco18s! Podría comprobar esos desafíos anteriores, pero no antes de que pudiera construir una colonia de hormigas bot :-)
Pelle Lundkvist

6

La formación

Este envío está alojado en un repositorio de github .

var marcher_count;var gatherer_count;var excess_gatherers;var tcell;var lh_cell;var rh_cell;var ant_off;var alt_cell;var cell_off;function debug(message)
{}
const MARCHER_A=1;const MARCHER_B=2;const GATHERER=3;const QUEEN=5;const S_END=[6,5,7,4,0,2,1,3];const S_FRONT=[7,5,6,0,4,1,3,2];const S_SIDE=[7,3,5,1,6,2,0,4];const S_GATHERER=[7,6,5,4,0,3,2,1];const SCAN_MOVES=[0,1,2,3,5,6,7,8];const CORNERS=[0,2,6,8];const EDGES=[1,3,5,7];const CCW=[[0,3,6,7,8,5,2,1],[1,0,3,6,7,8,5,2],[2,1,0,3,6,7,8,5],[3,6,7,8,5,2,1,0],[4,4,4,4,4,4,4,4],[5,2,1,0,3,6,7,8],[6,7,8,5,2,1,0,3],[7,8,5,2,1,0,3,6],[8,5,2,1,0,3,6,7]];const NEARS=[[6,5,3,5,4,2,3,2,1],[5,6,5,4,5,4,2,3,2],[3,5,6,2,4,5,1,2,3],[5,4,2,6,5,3,5,4,2],[4,5,4,5,6,5,4,5,4],[2,4,5,3,5,6,2,4,5],[3,2,1,5,4,2,6,5,3],[2,3,2,4,5,4,5,6,5],[1,2,3,2,4,5,3,5,6]];const SAN_ORD=[[1,3,6,2,5,7,8],[0,2,5,3,6,8,7],[5,1,0,8,7,3,6],[6,0,1,7,8,2,5],[],[2,8,7,1,0,6,3],[3,7,8,0,1,5,2],[8,6,3,5,2,0,1],[7,5,2,6,3,1,0]];const D_MARCH=1;const D_FOOD=2;const D_STALLED=3;const D_GATHERER=4;const U_REALIGN=5;const U_SENTINEL=6;const U_READY=7;const U_PANIC=8;const PUPS=[[0,1,2,3,4,5,6,7,8],[1,1,0,0,0,1,1,0,1],[2,0,2,0,4,2,2,0,2],[3,0,0,3,4,3,3,0,3],[4,0,4,4,4,4,0,0,4],[5,1,2,3,4,5,5,0,5],[6,1,2,3,0,5,5,0,6],[7,0,0,0,0,0,0,7,7],[8,1,2,3,4,5,6,7,8]];const PDOWNS=[[0,1,2,3,4,5,6,7,8],[1,1,0,3,4,5,5,0,1],[2,0,2,3,4,5,5,0,2],[3,3,3,3,3,3,3,3,3],[4,4,4,3,4,0,0,0,4],[5,5,5,3,0,5,5,0,5],[6,5,5,3,0,5,5,0,6],[7,0,0,3,0,0,0,7,7],[8,1,2,3,4,5,6,7,8]];const PSIDES=[[0,1,2,3,4,5,6,7,8],[1,1,0,3,4,1,1,0,1],[2,0,2,0,4,5,5,0,2],[3,3,0,3,3,3,3,3,3],[4,4,4,3,4,0,0,0,4],[5,1,5,3,0,5,5,0,5],[6,1,5,3,0,5,5,0,6],[7,0,0,3,0,0,0,7,7],[8,1,2,3,4,5,6,7,8]];const INIT_SEED=3734978372;const FINAL_SEED=2338395782;const SRECOLOR_PROB=0.7;const SONSTRIDE_PROB=0.5;const QFSPAWNP_MAX=0.05;const QFSPAWNP_MIN=0.00;const QFSPAWNP_DECAY=0.005;const QBSPAWNP_MAX=0.65;const QBSPAWNP_MIN=0.55;const QBSPAWNP_DECAY=0.01;const QFORMP_MAX=0.5;const QFORMP_MIN=0.3;const QFORMP_DECAY=0.01;const DISCOLORT=35;const ERASET=20;const SOBSTRUCT_FUZZ=6;const SSTRIDE_FUZZ=6;const OBSTRUCT_QWT=3;const SPREFWT=2;var state=null;function rand_init()
{state=INIT_SEED;for(var cell=0;cell<9;cell++)
{var v=view[cell];state^=v.color;state^=v.food<<3;if(v.ant!==null)
{state^=v.ant.friend<<4;state^=v.ant.type<<5;state^=v.ant.food<<8;}
ant_rand();}
state^=FINAL_SEED;if(state===0)state=1;}
function ant_rand()
{if(state===null)rand_init();state^=state<<13;state^=state>>>17;state^=state<<5;return state>>>0;}
function rand_choice(prob)
{return ant_rand()/4294967296<prob;}
function rand_sub(array,num)
{var return_array=array.slice();for(var i=0;i<num;i++)
{var rand_index=i+ant_rand()%(array.length-i);var x_val=return_array[rand_index];return_array[rand_index]=return_array[i];return_array[i]=x_val;}
return return_array.slice(0,num);}
function rand_perm(array)
{var return_array=array.slice();for(var i=0;i<array.length-1;i++)
{var rand_index=i+ant_rand()%(array.length-i)
var x_val=return_array[rand_index];return_array[rand_index]=return_array[i];return_array[i]=x_val;}
return return_array;}
function index_sort(arr)
{var index_array=[];for(var i=0;i<arr.length;i++)index_array.push(i);index_array.sort((a,b)=>(arr[a]===arr[b])?(a-b):(arr[a]-arr[b]));return index_array;}
function this_ant()
{return view[4].ant;}
function c_at(cell)
{return view[cell].color;}
function is_ally(cell)
{return view[cell].ant!==null&&view[cell].ant.friend===true;}
function is_enemy(cell)
{return view[cell].ant!==null&&view[cell].ant.friend===false;}
function is_harvestable(cell)
{return is_enemy(cell)&&view[cell].ant.type===QUEEN&&view[cell].ant.food>0;}
function lchk(c)
{if(is_ally(CCW[c][6])&&view[CCW[c][6]].ant.type===GATHERER)
if(is_ally(CCW[c][5])&&view[CCW[c][5]].ant.type!==GATHERER)return D_GATHERER;if(is_ally(CCW[c][7])&&view[CCW[c][7]].ant.type===GATHERER&&is_ally(CCW[c][1]))return D_GATHERER;if(is_ally(CCW[c][5])&&view[CCW[c][5]].ant.type===GATHERER)
if(is_ally(CCW[c][3])&&c_at(4)===D_MARCH)return D_STALLED;if(view[CCW[c][6]].food===1&&is_ally(CCW[c][5])&&view[CCW[c][5]].ant.type!==GATHERER)return D_FOOD;if(view[CCW[c][7]].food===1&&is_ally(CCW[c][1])&&c_at(CCW[c][1])===D_FOOD)return D_FOOD;if(view[CCW[c][5]].food===1&&is_ally(CCW[c][3])&&view[CCW[c][3]].ant.type!==QUEEN&&c_at(4)===D_MARCH)return U_REALIGN;return null;}
function lchk2(c)
{if(is_ally(CCW[c][6])&&view[CCW[c][6]].ant.type===GATHERER)
if(is_ally(CCW[c][5])&&view[CCW[c][5]].ant.type!==GATHERER)return D_GATHERER;if(is_ally(CCW[c][7])&&view[CCW[c][7]].ant.type===GATHERER&&is_ally(CCW[c][1]))return D_GATHERER;if(is_ally(CCW[c][5])&&view[CCW[c][5]].ant.type===GATHERER)
if(is_ally(CCW[c][3])&&c_at(4)===D_MARCH)return D_STALLED;if(is_ally(CCW[c][2])&&view[CCW[c][2]].ant.type===GATHERER)
if(is_ally(CCW[c][1])&&view[CCW[c][1]].ant.type!==GATHERER)return D_GATHERER;if(is_ally(CCW[c][3])&&view[CCW[c][3]].ant.type===GATHERER)
if(is_ally(CCW[c][5])&&c_at(CCW[c][5])===D_GATHERER)return D_GATHERER;if(is_ally(CCW[c][1])&&view[CCW[c][1]].ant.type===GATHERER)
if(is_ally(CCW[c][7])&&c_at(4)===D_MARCH)return D_STALLED;if(view[CCW[c][6]].food===1&&is_ally(CCW[c][5])&&view[CCW[c][5]].ant.type!==GATHERER)return D_FOOD;if(view[CCW[c][7]].food===1&&is_ally(CCW[c][1])&&c_at(CCW[c][1])===D_FOOD)return D_FOOD;if(view[CCW[c][5]].food===1&&is_ally(CCW[c][3])&&view[CCW[c][3]].ant.type!==QUEEN&&c_at(4)===D_MARCH)return U_REALIGN;if(view[CCW[c][2]].food===1&&is_ally(CCW[c][1])&&view[CCW[c][1]].ant.type!==GATHERER)return D_FOOD;if(view[CCW[c][3]].food===1&&is_ally(CCW[c][5])&&c_at(CCW[c][5])===D_FOOD)return{cell:4,color:D_FOOD};if(view[CCW[c][1]].food===1&&is_ally(CCW[c][7])&&view[CCW[c][7]].ant.type!==QUEEN&&c_at(4)===D_MARCH)return U_REALIGN;return null;}
function sigc(output,order,c)
{if(c_at(4)===output)
for(cell_off of order)
{var tcell=CCW[c][cell_off];if(!is_ally(tcell)&&c_at(tcell)!==D_MARCH)
{if(view[tcell].food!==0&&view[tcell].color===D_FOOD)
{for(alt_cell of SCAN_MOVES)
{var n_wt=NEARS[tcell][alt_cell];if(n_wt>3&&n_wt<6&&is_ally(alt_cell))
if(view[alt_cell].ant.type===QUEEN||view[alt_cell].ant.type===GATHERER)
continue;}}
return{cell:tcell,color:D_MARCH};}}
return{cell:4,color:output};}
function is_gatherer_marcher(cell)
{if(!is_ally(cell)||view[cell].ant.food>0||view[cell].ant.type!==GATHERER)return false;if(this_ant().type===QUEEN)return true;lh_cell=CCW[cell][1];rh_cell=CCW[cell][7];if(is_ally(lh_cell)&&view[lh_cell].ant.type===QUEEN)return!is_ally(rh_cell)
else if(is_ally(rh_cell)&&view[rh_cell].ant.type===QUEEN)return!is_ally(lh_cell)
else return false;}
function is_like(cell)
{if(c_at(cell)===U_PANIC)return false;if(is_ally(CCW[cell][1])&&c_at(CCW[cell][1])===U_PANIC)return false;if(is_ally(CCW[cell][7])&&c_at(CCW[cell][7])===U_PANIC)return false;if(CORNERS.includes(cell)&&is_ally(cell))
{switch(view[cell].ant.type)
{case MARCHER_A:return view[cell].ant.food===0&&this_ant().type!==MARCHER_B;case MARCHER_B:return view[cell].ant.food===0&&this_ant().type!==MARCHER_A;case GATHERER:return is_gatherer_marcher(cell)&&this_ant().type!==GATHERER;case QUEEN:return true;default:return false;}}
return false;}
function is_other(cell)
{if(c_at(cell)===U_PANIC)return false;if(EDGES.includes(cell)&&is_ally(cell))
{switch(view[cell].ant.type)
{case MARCHER_A:return view[cell].ant.food===0&&this_ant().type!==MARCHER_A;case MARCHER_B:return view[cell].ant.food===0&&this_ant().type!==MARCHER_B;case GATHERER:return this_ant().type===QUEEN
case QUEEN:return true;default:return false;}}
return false;}
function view_corner()
{var scores=[0,0,0,0];for(var i=0;i<4;i++)
for(var j=0;j<8;j++)
{scores[i]*=2;var tcell=CCW[CORNERS[i]][j];if(is_ally(tcell)&&(is_like(tcell)||is_other(tcell)))scores[i]++;}
if(scores[0]>scores[1]&&scores[0]>scores[2]&&scores[0]>scores[3])return CORNERS[0];else if(scores[1]>scores[2]&&scores[1]>scores[3])return CORNERS[1];else if(scores[2]>scores[3])return CORNERS[2];else return CORNERS[3];}
const ONE_EDGE=10;const ONE_CORNER=11;const EE_BENT=20;const EE_STRAIGHT=21;const EC_LEFT=22;const EC_RIGHT=23;const EC_SKEWED=24;const EC_SPAWN=25;const CC_EDGED=26;const CC_LINE=27;const THREE_MARCH=30;const THREE_STAND=31;const THREE_RECOVER=32;const THREE_UNSTAND=33;const THREE_BLOCK=34;const THREE_HANG=35;const THREE_UNHANG=36;const THREE_SIDE=37;const FOUR_Z=40;const FOUR_STAIRS=41;const FOUR_BENT=42;function neighbor_type(top_left)
{var corners=[];for(tcell of CORNERS)
if(is_ally(tcell)&&is_like(tcell))corners.push(tcell);var edges=[];for(tcell of EDGES)
if(is_ally(tcell)&&is_other(tcell))edges.push(tcell);if(corners.length===1&&edges.length===0)return ONE_CORNER;if(corners.length===0&&edges.length===1)return ONE_EDGE;if(corners.length===0&&edges.length===2)return(edges[1]===CCW[edges[0]][4])?EE_STRAIGHT:EE_BENT;if(corners.length===2&&edges.length===0)return(corners[1]===CCW[corners[0]][4])?CC_LINE:CC_EDGED;else if(corners.length===1&&edges.length===1)
{if(edges[0]===CCW[top_left][1])return EC_LEFT;if(edges[0]===CCW[top_left][3])return EC_SPAWN;if(edges[0]===CCW[top_left][5])return EC_SKEWED;if(edges[0]===CCW[top_left][7])return EC_RIGHT;return null;}
else if(corners.length===1&&edges.length===2)
{if(edges.includes(CCW[top_left][1])&&edges.includes(CCW[top_left][3]))return THREE_MARCH;if(edges.includes(CCW[top_left][3])&&edges.includes(CCW[top_left][7]))return THREE_STAND;if(edges.includes(CCW[top_left][1])&&edges.includes(CCW[top_left][5]))return THREE_RECOVER;if(edges.includes(CCW[top_left][5])&&edges.includes(CCW[top_left][7]))return THREE_UNSTAND;if(edges.includes(CCW[top_left][1])&&edges.includes(CCW[top_left][7]))return THREE_BLOCK;return null;}
else if(corners.length===2&&edges.length===1)
{if(corners.includes(CCW[top_left][4])&&edges.includes(CCW[top_left][3]))return THREE_HANG;if(corners.includes(CCW[top_left][4])&&edges.includes(CCW[top_left][1]))return THREE_UNHANG;if(corners.includes(CCW[top_left][2])&&edges.includes(CCW[top_left][1]))return THREE_SIDE;}
else if(corners.length===2&&edges.length===2)
{if(edges.includes(CCW[top_left][3])&&edges.includes(CCW[top_left][7])&&corners.includes(CCW[top_left][4]))
return FOUR_Z;if(edges.includes(CCW[top_left][1])&&edges.includes(CCW[top_left][3])&&corners.includes(CCW[top_left][4]))
return FOUR_STAIRS;if(edges.includes(CCW[top_left][1])&&edges.includes(CCW[top_left][3])&&corners.includes(CCW[top_left][2]))
return FOUR_BENT;return null;}
return null;}
function sok(cand)
{if(cand===4)return true;if(view[cand].food!==0&&this_ant().food!==0)return false;if(view[cand].ant!==null)return false;return true;}
function spref(cand)
{var okscore=0;if(cand===4)okscore-=9;if(this_ant().type===GATHERER)
{for(tcell of SCAN_MOVES)
if(NEARS[cand][tcell]>1)
if(is_ally(tcell)&&view[tcell].ant.type===QUEEN)okscore-=1;}
else
{if(this_ant().food===0&&view[cand].food!==0)
{for(tcell of SCAN_MOVES)
if(is_ally(tcell)&&view[tcell].ant.food===0)
{if([MARCHER_A,MARCHER_B].includes(view[tcell].ant.type))
{var has_common_enemy=false;for(var i=0;i<9;i++)
if(is_enemy(i)&&NEARS[tcell][i]>=4)has_common_enemy=true;if(!has_common_enemy)
{var wt=(view[tcell].ant.type===this_ant().type)?1:-1;if(NEARS[4][tcell]===5)okscore+=wt;if(NEARS[4][tcell]===4)okscore-=wt;if(NEARS[cand][tcell]===5)okscore-=wt;if(NEARS[cand][tcell]===4)okscore+=wt;}}}
if(okscore>0)okscore=0;}}
return okscore*SPREFWT;}
function ssep()
{var has_ally=false;var cands=[0,0,0,0,0,0,0,0,0];for(var i=0;i<9;i++)cands[i]+=spref(i);for(tcell of SCAN_MOVES)
{if(is_ally(tcell))
{has_ally=true;var wt=(is_like(tcell)||is_other(tcell))?3:1;for(var i=0;i<9;i++)cands[i]-=NEARS[tcell][i]*wt;}}
if(!has_ally)return null;var prox_order=index_sort(cands);for(var i=8;i>=0;i--)
{var i_cell=prox_order[i];if(sok(i_cell))return{cell:i_cell};}
return null;}
function sstep(col)
{if(c_at(4)===1)return{cell:4,color:col};var cands=[0,0,0,0,0,0,0,0,0];for(tcell of SCAN_MOVES)
if(c_at(tcell)===col)
for(var i=0;i<9;i++)cands[i]-=NEARS[tcell][i];for(var i=0;i<9;i++)cands[i]+=spref(i);var prox_order=index_sort(cands);for(var i=8;i>=0;i--)
{var i_cell=prox_order[i];if(sok(i_cell))return{cell:i_cell};}
return{cell:4,color:col};}
function smove()
{for(tcell of rand_perm(SCAN_MOVES))
if(sok(tcell))return{cell:tcell};return{cell:4};}
function sdec_alone()
{var try_sep=ssep();if(try_sep!==null)return try_sep;var c=U_PANIC;for(tcell of rand_sub(SCAN_MOVES,7))
if(c_at(tcell)>1&&c_at(tcell)!==c)
{c=c_at(tcell);break;}
return sstep(c);}
function sdec_erase()
{var try_sep=ssep();if(try_sep!==null)return try_sep;for(tcell of rand_perm(SCAN_MOVES))
if(c_at(tcell)!==1)return{cell:tcell,color:1};if(c_at(4)!==1)return{cell:4,color:1};return sdec_alone();}
function sdec_discolor()
{if(c_at(1)!==c_at(6)&&c_at(6)!==1)return{cell:1,color:c_at(6)};if(c_at(2)!==c_at(3))return{cell:3,color:c_at(2)};var proximities=[0,0,0,0,0,0,0,0,0];for(var i=0;i<9;i++)proximities[i]+=ant_rand()%SOBSTRUCT_FUZZ+spref(i);for(tcell of SCAN_MOVES)
if(is_ally(tcell))
for(var i=0;i<9;i++)proximities[i]+=NEARS[tcell][i];var prox_order=index_sort(proximities);for(var i=8;i>=0;i--)
if(sok(prox_order[i]))return{cell:prox_order[i]};return smove();}
function sdec_stride()
{if(rand_choice(SONSTRIDE_PROB))
{var stride_scores=[0,0,0,0,0,0,0,0,0];for(tcell of SCAN_MOVES)
{for(var i=0;i<9;i++)
if(c_at(tcell)!==c_at(i)&&c_at(i)!==1)stride_scores[i]+=NEARS[tcell][i];}
for(var i=0;i<9;i++)
stride_scores[i]+=ant_rand()%SSTRIDE_FUZZ+spref(i);var prox_order=index_sort(stride_scores);for(var i=8;i>=0;i--)
if(sok(prox_order[i]))return{cell:prox_order[i]};}
return smove();}
function sdec_obstruct_textured()
{var proximities=[0,0,0,0,0,0,0,0,0];for(tcell of SCAN_MOVES)
{if(is_enemy(tcell))
{var wt=(view[tcell].ant.type===QUEEN)?OBSTRUCT_QWT:1;for(var i=0;i<9;i++)proximities[i]+=NEARS[tcell][i]*wt;}}
for(var i=0;i<9;i++)proximities[i]+=ant_rand()%SOBSTRUCT_FUZZ;var prox_order;if(rand_choice(SRECOLOR_PROB))
{prox_order=index_sort(proximities);for(var i=8;i>0;i--)
{var i_cell=prox_order[i];for(var j=0;j<i;j++)
{var j_cell=prox_order[j];if(c_at(i_cell)!==c_at(j_cell))return{cell:i_cell,color:c_at(j_cell)};}}}
for(tcell of SCAN_MOVES)
if(is_ally(tcell))
for(var i=0;i<9;i++)proximities[i]+=NEARS[tcell][i];for(var i=0;i<9;i++)proximities[i]+=spref(i);prox_order=index_sort(proximities);for(var i=8;i>=0;i--)
if(sok(prox_order[i]))return{cell:prox_order[i]};return{cell:4,color:1};}
function sdec_obstruct_flat()
{var proximities=[0,0,0,0,0,0,0,0,0];for(tcell of SCAN_MOVES)
{if(is_enemy(tcell))
{var wt=(view[tcell].ant.type===QUEEN)?OBSTRUCT_QWT:1;for(var i=0;i<9;i++)proximities[i]+=NEARS[tcell][i]*wt;}}
for(var i=0;i<9;i++)proximities[i]+=ant_rand()%SOBSTRUCT_FUZZ;var prox_order;if(rand_choice(SRECOLOR_PROB))
{prox_order=index_sort(proximities);for(var i=8;i>0;i--)
{var i_cell=prox_order[i];if(c_at(i_cell)!==D_MARCH)return{cell:i_cell,color:D_MARCH};}}
for(tcell of SCAN_MOVES)
if(is_ally(tcell))
for(var i=0;i<9;i++)proximities[i]+=NEARS[tcell][i];for(var i=0;i<9;i++)proximities[i]+=spref(i);prox_order=index_sort(proximities);for(var i=8;i>=0;i--)
if(sok(prox_order[i]))return{cell:prox_order[i]};return{cell:4,color:1};}
function saboteur()
{var colored_neighbors=0;for(tcell of SCAN_MOVES)
if(c_at(tcell)>1)colored_neighbors++;if(colored_neighbors<=2)return sdec_alone();else
{var num_enemies=0;for(tcell of SCAN_MOVES)
if(is_enemy(tcell))num_enemies++;var diversity=0;var counts=[0,0,0,0,0,0,0,0,0];for(var i=0;i<9;i++)
{diversity+=5-counts[c_at(i)];counts[c_at(i)]++;}
if(num_enemies>0)
{if(diversity>=ERASET)return sdec_obstruct_textured();else return sdec_obstruct_flat();}
else
{if(diversity>=DISCOLORT)return sdec_discolor();else if(diversity>=ERASET)return sdec_stride();else return sdec_erase();}}}
function gwatch(cand)
{if(cand.cell===4)return cand;if(cand.hasOwnProperty("color"))return cand;if(view[cand.cell].food!==0&&this_ant().food!==0)return sigc(U_PANIC,S_SIDE,0);if(view[cand.cell].ant!==null)return sigc(U_PANIC,S_SIDE,0);return cand;}
function egwatch(cand)
{if(cand.cell===4)return cand;if(cand.hasOwnProperty("color"))return cand;if(view[cand.cell].food!==0&&this_ant().food!==0)return gwatch(sdec_erase());if(view[cand.cell].ant!==null)return gwatch(sdec_erase());return cand;}
function gdec_ee_bent(c)
{return{cell:CCW[c][4]};}
function gdec_ec_left(c)
{if(c_at(c)===D_FOOD&&c_at(CCW[c][1])===D_FOOD)return{cell:CCW[c][7]};if(c_at(c)===D_STALLED&&c_at(CCW[c][1])===D_STALLED)return sigc(U_READY,S_GATHERER,c);if(c_at(c)===D_MARCH&&c_at(CCW[c][1])===D_MARCH)return sigc(D_MARCH,S_GATHERER,c);return sigc(c_at(4),S_GATHERER,c);}
function gdec_ec_right(c)
{if([D_MARCH,D_FOOD].includes(c_at(c))&&[D_MARCH,D_FOOD].includes(c_at(CCW[c][7])))
return{cell:CCW[c][6]};if(is_ally(c)&&view[c].ant.type===QUEEN)
return{cell:CCW[c][1]};if(c_at(c)===D_STALLED&&c_at(CCW[c][7])===D_STALLED)
return sigc(U_READY,S_GATHERER,c);return sigc(c_at(4),S_GATHERER,c);}
function gdec_cc_edged(c)
{if(view[CCW[c][2]].ant.type!==QUEEN)return saboteur();return{cell:CCW[c][1]};}
function gdec_three_block(c)
{if(c_at(CCW[c][7])==D_FOOD)return{cell:CCW[c][6]};return{cell:CCW[c][2]};}
function gdec_three_unstand(c)
{if(view[CCW[c][5]].ant.type!==QUEEN)return saboteur();return{cell:CCW[c][4]};}
function gdec_four_bent(c)
{return{cell:CCW[c][4]};}
function early_gatherer()
{var qcell=null;var food_count=0;for(tcell of SCAN_MOVES)
{if(is_ally(tcell)&&view[tcell].ant.type===QUEEN)qcell=tcell;else if(is_enemy(tcell))return saboteur();}
if(qcell===null)return saboteur();if(c_at(qcell)===D_FOOD)return{cell:CCW[qcell][7]};if(this_ant().food===0)
{for(tcell of rand_perm(CORNERS))
if(view[tcell].food>0&&NEARS[tcell][qcell]===5)
{if(c_at(tcell)===D_FOOD)return{cell:tcell};else return{cell:tcell,color:D_FOOD};}
for(tcell of rand_perm(EDGES))
if(view[tcell].food>0)
{if(c_at(tcell)!==D_FOOD&&NEARS[tcell][qcell]===4)
return{cell:tcell,color:D_FOOD};}}
return{cell:CCW[qcell][1]};}
function gatherer_retrieve()
{if(c_at(4)===U_PANIC)return saboteur();var c=view_corner();switch(neighbor_type(c))
{case EC_LEFT:return gwatch({cell:CCW[c][2]});case THREE_BLOCK:{if(c_at(CCW[c][7])===D_FOOD)return gwatch({cell:CCW[c][6]});return gwatch({cell:CCW[c][2]});}
case FOUR_BENT:return gwatch(sigc(c_at(4),S_FRONT,c));default:return early_gatherer();}}
function gatherer_return()
{if(c_at(4)===U_PANIC)return saboteur();var c=view_corner();switch(neighbor_type(c))
{case EC_LEFT:return gwatch({cell:CCW[c][2]});case THREE_BLOCK:return gwatch({cell:CCW[c][2]});case FOUR_BENT:return gwatch({cell:CCW[c][4]});default:return early_gatherer();}}
function gatherer_formation()
{if(c_at(4)===U_PANIC)return saboteur();var c=view_corner();switch(neighbor_type(c))
{case EC_LEFT:return gwatch(gdec_ec_left(c));case EC_RIGHT:return gwatch(gdec_ec_right(c));case CC_EDGED:return gwatch(gdec_cc_edged(c));case EE_BENT:return gwatch(gdec_ee_bent(c));case THREE_BLOCK:return gwatch(gdec_three_block(c));case THREE_UNSTAND:return gwatch(gdec_three_unstand(c));case FOUR_BENT:return gwatch(gdec_four_bent(c));default:return egwatch(early_gatherer());}}
function gatherer_decision()
{var marcher_count=0;var gatherer_count=0;var queen_pos=null;for(tcell of SCAN_MOVES)
if(is_ally(tcell))
{if(view[tcell].ant.type===MARCHER_A||view[tcell].ant.type===MARCHER_B)marcher_count++;if(view[tcell].ant.type===GATHERER)gatherer_count++;if(view[tcell].ant.type===QUEEN)queen_pos=tcell;}
if(gatherer_count>0)return saboteur();if(this_ant().food>0&&marcher_count>0)return gwatch(gatherer_return());else if(queen_pos!==null&&marcher_count>0)return gwatch(gatherer_formation());else if(marcher_count>0)return gwatch(gatherer_retrieve());else if(queen_pos!==null)return egwatch(early_gatherer());else return saboteur();}
function mdec_one_corner(c)
{if(view[c].ant.type===QUEEN)
return sigc(c_at(4),S_SIDE,c);else return saboteur();}
function mdec_one_edge(c)
{if([U_REALIGN,D_MARCH].includes(c_at(CCW[c][1])))
{if(view[CCW[c][2]].food===1)return{cell:c};if(is_ally(CCW[c][2])&&view[CCW[c][2]].ant.type===GATHERER)return{cell:c};}
return saboteur();}
function mdec_ee_bent(c)
{if(view[CCW[c][1]].ant.type===GATHERER&&view[CCW[c][3]].ant.type===QUEEN)return saboteur();if(view[CCW[c][1]].ant.type===QUEEN&&view[CCW[c][3]].ant.type===GATHERER)return saboteur();var u_sig=c_at(CCW[c][1]);var d_sig=c_at(CCW[c][3]);if(is_ally(c)&&view[c].ant.type===GATHERER)return sigc(c_at(4),S_SIDE,CCW[c][4]);var provisional=lchk(c);if(provisional!==null)
{if(provisional===U_REALIGN)return sigc(U_SENTINEL,S_END,c);return sigc(provisional,S_END,c);}
if(u_sig===D_STALLED)
{if([D_STALLED,U_READY,D_GATHERER].includes(d_sig)&&[D_STALLED,U_READY].includes(c_at(4)))
return sigc(D_STALLED,S_SIDE,c);if(d_sig===U_REALIGN&&c_at(4)===D_STALLED)
return sigc(D_STALLED,S_SIDE,c);}
if(view[CCW[c][1]].ant.type===QUEEN)
{var provisional=lchk(CCW[c][4]);if(provisional!==null)return sigc(provisional,S_END,CCW[c][4]);if(u_sig===D_GATHERER&&d_sig===U_REALIGN&&c_at(4)===D_GATHERER)
return sigc(D_GATHERER,S_END,CCW[c][4]);}
if(u_sig===U_SENTINEL)
{if(d_sig===U_REALIGN&&[D_MARCH,U_SENTINEL].includes(c_at(4)))return sigc(U_SENTINEL,S_SIDE,c);if(d_sig===D_STALLED&&[U_SENTINEL,D_STALLED].includes(c_at(4)))return sigc(U_SENTINEL,S_SIDE,c);if(d_sig===D_MARCH&&[U_SENTINEL,D_MARCH].includes(c_at(4)))return sigc(D_MARCH,S_SIDE,c);}
if(u_sig===D_GATHERER&&d_sig===D_STALLED&&c_at(4)===D_GATHERER)return sigc(D_STALLED,S_SIDE,c);return{cell:CCW[c][2]};}
function mdec_ee_straight(c)
{return sigc(U_REALIGN,S_SIDE,c);}
function mdec_ec_left(c)
{if(view[CCW[c][1]].ant.type===GATHERER&&view[c].ant.type===QUEEN)return saboteur();if(view[CCW[c][1]].ant.type===QUEEN&&view[c].ant.type===GATHERER)return saboteur();if(is_other(CCW[c][1])&&view[c].ant.type===QUEEN)return{cell:CCW[c][3]};var d_sig=PDOWNS[c_at(c)][c_at(CCW[c][1])];if(is_ally(CCW[c][4])&&view[CCW[c][4]].ant.type===GATHERER&&d_sig===D_STALLED&&c_at(4)===D_STALLED)
return sigc(D_STALLED,S_END,c);var provisional=lchk(CCW[c][4]);if(provisional!==null)
{if(provisional===U_REALIGN)return sigc(U_SENTINEL,S_END,CCW[c][4]);return sigc(provisional,S_END,CCW[c][4]);}
if(d_sig===U_REALIGN)
{if(c_at(4)===D_MARCH)return sigc(U_SENTINEL,S_END,CCW[c][4]);if(c_at(4)===U_SENTINEL)
{if(c_at(c)===D_MARCH)return{cell:CCW[c][2]};return sigc(U_SENTINEL,S_END,CCW[c][4]);}}
if(d_sig===D_STALLED)
{if([D_MARCH,D_STALLED].includes(c_at(4)))return sigc(D_STALLED,S_END,CCW[c][4]);if(c_at(4)===U_SENTINEL)return sigc(U_SENTINEL,S_END,CCW[c][4]);}
if(d_sig===D_GATHERER)
{if(c_at(4)===D_FOOD)return sigc(D_GATHERER,S_END,CCW[c][4]);if(c_at(4)===D_GATHERER)return sigc(D_STALLED,S_END,CCW[c][4]);}
if(d_sig===U_READY)
{if(c_at(4)===D_STALLED)
{if(c_at(CCW[c][2])!==D_MARCH)return{cell:CCW[c][2],color:D_MARCH};return sigc(D_MARCH,S_END,CCW[c][4]);}
if(c_at(4)===U_SENTINEL)return sigc(D_MARCH,S_END,CCW[c][4]);}
return{cell:CCW[c][2]};}
function mdec_ec_right(c)
{if(view[c].ant.type===GATHERER&&view[CCW[c][7]].ant.type===QUEEN)
if(is_ally(CCW[c][4])&&view[CCW[c][4]].ant.type!==this_ant().type)return{cell:CCW[c][5]};var d_sig=PDOWNS[c_at(c)][c_at(CCW[c][7])];var provisional=lchk(CCW[c][4]);if(provisional!==null)
{if(provisional===U_REALIGN)return sigc(U_SENTINEL,S_END,CCW[c][4]);return sigc(provisional,S_END,CCW[c][4]);}
if(d_sig===D_MARCH)
{if(c_at(4)===D_MARCH)return sigc(D_MARCH,S_END,CCW[c][4]);if([D_FOOD,D_GATHERER,U_READY].includes(c_at(4)))return sigc(D_MARCH,S_END,CCW[c][4]);}
if(d_sig===D_FOOD)
{if([U_SENTINEL,D_STALLED].includes(c_at(4)))return sigc(D_STALLED,S_END,CCW[c][4]);if([D_FOOD,D_GATHERER,U_READY].includes(c_at(4)))return sigc(D_STALLED,S_END,CCW[c][4]);}
if(d_sig===D_GATHERER)
{if([D_FOOD,D_GATHERER,U_READY].includes(c_at(4)))return sigc(D_MARCH,S_END,CCW[c][4]);if([U_SENTINEL,D_STALLED].includes(c_at(4)))return sigc(D_STALLED,S_END,CCW[c][4]);}
if(d_sig===D_STALLED)
{if(c_at(4)===D_STALLED)return sigc(D_STALLED,S_END,CCW[c][4]);if([D_FOOD,D_GATHERER,U_READY].includes(c_at(4)))return sigc(D_STALLED,S_END,CCW[c][4]);}
if(d_sig===U_READY)
{if(c_at(4)===D_STALLED)return sigc(D_MARCH,S_END,CCW[c][4]);if([D_FOOD,D_GATHERER,U_READY].includes(c_at(4)))return sigc(D_MARCH,S_END,CCW[c][4]);}
if(d_sig===U_REALIGN)
{if(c_at(4)===U_SENTINEL)return{cell:CCW[c][6]};if([D_FOOD,D_GATHERER,U_READY].includes(c_at(4)))return sigc(D_STALLED,S_END,CCW[c][4]);}
return sigc(d_sig,S_END,CCW[c][4]);}
function mdec_ec_spawn(c)
{if(view[c].ant.type===QUEEN&&c_at(c)===D_MARCH&&c_at(CCW[c][3])===D_STALLED)
if(c_at(4)===D_STALLED)return sigc(D_STALLED,S_SIDE,c);return saboteur();}
function mdec_three_march(c)
{var d_sig=PDOWNS[c_at(c)][c_at(CCW[c][1])];var u_sig=c_at(CCW[c][3]);var provisional=lchk2(c);if(provisional!==null)return sigc(provisional,S_FRONT,c);if(u_sig===U_SENTINEL)
{if(d_sig===D_GATHERER&&[D_GATHERER,D_STALLED].includes(c_at(4)))return sigc(D_STALLED,S_FRONT,c);if(d_sig===D_STALLED&&[D_MARCH,D_STALLED].includes(c_at(4)))return sigc(D_STALLED,S_FRONT,c);}
if(u_sig===U_REALIGN)
{if(d_sig===U_REALIGN&&c_at(4)===U_REALIGN)
if(c_at(c)===U_SENTINEL)
{if(c_at(CCW[c][7])===D_MARCH)return sigc(U_REALIGN,S_FRONT,c);return{cell:CCW[c][2]};}
if(d_sig===D_FOOD&&[D_MARCH,D_FOOD].includes(c_at(4)))return sigc(D_FOOD,S_FRONT,c);if(d_sig===U_READY&&c_at(4)===D_STALLED)return sigc(D_MARCH,S_FRONT,c);if(d_sig===D_STALLED&&[D_MARCH,D_STALLED].includes(c_at(4)))return sigc(D_STALLED,S_FRONT,c);if(d_sig===D_GATHERER&&[D_GATHERER,D_STALLED].includes(c_at(4)))return sigc(D_STALLED,S_FRONT,c);if(d_sig===D_MARCH&&c_at(4)===D_STALLED)return sigc(D_STALLED,S_FRONT,c);}
if(u_sig===D_MARCH)
{if(d_sig===D_FOOD&&c_at(4)===D_FOOD)return sigc(D_FOOD,S_FRONT,c);if(d_sig===U_REALIGN&&c_at(4)===D_MARCH)
if(c_at(c)===U_SENTINEL)return sigc(U_REALIGN,S_FRONT,c);if(d_sig===U_READY&&c_at(4)===U_READY)return sigc(D_MARCH,S_FRONT,c);}
if(u_sig===D_STALLED)
{if(d_sig===U_READY&&c_at(4)===D_STALLED)return sigc(U_READY,S_FRONT,c);if(d_sig===D_STALLED&&[D_STALLED,D_MARCH].includes(c_at(4)))return sigc(D_STALLED,S_FRONT,c);if(d_sig===D_GATHERER&&c_at(4)===D_GATHERER)return sigc(D_STALLED,S_FRONT,c);if(d_sig===D_MARCH&&c_at(4)===D_STALLED)return sigc(D_STALLED,S_FRONT,c);if(d_sig===U_REALIGN&&[D_STALLED,D_MARCH].includes(c_at(4)))return sigc(D_STALLED,S_FRONT,c);}
if(u_sig===D_GATHERER)
{if(d_sig===D_STALLED&&c_at(4)===D_GATHERER)
if(view[CCW[c][3]].ant.type===QUEEN)return sigc(D_STALLED,S_FRONT,c);if(d_sig===D_GATHERER&&c_at(4)===D_GATHERER)return sigc(D_GATHERER,S_FRONT,c);if(d_sig===D_FOOD&&c_at(4)===D_GATHERER)return sigc(D_FOOD,S_FRONT,c);}
if(u_sig===D_FOOD)
{if(d_sig===D_FOOD&&c_at(4)===D_FOOD)return sigc(D_FOOD,S_FRONT,c);if(d_sig===D_GATHERER&&c_at(4)===D_GATHERER)return sigc(D_GATHERER,S_FRONT,c);}
return{cell:CCW[c][2]};}
function mdec_three_stand(c)
{var provisional=lchk2(c);if(provisional!==null)return sigc(provisional,S_SIDE,c);var u_sig=c_at(CCW[c][3]);var d_sig=PSIDES[c_at(c)][c_at(CCW[c][7])];if(u_sig===U_REALIGN)
{if([D_MARCH,D_STALLED].includes(d_sig)&&c_at(4)===D_MARCH)return sigc(U_REALIGN,S_SIDE,CCW[c][4]);if(c_at(4)===U_REALIGN)return sigc(U_REALIGN,S_SIDE,CCW[c][4]);}
if(u_sig===D_MARCH&&d_sig===U_REALIGN&&c_at(4)===D_MARCH)return sigc(U_REALIGN,S_SIDE,CCW[c][4]);if(u_sig===D_STALLED&&[D_STALLED,U_REALIGN].includes(d_sig)&&c_at(4)===D_STALLED)
return sigc(D_STALLED,S_SIDE,CCW[c][4]);return sigc(D_MARCH,S_SIDE,CCW[c][4]);}
function mdec_three_unstand(c)
{if(view[CCW[c][5]].ant.type===QUEEN)
{var provisional=lchk(c);if(provisional!==null)return sigc(provisional,S_FRONT,c);var d_sig=PUPS[c_at(c)][c_at(CCW[c][7])];return sigc(d_sig,S_FRONT,c);}
else
{var provisional=lchk(CCW[c][4]);if(provisional!==null)return sigc(provisional,S_FRONT,CCW[c][4]);var u_sig=c_at(CCW[c][5]);var d_sig=PDOWNS[c_at(c)][c_at(CCW[c][7])];if(u_sig===D_MARCH)
{if(d_sig===U_READY&&c_at(4)===U_READY)return sigc(D_MARCH,S_FRONT,CCW[c][4]);if(d_sig===D_FOOD&&c_at(4)===D_MARCH)return sigc(U_REALIGN,S_FRONT,CCW[c][4]);if([D_FOOD,D_GATHERER].includes(c_at(4)))return sigc(D_MARCH,S_FRONT,CCW[c][4]);}
if(u_sig===D_FOOD)
{if(d_sig===D_FOOD&&c_at(4)===D_MARCH)return sigc(U_REALIGN,S_FRONT,CCW[c][4]);if([D_FOOD,D_GATHERER].includes(c_at(4)))return sigc(D_STALLED,S_FRONT,CCW[c][4]);}
if(u_sig===D_GATHERER)
{if(d_sig===D_FOOD&&c_at(4)===D_MARCH)return sigc(U_REALIGN,S_FRONT,CCW[c][4]);if([D_FOOD,D_GATHERER].includes(c_at(4)))return sigc(D_STALLED,S_FRONT,CCW[c][4]);}
if(u_sig===D_STALLED)
{if(d_sig===U_READY)
{if(c_at(4)===D_STALLED)return sigc(U_READY,S_FRONT,CCW[c][4]);if(c_at(4)===D_GATHERER)return sigc(D_STALLED,S_FRONT,CCW[c][4]);}
if(d_sig===D_FOOD)
{if(c_at(4)===D_MARCH)return sigc(U_REALIGN,S_FRONT,CCW[c][4]);if(c_at(4)===D_GATHERER)return sigc(D_STALLED,S_FRONT,CCW[c][4]);}
if(d_sig===D_STALLED)
{if(c_at(4)===D_STALLED)return sigc(D_STALLED,S_FRONT,CCW[c][4]);if(c_at(4)===D_GATHERER)return sigc(D_STALLED,S_FRONT,CCW[c][4]);}
if(d_sig===D_GATHERER&&c_at(4)===D_GATHERER)return sigc(D_STALLED,S_FRONT,CCW[c][4]);if([D_MARCH,U_REALIGN].includes(d_sig)&&c_at(4)===D_GATHERER)
return sigc(D_STALLED,S_FRONT,CCW[c][4]);if(c_at(4)===D_FOOD)return sigc(D_STALLED,S_FRONT,CCW[c][4]);}
if(u_sig===U_REALIGN)
{if(d_sig===D_FOOD&&c_at(4)===D_MARCH)return sigc(U_REALIGN,S_FRONT,CCW[c][4]);if([D_FOOD,D_GATHERER].includes(c_at(4)))return sigc(D_STALLED,S_FRONT,CCW[c][4]);}
if(u_sig===U_SENTINEL)
{if(d_sig===D_FOOD)
{if(c_at(4)===U_REALIGN)return sigc(D_STALLED,S_FRONT,CCW[c][4]);if(c_at(4)===D_MARCH)return sigc(U_REALIGN,S_FRONT,CCW[c][4]);}
if(d_sig===D_GATHERER&&c_at(4)===U_REALIGN)return sigc(D_STALLED,S_FRONT,CCW[c][4]);if(d_sig===D_MARCH&&c_at(4)===U_SENTINEL)return sigc(D_MARCH,S_FRONT,CCW[c][4]);if(d_sig===D_STALLED&&c_at(4)===U_SENTINEL)return sigc(D_STALLED,S_FRONT,CCW[c][4]);if(d_sig===U_READY&&c_at(4)===D_STALLED)return sigc(U_READY,S_FRONT,CCW[c][4]);if([D_FOOD,D_GATHERER].includes(c_at(4)))return sigc(D_STALLED,S_FRONT,CCW[c][4]);}
if(u_sig===U_READY)
{if(d_sig===D_FOOD&&c_at(4)===D_MARCH)return sigc(U_REALIGN,S_FRONT,CCW[c][4]);if([D_FOOD,D_GATHERER].includes(c_at(4)))return sigc(D_MARCH,S_FRONT,CCW[c][4]);}
return sigc(c_at(4),S_FRONT,CCW[c][4]);}}
function mdec_three_recover(c)
{return sigc(U_SENTINEL,S_FRONT,c);}
function mdec_three_hang(c)
{return sigc(c_at(4),S_SIDE,CCW[c][4]);}
function mdec_three_unhang(c)
{return sigc(c_at(4),S_SIDE,c);}
function mdec_four_z(c)
{var provisional=lchk2(CCW[c][4]);if(provisional!==null)return sigc(provisional,S_SIDE,CCW[c][4]);var u_sig=PSIDES[c_at(c)][c_at(CCW[c][7])];var d_sig=PSIDES[c_at(CCW[c][4])][c_at(CCW[c][3])];if(u_sig===D_FOOD)
{if([D_FOOD,D_STALLED,U_REALIGN].includes(d_sig)&&c_at(4)===U_REALIGN)
return sigc(U_REALIGN,S_SIDE,CCW[c][4]);if(d_sig===D_GATHERER&&[U_REALIGN,D_GATHERER].includes(c_at(4)))
return sigc(U_REALIGN,S_SIDE,CCW[c][4]);}
if(u_sig===D_STALLED)
{if(d_sig===U_REALIGN)return sigc(U_REALIGN,S_SIDE,CCW[c][4]);if(d_sig===D_FOOD&&c_at(4)===U_REALIGN)return sigc(U_REALIGN,S_SIDE,CCW[c][4]);}
if(u_sig===D_GATHERER)
{if(d_sig===U_REALIGN&&c_at(4)===U_REALIGN)return sigc(D_STALLED,S_SIDE,CCW[c][4]);if(d_sig===D_FOOD&&[U_REALIGN,D_GATHERER].includes(c_at(4)))
return sigc(U_REALIGN,S_SIDE,CCW[c][4]);}
if(u_sig===U_REALIGN)
{if(d_sig===D_FOOD&&c_at(4)===U_REALIGN)return sigc(U_REALIGN,S_SIDE,CCW[c][4]);if(d_sig===D_STALLED)return sigc(U_REALIGN,S_SIDE,CCW[c][4]);if(d_sig===D_GATHERER&&c_at(4)===U_REALIGN)return sigc(D_STALLED,S_SIDE,CCW[c][4]);if(d_sig===U_READY&&c_at(4)===U_REALIGN)return sigc(D_MARCH,S_SIDE,CCW[c][4]);}
if(u_sig===U_READY&&d_sig===U_REALIGN&&c_at(4)===U_REALIGN)
return sigc(D_MARCH,S_SIDE,CCW[c][4]);return sigc(D_MARCH,S_SIDE,CCW[c][4]);}
function mdec_four_stairs(c)
{var provisional=lchk2(c);if(provisional!==null)return sigc(provisional,S_SIDE,c);var u_sig=PSIDES[c_at(c)][c_at(CCW[c][1])];var d_sig=PSIDES[c_at(CCW[c][4])][c_at(CCW[c][3])];if(u_sig===D_MARCH)
{if(d_sig===D_FOOD)
{if(c_at(4)===D_MARCH)return sigc(D_FOOD,S_SIDE,c);if(c_at(4)===U_REALIGN)return sigc(D_MARCH,S_SIDE,c);}
if(d_sig===U_READY)
{if(c_at(4)===U_READY)return sigc(D_MARCH,S_SIDE,c);if(c_at(4)===U_REALIGN)return sigc(D_MARCH,S_SIDE,c);}
if(d_sig===D_STALLED)
{if(c_at(4)===D_MARCH)return sigc(D_STALLED,S_SIDE,c);if(c_at(4)===U_REALIGN)return sigc(D_STALLED,S_SIDE,c);}
if(d_sig===D_GATHERER&&c_at(4)===U_REALIGN)return sigc(D_STALLED,S_SIDE,c);if([D_MARCH,U_REALIGN].includes(d_sig)&&c_at(4)===U_REALIGN)return sigc(D_MARCH,S_SIDE,c);}
if(u_sig===D_FOOD)
{if(d_sig===D_MARCH)
{if(c_at(4)===U_REALIGN)return sigc(D_MARCH,S_SIDE,c);if(c_at(4)===D_MARCH)return sigc(D_FOOD,S_SIDE,c);}
if(d_sig===U_READY)
{if(c_at(4)===U_REALIGN)return sigc(D_MARCH,S_SIDE,c);if(c_at(4)===D_STALLED)return sigc(D_STALLED,S_SIDE,c);}
if(d_sig===D_GATHERER&&[U_REALIGN,D_GATHERER].includes(c_at(4)))return sigc(D_FOOD,S_SIDE,c);if([U_REALIGN,D_STALLED].includes(d_sig)&&c_at(4)===U_REALIGN)return sigc(D_STALLED,S_SIDE,c);}
if(u_sig===D_STALLED)
{if(d_sig===D_STALLED)
{if(c_at(4)===D_STALLED)return sigc(D_STALLED,S_SIDE,c);if(c_at(4)===D_MARCH)return sigc(D_STALLED,S_SIDE,c);if(c_at(4)===U_REALIGN)return sigc(D_MARCH,S_SIDE,c);}
if(d_sig===D_MARCH)
{if(c_at(4)===D_MARCH)return sigc(D_STALLED,S_SIDE,c);if(c_at(4)===U_REALIGN)return sigc(D_STALLED,S_SIDE,c);}
if(d_sig===D_GATHERER)
{if(c_at(4)===U_REALIGN)return sigc(D_MARCH,S_SIDE,c);if([D_STALLED,D_GATHERER].includes(c_at(4)))return sigc(D_STALLED,S_SIDE,c);}
if(d_sig===U_READY)
{if(c_at(4)===D_STALLED)return sigc(U_READY,S_SIDE,c);if(c_at(4)===U_REALIGN)return sigc(D_MARCH,S_SIDE,c);}
if(d_sig===U_REALIGN&&[U_REALIGN,D_MARCH].includes(c_at(4)))return sigc(D_STALLED,S_SIDE,c);if(d_sig===D_FOOD&&c_at(4)===U_REALIGN)return sigc(D_STALLED,S_SIDE,c);}
if(u_sig===D_GATHERER)
{if(d_sig===D_STALLED)
{if([D_STALLED,D_GATHERER].includes(c_at(4)))return sigc(D_STALLED,S_SIDE,c);if(c_at(4)===U_REALIGN)return sigc(D_STALLED,S_SIDE,c);}
if(d_sig===U_READY)
{if(c_at(4)===D_STALLED)return sigc(D_STALLED,S_SIDE,c);if(c_at(4)===U_REALIGN)return sigc(D_STALLED,S_SIDE,c);}
if(d_sig===D_FOOD&&[D_GATHERER,U_REALIGN].includes(c_at(4)))return sigc(D_FOOD,S_SIDE,c);if([D_MARCH,U_REALIGN].includes(d_sig)&&c_at(4)===U_REALIGN)return sigc(D_STALLED,S_SIDE,c);if(d_sig===D_GATHERER&&c_at(4)===U_REALIGN)return sigc(D_STALLED,S_SIDE,c);}
if(u_sig===U_REALIGN)
{if(d_sig===U_REALIGN)
{if(c_at(4)===D_MARCH)return sigc(D_STALLED,S_SIDE,c);if(c_at(4)===U_REALIGN)return sigc(D_STALLED,S_SIDE,c);}
if(d_sig===D_STALLED)
{if(c_at(4)===D_MARCH)return sigc(D_STALLED,S_SIDE,c);if(c_at(4)===U_REALIGN)return sigc(D_STALLED,S_SIDE,c);}
if(d_sig===D_MARCH&&c_at(4)===U_REALIGN)return sigc(D_MARCH,S_SIDE,c);if([D_FOOD,D_GATHERER,U_READY].includes(d_sig)&&c_at(4)===U_REALIGN)return sigc(D_STALLED,S_SIDE,c);}
if(u_sig===U_READY)
{if(d_sig===D_MARCH)
{if(c_at(4)===U_READY)return sigc(D_MARCH,S_SIDE,c);if(c_at(4)===U_REALIGN)return sigc(U_READY,S_SIDE,c);}
if([D_FOOD,D_GATHERER].includes(d_sig))
{if(c_at(4)===D_STALLED)return sigc(D_STALLED,S_SIDE,c);if(c_at(4)===U_REALIGN)return sigc(U_READY,S_SIDE,c);}
if(d_sig===D_STALLED&&c_at(4)===D_STALLED)return sigc(U_READY,S_SIDE,c);if(d_sig===U_REALIGN&&c_at(4)===U_REALIGN)return sigc(D_STALLED,S_SIDE,c);if(d_sig===U_READY&&c_at(4)===U_REALIGN)return sigc(U_READY,S_SIDE,c);}
return sigc(c_at(4),S_SIDE,c);}
function mwatch(cand)
{if(cand.cell===4)return cand;if(cand.hasOwnProperty("color"))return cand;if(view[cand.cell].food!==0)return sigc(D_FOOD,S_SIDE,0);if(is_harvestable(cand.cell))return sigc(D_FOOD,S_SIDE,0);if(view[cand.cell].ant!==null)return sigc(U_PANIC,S_SIDE,0);return cand;}
function marcher_decision()
{if(c_at(4)===U_PANIC||this_ant().food>0)return saboteur();var gatherer_count=0;var enemy_count=0;for(tcell of SCAN_MOVES)
{if(is_ally(tcell)&&view[tcell].ant.type===GATHERER)gatherer_count++;else if(is_enemy(tcell)&&!is_harvestable(tcell))enemy_count++;}
if(gatherer_count>1||enemy_count>0)return saboteur();var colored_neighbors=0;for(tcell of SCAN_MOVES)
if(c_at(tcell)>1)colored_neighbors++;if(colored_neighbors>5)return saboteur();var c=view_corner();switch(neighbor_type(c))
{case ONE_CORNER:return mwatch(mdec_one_corner(c));case ONE_EDGE:return mwatch(mdec_one_edge(c));case EE_BENT:return mwatch(mdec_ee_bent(c));case EE_STRAIGHT:return mwatch(mdec_ee_straight(c));case EC_LEFT:return mwatch(mdec_ec_left(c));case EC_RIGHT:return mwatch(mdec_ec_right(c));case EC_SPAWN:return mwatch(mdec_ec_spawn(c));case THREE_MARCH:return mwatch(mdec_three_march(c));case THREE_STAND:return mwatch(mdec_three_stand(c));case THREE_RECOVER:return mwatch(mdec_three_recover(c));case THREE_UNSTAND:return mwatch(mdec_three_unstand(c));case THREE_HANG:return mwatch(mdec_three_hang(c));case THREE_UNHANG:return mwatch(mdec_three_unhang(c));case FOUR_Z:return mwatch(mdec_four_z(c));case FOUR_STAIRS:return mwatch(mdec_four_stairs(c));default:return saboteur();}}
function opening_queen()
{for(tcell of rand_perm(SCAN_MOVES))
if(view[tcell].food===1)return{cell:tcell};var has_ally=false;var proxs=[0,0,0,0,0,0,0,0,0];for(tcell of SCAN_MOVES)
{if(view[tcell].ant!==null)
{has_ally=true;for(var i=0;i<9;i++)proxs[i]-=NEARS[tcell][i];}}
if(has_ally)
{var prox_order=index_sort(proxs);for(var i=8;i>=0;i--)
{var i_cell=prox_order[i];if(view[i_cell].ant===null&&view[i_cell].food===0)return{cell:i_cell};}}
if(this_ant().food>0)
{var num_ants=0;for(tcell of SCAN_MOVES)
if(view[tcell].ant!==null)num_ants++;if(num_ants===0)
{var is_clear=true;var num_black_corners=0;var black_corner=null;for(var tcell=0;tcell<9;tcell++)
{if(CORNERS.includes(tcell))
{if(c_at(tcell)===8)
{num_black_corners++;black_corner=tcell;}
else if(c_at(tcell)!==1)is_clear=false;}
else if(c_at(tcell)!==1)is_clear=false;}
if(num_black_corners===1&&is_clear)return{cell:CCW[black_corner][7],type:GATHERER};}}
if(c_at(4)!==8)return{cell:4,color:8};var cands=[0,0,0,0,9,0,0,0,0];for(tcell of SCAN_MOVES)
if(c_at(tcell)===8)
for(var i=0;i<9;i++)cands[i]-=NEARS[tcell][i];var cand_order=index_sort(cands);for(var i=8;i>=0;i--)
{var i_cell=cand_order[i];if(view[i_cell].ant===null&&view[i_cell].food===0)return{cell:i_cell};}
return{cell:4,color:8};}
function early_queen()
{var gcell=null;var ally_count=0;for(tcell of rand_perm(SCAN_MOVES))
{if(is_ally(tcell))
{ally_count++;if(view[tcell].ant.type===GATHERER&&EDGES.includes(tcell))gcell=tcell;}}
if(gcell===null)return opening_queen();for(tcell of rand_perm(CORNERS))
if(view[tcell].food>0&&NEARS[tcell][gcell]===5)
{if(c_at(tcell)===D_FOOD)return{cell:tcell};else return{cell:tcell,color:D_FOOD};}
for(tcell of rand_perm(EDGES))
if(view[tcell].food>0)
{if(c_at(tcell)!==D_FOOD&&NEARS[tcell][gcell]===4)
return{cell:tcell,color:D_FOOD};}
if(c_at(4)===D_FOOD)
{if(c_at(CCW[gcell][2])===D_FOOD&&view[CCW[gcell][2]].food===0)
return{cell:CCW[gcell][2],color:D_MARCH};return{cell:4,color:D_MARCH};}
if(c_at(CCW[gcell][6])===D_FOOD&&view[CCW[gcell][6]].food===0)
return{cell:CCW[gcell][6],color:D_MARCH};if(EDGES.includes(gcell)&&this_ant().food>2&&ally_count===1)
{var num_clear_cells=0;var num_down_food=0;var is_valid=true;for(var tcell=0;tcell<9;tcell++)
{if(c_at(tcell)===D_FOOD)
{num_down_food++;if(tcell!==4&&tcell!==gcell)is_valid=false;}
if(c_at(tcell)===D_MARCH)num_clear_cells++;}
if(is_valid&&num_down_food===1&&num_clear_cells===8)
{var food_factor=QFORMP_MAX-QFORMP_MIN
var food_coefficient=QFORMP_DECAY/food_factor
var actual_prob=food_factor/(food_coefficient*(this_ant().food-3)+1)+QFORMP_MIN;if(rand_choice(actual_prob))return{cell:CCW[gcell][1],type:rand_choice(.5)?MARCHER_A:MARCHER_B};else return{cell:gcell,color:D_MARCH};}}
return{cell:CCW[gcell][7]};}
function qwatch(cand)
{if(cand.hasOwnProperty("type")&&this_ant().food===0)return sigc(U_PANIC,S_SIDE,0);if(cand.hasOwnProperty("type")&&view[cand.cell].food!==0)return sigc(U_PANIC,S_SIDE,0);if(cand.cell===4)return cand;if(cand.hasOwnProperty("color"))return cand;if(is_enemy(cand.cell))return sigc(U_PANIC,S_SIDE,0);if(is_ally(cand.cell))return sigc(c_at(4),S_SIDE,0);return cand;}
function eqwatch(cand)
{if(cand.hasOwnProperty("type")&&this_ant().food===0)return qwatch(opening_queen());if(cand.hasOwnProperty("type")&&view[cand.cell].food!==0)return qwatch(opening_queen());if(cand.cell===4)return cand;if(cand.hasOwnProperty("color"))return cand;if(is_enemy(cand.cell))return qwatch(opening_queen());if(is_ally(cand.cell))return qwatch(opening_queen());return cand;}
function qdec_ee_straight(c)
{return sigc(c_at(4),S_SIDE,c);}
function qdec_ee_bent(c)
{return{cell:CCW[c][2]};}
function qdec_ec_skewed(c)
{if(view[CCW[c][5]].ant.type!==GATHERER)return opening_queen();if(this_ant().food>0&&view[c].ant.type===MARCHER_A)return{cell:CCW[c][7],type:MARCHER_B};if(this_ant().food>0&&view[c].ant.type===MARCHER_B)return{cell:CCW[c][7],type:MARCHER_A};return opening_queen();}
function qdec_ec_spawn(c)
{if(view[CCW[c][3]].ant.type!==GATHERER)return opening_queen();if(this_ant().food>0&&view[c].ant.type===MARCHER_A)return{cell:CCW[c][1],type:MARCHER_B};if(this_ant().food>0&&view[c].ant.type===MARCHER_B)return{cell:CCW[c][1],type:MARCHER_A};return opening_queen();}
function qdec_cc_edged(c)
{if(view[c].ant.type!==GATHERER)return opening_queen();if(this_ant().food>0&&view[CCW[c][2]].ant.type===MARCHER_A)return{cell:CCW[c][1],type:MARCHER_B};if(this_ant().food>0&&view[CCW[c][2]].ant.type===MARCHER_B)return{cell:CCW[c][1],type:MARCHER_A};return opening_queen();}
function qdec_three_march(c)
{var u_sig=PUPS[c_at(c)][c_at(CCW[c][1])];if(u_sig===D_STALLED)
{if(c_at(CCW[c][3])===D_MARCH&&[D_MARCH,D_GATHERER].includes(c_at(4)))
return sigc(D_STALLED,S_FRONT,c);if(c_at(CCW[c][3])===U_READY&&c_at(4)===D_STALLED)return sigc(U_READY,S_FRONT,c);}
if(u_sig===D_MARCH&&c_at(CCW[c][3])===U_READY&&c_at(4)===U_READY)
return sigc(D_MARCH,S_FRONT,c);if(u_sig===U_READY&&c_at(CCW[c][3])===U_REALIGN&&c_at(4)===U_READY)
if(c_at(CCW[c][1])===D_MARCH)return sigc(D_MARCH,S_FRONT,c);return sigc(c_at(4),S_FRONT,c);}
function qdec_three_stand(c)
{var u_sig=PUPS[c_at(c)][c_at(CCW[c][7])];if(u_sig===D_STALLED)
{if(c_at(CCW[c][3])===D_MARCH&&c_at(4)===D_GATHERER)return sigc(D_STALLED,S_FRONT,c);if(c_at(CCW[c][3])===U_READY&&c_at(4)===D_STALLED)return sigc(U_READY,S_FRONT,c);}
if(u_sig===D_MARCH&&c_at(CCW[c][3])===U_READY&&c_at(4)===U_READY)
return sigc(D_MARCH,S_FRONT,c);if(u_sig===U_READY&&c_at(CCW[c][3])===U_REALIGN&&c_at(4)===U_READY)
if(c_at(CCW[c][1])===D_MARCH)return sigc(D_MARCH,S_FRONT,c);return sigc(c_at(4),S_FRONT,c);}
function qdec_three_recover(c)
{var u_sig=PUPS[c_at(c)][c_at(CCW[c][1])];if(u_sig===D_FOOD)return sigc(D_FOOD,S_FRONT,c);if(this_ant().food>0&&[D_STALLED,U_READY].includes(u_sig))
{var food_factor=QFSPAWNP_MAX-QFSPAWNP_MIN
var food_coefficient=QFSPAWNP_DECAY/food_factor
var actual_prob=food_factor/(food_coefficient*(this_ant().food-1)+1)+QFSPAWNP_MIN;if(rand_choice(actual_prob))return{cell:CCW[c][3]};}
var provisional=lchk(c)
if(provisional!==null)return sigc(provisional,S_FRONT,c);return sigc(c_at(4),S_FRONT,c);}
function qdec_three_unstand(c)
{var u_sig=PUPS[c_at(c)][c_at(CCW[c][7])];if(this_ant().food>0&&u_sig===D_STALLED&&c_at(CCW[c][5])===D_MARCH&&c_at(4)===D_STALLED)
{var food_factor=QBSPAWNP_MAX-QBSPAWNP_MIN
var food_coefficient=QBSPAWNP_DECAY/food_factor
var actual_prob=food_factor/(food_coefficient*(this_ant().food-1)+1)+QBSPAWNP_MIN;if(rand_choice(actual_prob))return{cell:CCW[c][3]};}
if(u_sig===D_STALLED&&c_at(CCW[c][5])===U_READY&&c_at(4)===D_STALLED)
return sigc(U_READY,S_FRONT,c);return sigc(u_sig,S_FRONT,c);}
function qdec_three_block(c)
{var u_sig=PUPS[c_at(c)][c_at(CCW[c][1])];return sigc(u_sig,S_FRONT,c);}
function qdec_three_side(c)
{var u_sig=PUPS[c_at(CCW[c][1])][c_at(CCW[c][2])];return sigc(u_sig,S_FRONT,CCW[c][2]);}
function queen_wait()
{var c=view_corner();switch(neighbor_type(c))
{case ONE_EDGE:{if(this_ant().food>1)return{cell:CCW[c][3],type:GATHERER};}
break;case EC_LEFT:{var u_sig=PUPS[c_at(c)][c_at(CCW[c][1])];if(u_sig===D_GATHERER)return sigc(D_GATHERER,S_FRONT,c);if(u_sig===U_REALIGN&&[U_REALIGN,U_SENTINEL].includes(c_at(c)))
if([U_REALIGN,U_SENTINEL].includes(c_at(CCW[c][1])))
return eqwatch(early_queen());var provisional=lchk(c);if(provisional!==null)return sigc(provisional,S_FRONT,c);if(this_ant().food>1)
{if(c_at(CCW[c][3])!==D_MARCH)return{cell:CCW[c][3],color:D_MARCH};return{cell:CCW[c][3],type:GATHERER};}}
break;case EC_RIGHT:{var u_sig=PUPS[c_at(c)][c_at(CCW[c][7])];if(u_sig===D_GATHERER)return sigc(D_GATHERER,S_FRONT,c);if(u_sig===U_REALIGN&&[U_REALIGN,U_SENTINEL].includes(c_at(c)))
if([U_REALIGN,U_SENTINEL].includes(c_at(CCW[c][7])))
return eqwatch(early_queen());var provisional=lchk(c);if(provisional!==null)return sigc(provisional,S_FRONT,c);if(this_ant().food>1)
{if(c_at(CCW[c][5])!==D_MARCH)return{cell:CCW[c][5],color:D_MARCH};return{cell:CCW[c][5],type:GATHERER};}}
break;}
if(c_at(4)!==U_PANIC)return sigc(U_PANIC,S_SIDE,c);else return opening_queen();}
function queen_march()
{var c=view_corner();switch(neighbor_type(c))
{case EE_STRAIGHT:return qwatch(qdec_ee_straight(c));case EE_BENT:return qwatch(qdec_ee_bent(c));case EC_SKEWED:return qwatch(qdec_ec_skewed(c));case EC_SPAWN:return qwatch(qdec_ec_spawn(c));case CC_EDGED:return qwatch(qdec_cc_edged(c));case THREE_MARCH:return qwatch(qdec_three_march(c));case THREE_STAND:return qwatch(qdec_three_stand(c));case THREE_RECOVER:return qwatch(qdec_three_recover(c));case THREE_UNSTAND:return qwatch(qdec_three_unstand(c));case THREE_BLOCK:return qwatch(qdec_three_block(c));case THREE_SIDE:return qwatch(qdec_three_side(c));default:return eqwatch(early_queen());}}
function queen_decision()
{marcher_count=0;gatherer_count=0;excess_gatherers=0;for(tcell of SCAN_MOVES)
{if(is_ally(tcell))
{if(view[tcell].ant.type===MARCHER_A||view[tcell].ant.type===MARCHER_B)marcher_count++;if(view[tcell].ant.type===GATHERER)
{if(EDGES.includes(tcell)||is_gatherer_marcher(tcell))gatherer_count++;else excess_gatherers++;}}
else if(is_enemy(tcell))return opening_queen();}
if(marcher_count>0&&gatherer_count===1&&excess_gatherers===0)return qwatch(queen_march());else if(marcher_count>0&&gatherer_count===0&&excess_gatherers===0)return qwatch(queen_wait());else if(gatherer_count===1&&excess_gatherers===0)return eqwatch(early_queen());else return opening_queen();}
function main_decide()
{switch(this_ant().type)
{case QUEEN:return queen_decision();case GATHERER:return gatherer_decision();case MARCHER_A:case MARCHER_B:return marcher_decision();default:return sanitize(saboteur());}}
return main_decide();

Visión de conjunto

Esta presentación tiene como objetivo crear una línea de hormigas que puedan barrer el área. Los colores se usan como señales para ayudar a la reina a coordinar la línea, no como marcadores.

Esta presentación utiliza tres tipos de trabajadores además de la reina:

  • Tipo 1: manifestante de formación, fase A
  • Tipo 2: Formación de manifestantes, fase B
  • Tipo 3: recolector
  • Tipo 4: reservado para uso futuro

Las hormigas se crean en una línea diagonal de ancho completo de la siguiente manera:

    A
    BA
     BA
      BA
       BA
        BA
         BA
          QG

Las primeras cuatro hormigas creadas son un recolector y un manifestante, A o B con igual probabilidad, luego uno de cada uno. Después de eso, las hormigas se crean con probabilidad después de encontrar comida, alternando entre A y B. En la formación, la reina recolectora alterna entre las dos fases de la marcha, dependiendo de la última formación creada.

Fase temprana

Cuando la reina engendra, realiza una caminata en línea recta a media velocidad estándar de pantano, tratando de evitar volver sobre su camino. Una vez que esto le da una sola pieza de comida, genera un recolector. Después de reunir 3 piezas de comida, por cada pieza adicional de comida, la reina tiene una probabilidad moderada de generar 3 trabajadores en una rutina de creación de formación codificada, y la línea despega.

Comportamiento general

Las hormigas marchan al paso, con las hormigas fase A y fase B alternando entre detenerse y moverse. La fase se reconoce haciendo coincidir el patrón de sus aliados vecinos, ya que las hormigas no pueden almacenar el estado. Las hormigas siempre se mueven de manera que permanezcan adyacentes a al menos otras dos hormigas.

Cuando una hormiga está diagonalmente detrás de un obstáculo, pasa su turno derribando la señal apropiada. La señal viaja instantáneamente hacia la reina (gracias a que todos los trabajadores están en orden de creación), mientras que hacia arriba solo puede manejar la velocidad de la luz. El manifestante adyacente aguas arriba reconoce la señal y propaga una señal para disparar una señal diferente en la línea.

Los trabajadores disociados de la línea (ya sea por error o por una señal de pánico) se convierten en saboteadores, revolviendo nidos e intentando obstruir a los trabajadores enemigos con los que se encuentran. Evitarán activamente la formación si la cruzan, ya que la reincorporación no es práctica.

Recogida de alimentos

Cuando se encuentra comida, la línea se detiene. Sin embargo, debido a que las señales solo pueden gestionar la velocidad de la luz hacia arriba, la señal tarda en propagarse hacia arriba, lo que hace que la corriente arriba se doble en línea recta. Las hormigas en el extremo evitan que se enderece por completo al doblarse en un gancho, pero también se detienen.

El trabajador que se encuentra con la comida dispara una señal de comida en lugar de la señal clara habitual, que todas las hormigas aguas abajo transmiten y prestan atención. El siguiente turno, la misma señal se reconoce en sentido ascendente y se traduce en una señal de realineamiento, que viaja en sentido ascendente y hace que los trabajadores en sentido ascendente también se detengan cuando reciben la señal. Los últimos trabajadores al final mantienen una curva al final para mantener la proximidad a otros trabajadores.

La señal aguas abajo llega a la reina en un solo giro, que el recolector reconoce como una señal para caminar por la línea. Siguiendo el borde de la señal de comida, el recolector camina hacia adelante hasta que encuentra comida, y luego va en la dirección opuesta para devolverla a la reina. Si hay más comida pendiente, la señal de comida persiste; de lo contrario, una señal estancada ahora se dispara por la línea, indicando a la reina que dispare una señal de listo, que a su vez señala el punto de la curva para derribar la señal de marcha.

Una vez que la línea vuelve a marchar, los trabajadores detenidos reanudan su marcha cuando la línea los alcanza. El proceso ocurre a las hormigas cuando las señales llegan a ellas, por lo que es completamente práctico (y sucede) que la línea se reanude antes de que la señal de realineación llegue al final de la línea, o para que una parte aguas arriba de la línea se detenga aguas abajo antes recibe una señal de realineamiento aguas abajo.

Fuera de la línea

La línea está diseñada para sobrevivir al cizallamiento, y cualquier línea contigua de trabajadores de más de 3 años, junto con una reina y un recolector, en orden de creación, es una formación de marcha en pleno funcionamiento. Aunque la línea es bastante confiable, es vulnerable a la obstrucción de los trabajadores enemigos. Cuando esto sucede, la hormiga que está más directamente frente al trabajador enemigo emite una señal de pánico. El siguiente turno, se corta de la línea y se dispara por sí solo, seguido por todos los trabajadores de aguas arriba que posteriormente descubren la inconsistencia en no tener a nadie a su derecha, y hacen lo mismo. Los manifestantes aguas abajo no se molestan por este evento y continúan marchando.

Una vez fuera de la línea, los trabajadores se convierten en saboteadores. Intentan cambiar el color de las áreas coloreadas con los colores circundantes para crear un desorden que se parezca un poco al área original pero que no contenga los patrones críticos para el funcionamiento del nido. Se mantendrán activamente cerca de los trabajadores enemigos e intentarán obstruirlos o engañarlos, y evitarán activamente a los aliados para evitar que interfieran con la línea. Si no están rodeados de color, realizan una caminata en línea recta a media velocidad de la luz para buscar nuevas áreas de color para mezclar.

Sabotear a los trabajadores puede terminar en una formación por casualidad, pero la falta de una reina que ancle el extremo derecho debería significar que se separen poco después. Si no es así, presente un error.

Extras

El saqueo de la reina es un trabajo en progreso. Los trabajadores reconocerán a las reinas enemigas como comida en lugar de como trabajadoras enemigas, pero precisamente cómo esto interactúa después no ha sido probado y no está sintonizado.

Para evitar que las señales de color existentes interfieran con la línea, los trabajadores cambiarán el color de las áreas circundantes en blanco si enviarían una señal de color, pero ya están parados en la señal de color que desean enviar. Esta limpieza del entorno es tan poderosa que una formación de marcha puede atravesar un nido de color a toda velocidad sin problemas.

El desove de la reina está controlado por la probabilidad. A medida que el juego continúa y la reina tiene más comida a mano, se vuelve menos ansiosa por generar nuevas líneas y agregar trabajadores a las líneas existentes, hasta una probabilidad de límite asintótica sintonizable.

Que hacer

  • Limpiar cruft lógico
  • Probar y refinar el saqueo de la reina
  • Ver si los trabajadores enemigos pueden caminar
  • Investigar la reducción del estado de la señal
  • Vea si el corte intencional del trabajador final ayuda

Notas de lanzamiento

1.0: primera versión presentada para su envío, lanzamiento inicial

1.0.1: reducciones lógicas realizadas, compatibles con más controladores

1.1: Compactado un montón de cosas, lógica mejorada relacionada con casos de error

1.1.1: revisión para resolver el problema de descalificación

1.2: Se eliminaron más puntos muertos, el saboteador ahora se revisó

1.3: Reducción de la tasa de desove de la reina, dio a los saboteadores una puesta a punto

1.3.1: Se redujo aún más la tasa de generación de la reina y se arregló un error descalificador

1.4: ajuste de parámetros


5

Hormigas apisonadoras

/*Ants will try to move diagonally in the following fashion:
 * 2
 * 51
 *
 *Type 1 and queen are the two core ants
 */


switch (view[4].ant.type) {

  case 1: //Guiding ant
    //Look for queen, try to move diagonally
    if (view[7].ant && view[7].ant.friend && view[7].ant.type === 5 && !view[8].ant) return {cell: 8};
    else if (view[5].ant && view[5].ant.friend && view[5].ant.type === 5 && !view[2].ant) return {cell: 2};
    else if (view[3].ant && view[3].ant.friend && view[3].ant.type === 5 && !view[6].ant) return {cell: 6};
    else if (view[1].ant && view[1].ant.friend && view[1].ant.type === 5 && !view[0].ant) return {cell: 0};
    else return {cell: 4};
  case 2: //Other wing
    //Look for queen, try to move diagonally. If there is food, rotate the other way to start rotating procedure
    if (view[7].ant && view[7].ant.friend && view[7].ant.type === 5 && !view[6].ant) {
      if (view[6].food) {
        if (!view[8].ant) return {cell: 8};
        else return {cell: 4};
      } else return {cell: 6};
    } else if (view[5].ant && view[5].ant.friend && view[5].ant.type === 5 && !view[8].ant) {
      if (view[8].food) {
        if (!view[2].ant) return {cell: 2};
        else return {cell: 4};
      } else return {cell: 8};
    } else if (view[3].ant && view[3].ant.friend && view[3].ant.type === 5 && !view[0].ant) {
      if (view[0].food) {
        if (!view[6].ant) return {cell: 6};
        else return {cell: 4};
      } else return {cell: 0};
    } else if (view[1].ant && view[1].ant.friend && view[1].ant.type === 5 && !view[2].ant) {
      if (view[2].food) {
        if (!view[0].ant) return {cell: 0};
        else return {cell: 4};
      } else return {cell: 2};
    } else return {cell: 4};
  case 5: //Queen ant

    //If forever alone
    if (!view[1].ant && !view[3].ant && !view[5].ant && !view[7].ant) {
      if (view[4].color === 2) { //If on colored square, try to move
        if (view[0].color === 2 && !view[8].ant) return {cell: 8};
        else if (view[2].color === 2 && !view[6].ant) return {cell: 6};
        else if (view[6].color === 2 && !view[2].ant) return {cell: 2};
        else if (view[8].color === 2 && !view[0].ant) return {cell: 0};
        //Can't find color, or path is blocked? try diagonals regardless of color
        else if (!view[0].ant) return {cell: 0};
        else if (!view[2].ant) return {cell: 2};
        else if (!view[6].ant) return {cell: 6};
        else if (!view[8].ant) return {cell: 8};
        //Everything else failed? Stay put.
        else return {cell: 4};
      } else { //If not on colored square, look for food, or set current color to 2.
        if (view[4].ant.food >= 1) { //Try to make Guiding ant
          if (!view[1].ant && !view[1].food) return {cell: 1, type: 1};
          else if (!view[3].ant && !view[3].food) return {cell: 3, type: 1};
          else if (!view[5].ant && !view[5].food) return {cell: 5, type: 1};
          else if (!view[7].ant && !view[7].food) return {cell: 7, type: 1};
        }
        for (var i = 0; i < 9; i++) { //Look for food
          if (view[i].food) return {cell: i};
        }
        return {cell: 4, color:2};
      }
    } else { //Queen has partner
      //Make other wing
      if (view[4].ant.food >= 1) {
        if (view[1].ant && view[1].ant.friend && view[1].ant.type === 1 && !view[3].ant && !view[3].food && !view[5].ant) return {cell: 3, type: 2};
        else if (view[3].ant && view[3].ant.friend && view[3].ant.type === 1 && !view[7].ant && !view[7].food && !view[1].ant) return {cell: 7, type: 2};
        else if (view[5].ant && view[5].ant.friend && view[5].ant.type === 1 && !view[1].ant && !view[1].food && !view[7].ant) return {cell: 1, type: 2};
        else if (view[7].ant && view[7].ant.friend && view[7].ant.type === 1 && !view[5].ant && !view[5].food && !view[3].ant) return {cell: 5, type: 2};
      }

      //If food is orthogonal to Queen, stay put
      if (view[1].food || view[3].food || view[5].food || view[7].food) return {cell: 4};

      //Look for guiding type 1 ant, try to move diagonally
      else if (view[7].ant && view[7].ant.friend && view[7].ant.type === 1 && !view[6].ant) return {cell: 6};
      else if (view[5].ant && view[5].ant.friend && view[5].ant.type === 1 && !view[8].ant) return {cell: 8};
      else if (view[3].ant && view[3].ant.friend && view[3].ant.type === 1 && !view[0].ant) return {cell: 0};
      else if (view[1].ant && view[1].ant.friend && view[1].ant.type === 1 && !view[2].ant) return {cell: 2};
    }
  default: return {cell: 4};
}

Estas hormigas funcionan con un concepto similar al de las hormigas forenses de Dave . Sin embargo, se mueven en diagonal y se mueven en grupos de 3.

Fase 1: mezcla de alimentos

La hormiga reina solo se mueve en diagonal hasta que puede ver una sola pieza de comida. Lo hace usando un concepto similar al Romanesco Road , donde el rastro de color que se encuentra detrás de la Reina puede ayudarlo a descubrir qué camino seguir.

Fase 2: 2 hormigas

La Reina crea una nueva hormiga "guía" tipo 1, que se asocia con la Reina para moverse juntas en diagonal. Cada uno de ellos descubre cuál es el camino hacia adelante en relación con sus respectivos socios.

Fase 3: Steamrolling

Una vez que la Reina y su compañero encuentran un pedazo de comida, la reina lo usa para hacer una hormiga tipo 2. Esta hormiga tiene instrucciones específicas para seguir a la Reina, y también las acompaña. Esto forma una fila de hormigas que se mueve diagonalmente en 3 anchas, lo que hace que sea bastante rápido obtener comida.

Giratorio

Si la hormiga tipo 2 ve que se moverá hacia algún alimento, en su lugar se moverá en la otra dirección, donde solía estar la hormiga tipo 1. Esto significa que todas las hormigas habrán girado en la dirección en que se mueven, por lo que las hormigas deberían tener una probabilidad muy baja de regresar a su punto de partida.

Nota: si por alguna razón (¿tal vez una colisión con otra hormiga?), La hormiga tipo 2 nació antes que la hormiga tipo 1, entonces esta rotación daría lugar a que la hormiga tipo 2 intente pasar a la hormiga tipo 1. Para resolver esto, la hormiga tipo 2 se dejaría atrás y dejaría que la Reina hiciera otra hormiga tipo 2.


Durante uno de mis experimentos descubrí que cambiar de dirección aleatoriamente al encontrar comida puede ser bastante efectivo para evitar envolturas infinitas. Reduce la posibilidad de que cada paso cubra un nuevo terreno, pero ¿tal vez podría ser útil aquí?
Dave

@Dave la parte sobre cambiar de dirección es lo que me preocupa. Si puedo encontrar una manera de cambiar de dirección sin perder a ninguno de mis trabajadores, entonces esta idea definitivamente funcionará. Si no, podría tratar de tener un color como marcador de cuándo dejar a un trabajador y hacer que la reina cambie de dirección.
K Zhang

@trichoplax ¿Conoces la semilla que se usó durante esa descalificación, y tal vez el número de movimiento también? Sería muy beneficioso saber las circunstancias que llevaron a ese problema.
K Zhang

@trichoplax No importa, simplemente fui y agregué algunos controles de cordura adicionales. (Con suerte) ya no será descalificado.
K Zhang

Puede usar una semilla para la prueba, que permite volver a ejecutarla para ver exactamente qué sucedió si algo salió mal, pero eso daría el mismo resultado en todos los juegos, lo que no es bueno para la tabla de clasificación. Los torneos de la tabla de clasificación se ejecutan sin marcar en la casilla de verificación aleatoria sembrada, lo que significa que utiliza criptografía aleatoria para que sea lo más justo posible.
trichoplax

5

Medusa

function clean(move) {
    if (move["color"] == undefined) {
        if (view[move["cell"]].ant != null) {
            move = {
                cell: 4
            }
        }
        if (move["type"] == undefined) {
            if (view[4].ant.type == 5 && move["cell"] != 4 && view[move["cell"]].color > 2) {
                move["color"] = 1
            }
            if (view[move["cell"]].food == 1 && view[4].ant.type < 5 && view[4].ant.food > 0) {
                move = {
                    cell: 4
                }
            }
        } else if (view[4].ant.type != 5 || view[4].ant.food == 0 || view[move["cell"]].food != 0) {
            move = {
                cell: 4
            }
        }
    }
    return move
}

function coord(cell) {
    var x = (cell % 3) - 1
    var y = 1 - (cell - (cell % 3)) / 3
    return {
        x: x,
        y: y
    }
}

function getcell(x, y) {
    return (x + 1) + (1 - y) * 3
}

var diags = [0, 2, 8, 6]

var colorcounts = [0, 0, 0, 0, 0, 0, 0, 0, 0];
for (var i = 0; i < 9; i++) {
    colorcounts[view[i].color]++
}

var queen = -1
for (var i = 0; i < 9; i++) {
    if (view[i].ant != null && view[i].ant.friend == true && view[i].ant.type == 5) {
        queen = i
    }
}

var guard = -1
for (var i = 0; i < 9; i++) {
    if (view[i].ant != null && view[i].ant.friend == true && view[i].ant.type == 1) {
        guard = i
    }
}

var forager = -1
for (var i = 0; i < 9; i++) {
    if (view[i].ant != null && view[i].ant.friend == true && view[i].ant.type == 2) {
        forager = i
    }
}

var black = -1
for (var i = 0; i < 9; i++) {
    if (view[i].color == 8) {
        black = i
    }
}

var yellow = -1
for (var i = 0; i < 9; i++) {
    if (view[i].color == 2) {
        yellow = i
    }
}


if (view[4].ant.type == 5) {
    if (forager >= 0 && view[forager].color == 8) {
        return clean({
            cell: forager,
            color: 2
        })
    }

    if (guard == -1) {
        if (view[4].color == 3) {
            if (view[4].ant.food > 1) {
                return clean({
                    cell: 0,
                    type: 2
                })
            }
            return clean({
                cell: 0,
                type: 1
            })
        }
        if (view[4].ant.food >= 3) {
            return clean({
                cell: 4,
                color: 3
            })
        }
        if (view[4].color == 1) {
            return clean({
                cell: 4,
                color: 2
            })
        }
        for (var i = 0; i < 9; i++) {
            if (view[i].food == 1) {
                return clean({
                    cell: i
                })
            }
        }
        for (var i = 0; i < 4; i++) {
            if (view[diags[i]].color != 2 && view[diags[(i + 2) % 4]].color == 2) {
                return clean({
                    cell: diags[i]
                })
            }
        }
        return clean({
            cell: 0
        })
    }

    var state = 3
    var max = 0
    for (var i = 3; i <= 4; i++) {
        if (colorcounts[i] > max) {
            max = colorcounts[i]
            state = i
        }
    }

    if (state == 3) {
        if (black >= 0 && forager == -1) {
            return clean({
                cell: black,
                type: 2
            })
        }
        if (forager >= 0 && view[forager].color != 2) {
            return clean({
                cell: 0,
                color: 8
            })
        }
        if (colorcounts[3] == 9) {
            return clean({
                cell: 4,
                color: 4
            })
        }
    }
    if (state == 4) {
        if (colorcounts[4] == 9) {
            return clean({
                cell: 4,
                color: 3
            })
        }
    }
    return clean({
        cell: 4
    })
}
if (view[4].ant.type == 1) {
    var dest = 0
    var destmap = [1, 0, 1, 1, 4, 1, 7, 8, 7]
    dest = destmap[queen]
    if (view[queen].color != view[dest].color && (view[queen].color == view[4].color || view[4].color == view[dest].color)) {
        if (queen < 4 && view[dest].color > 2 && view[dest].color < 5) {
            return clean({
                cell: queen,
                color: view[dest].color
            })
        }
        return clean({
            cell: dest,
            color: view[queen].color
        })
    }
    return clean({
        cell: dest
    })
}
if (view[4].ant.type == 2) {
    if (queen >= 0 && view[4].color == 8) {
        return clean({
            cell: 4
        })
    }
    var state = 3
    var max = 0
    for (var i = 5; i <= 7; i++) {
        if (colorcounts[i] > max) {
            max = colorcounts[i]
            state = i
        }
    }
    var flowx = 0
    var flowy = 0
    for (var i = 0; i < 9; i++) {
        for (var j = i + 1; j < 9; j++) {
            var loci = coord(i)
            var locj = coord(j)
            var dx = locj.x - loci.x
            var dy = locj.y - loci.y
            var cyc = 0
            if (view[i].color >= 5 && view[i].color <= 7 && view[j].color >= 5 && view[j].color <= 7) {
                var cyc = ((view[j].color - view[i].color) % 3 + 3) % 3
                if (cyc == 2) {
                    cyc = -1
                }
            } else if (view[i].color >= 5 && view[i].color <= 7) {
                cyc = 0.1
            } else {
                cyc = -0.1
            }
            flowx += cyc * dx / (dx * dx + dy * dy)
            flowy += cyc * dy / (dx * dx + dy * dy)

        }
    }
    if (flowx * flowx > flowy * flowy) {
        flowy = 0
    } else {
        flowx = 0
    }
    if (flowx < 0) {
        flowx = -1
    }
    if (flowy < 0) {
        flowy = -1
    }
    if (flowx > 0) {
        flowx = 1
    }
    if (flowy > 0) {
        flowy = 1
    }
    if (queen >= 0) {
        var locq = coord(queen)
        flowx = -locq.x
        flowy = -locq.y
        state = 5
    }
    if (view[4].ant.food > 0) {
        if (guard >= 0) {
            var destmap = [1, 0, 1, 1, 4, 1, 7, 8, 7]
            return clean({
                cell: destmap[guard]
            })
        }
        dest = getcell(-flowx, -flowy)
        if (dest != 7) {
            dest = 1
        }
        if (view[dest].color >= 5 && view[dest].color <= 7) {
            return clean({
                cell: dest
            })
        }
        if (view[dest - 1].color >= 5 && view[dest - 1].color <= 7) {
            return clean({
                cell: dest - 1
            })
        }
        return clean({
            cell: 4
        })
    }
    if (view[4].color >= 5 && view[4].color <= 7) {
        state = view[4].color
    }
    var nextc = ((state - 4) % 3 + 5)
    var prevc = ((state - 3) % 3 + 5)
    var centerdest
    centerdest = getcell(flowx, flowy)
    if (view[centerdest].color != state && view[centerdest].color != nextc) {
        return clean({
            cell: centerdest,
            color: nextc
        })
    }
    for (var dest = 1; dest < 9; dest++) {
        var locd = coord(dest)
        var net = locd.x * flowx + locd.y * flowy
        if (net > 0 && view[dest].color != view[centerdest].color) {
            return clean({
                cell: dest,
                color: view[centerdest].color
            })
        }
    }
    for (var dest = 0; dest < 9; dest++) {
        if (view[dest].food == 1) {
            if (view[dest].color >= 5 && view[dest].color <= 7) {
                return clean({
                    cell: dest
                })
            }
            return clean({
                cell: dest,
                color: state
            })
        }
    }
    if (centerdest == 4 && view[0].color >= 5 && view[0].color <= 7) {
        return clean({
            cell: 0
        })
    }
    if (centerdest > 0 && view[centerdest - 1].color >= 5 && view[centerdest - 1].color <= 7) {
        return clean({
            cell: centerdest - 1
        })
    }
    return clean({
        cell: centerdest
    })
}

Este bot ... no es bueno, pero utiliza varias estrategias interesantes que creo que se incluirán en mis futuros bots de hormigas. Su nombre proviene de la forma que hace la colonia en el tablero de juego.

Medusa en acción

Fase 1: Inversión inicial

La reina se mueve en diagonal hasta que recoge 3 piezas de comida, lo suficiente como para comenzar una colonia. Una vez que acumula esas piezas, se establece (se convierte en una reina estacionaria) y luego forma 2 recolectores y 1 guardia. Como parte interesante de la estrategia, la presencia de la hormiga guardia es lo que desencadena la siguiente fase, y es lo que evita que la reina vuelva a ser móvil.

Fase 2: Colonizar

Aquí, los tres tipos de hormigas juegan diferentes roles:

Reina

La reina oscila lentamente entre dos estados, con la ayuda de la guardia. El estado actual es lo que determina si un alimento recién adquirido se convierte en trabajador, por lo que aproximadamente el 50% de los alimentos se reinvierten en la colonia. Toda el área de 3x3 que contiene la reina se usa para almacenar el estado, de modo que cualquier borrado se pueda deshacer y recuperar el estado.

Guardia

El guardia vive toda su vida junto a la reina, rodeándola al azar.

El guardia juega un papel clave en el mantenimiento del estado de la reina. Intenta corregir cualquier error en el área 3x3 de la reina. Cuando hay dos colores alternativos válidos en el área, cuál de los dos colores se convierte en el estado "corregido" es relativamente aleatorio. Sin embargo, una vez que se llega a un consenso, la reina voltea su cuadrado al color opuesto, reiniciando el proceso. Esto es lo que causa la oscilación del estado de la reina, y se hace de una manera muy resistente a los errores.

El guardia también sirve como guardián del "palacio" de la reina. Cuando un recolector ve al guardia, puede moverse al lado de la reina a pesar de que la reina está fuera del alcance visual.

Recolectores

Los recolectores presentan un patrón cíclico rojo-verde-azul cuando salen de la colonia, y lo siguen hacia atrás cuando llevan comida. Terminan pintando un área bastante considerable, porque se necesitan caminos realmente anchos para garantizar que los caminos no se enreden demasiado y que puedan encontrar el camino de regreso incluso si algunas células están dañadas.

Camino típico de un recolector:

Camino de forraje

Observe cómo generalmente viaja en línea recta pero ocasionalmente gira 90 grados. Este es el resultado de la forma en que camina aleatoriamente dentro de su propio camino mientras lo coloca.


Me pregunto si mi borrador será capaz de encallar a los recolectores. Es bueno para borrar caminos anchos, como puedes ver cuando va contra el agujero negro.
pppery

@ppperry A veces lo hace.
PhiNotPi

¿Sería posible hacer que los trabajadores regresen de manera más eficiente solo moviéndose en el ciclo r-> b-> g-> r?
CalculatorFeline

@trichoplax No me di cuenta de que era algo que no estaba permitido hacer. De todos modos arreglado ahora.
PhiNotPi

Estaba bajo "Descalificación": "La celda para producir un trabajador no está vacía". pero he editado la especificación para hacerlo un poco más explícito ahora: "La celda para producir un trabajador no está vacía (contiene comida o una hormiga)".
trichoplax

5

Plantilla Browniana

Este jugador no produce trabajadores, y la reina se mueve al azar. El movimiento aleatorio se debe a que la reina devuelve la misma dirección cada vez, pero las celdas visibles de entrada se presentan en una orientación aleatoria cada movimiento, evitando que el movimiento esté en línea recta.

El primer bloque de código en una respuesta es el que se incluye automáticamente en el juego:

// Full version that won't be disqualified for moving onto another ant

// Move to food if visible
for (var i=0; i<9; i+=1) {
    if (view[i].food) {
        return {cell:i}
    }
}

// Otherwise move to one of the diagonal cells if not occupied
for (var i=0; i<9; i+=2) {
    if (!view[i].ant) {
        return {cell:i}
    }
}

// Otherwise one of the vertical or horizontal cells if not occupied
for (var i=1; i<9; i+=2) {
    if (!view[i].ant) {
        return {cell:i}
    }
}

// Otherwise don't move at all
return {cell:4}

Aquí hay una versión más simple que no busca otras hormigas, pero tiene un comportamiento idéntico hasta el punto en que se descalifica por intentar pisar otra hormiga:

// Basic version for an intuitive understanding

// Move to food if visible
for (var i=0; i<9; i+=1) {
    if (view[i].food) {
        return {cell:i}
    }
}

// Otherwise move "up and left", which will be a random direction
return {cell:0}

El juego no recogerá este segundo bloque de código; esto significa que puede incluir bloques de código adicionales como parte de la explicación de su respuesta. Solo asegúrate de que el bloque de código que deseas competir en el juego sea el primero en la respuesta.

Para ver un ejemplo de producción de movimiento en línea recta a pesar de la orientación aleatoria de la entrada, vea Romanesco Road .


¿Por qué necesita marcar colores?
Solomon Ucko

1
Buena pregunta. Este es solo un ejemplo de respuesta inicial para darles a las personas algo que les ayude a aprender las reglas. Podría obtener el doble de simplemente no marcando ningún color, pero como ejemplo, quería que su camino fuera claramente visible para ayudar a la comprensión.
trichoplax

Ya veo, tiene sentido.
Solomon Ucko

Ahora he editado para eliminar la marca de color, ya que esto era una distracción innecesaria (y redundante). La reina ahora se moverá a la comida si es visible, y favorecerá movimientos diagonales para cubrir más terreno. No se utiliza color en absoluto.
trichoplax

4

La Reine Bleue

var Queen = 5;
var QueenTrail = [];
var EnemyAnts = [];
var EnemyColors = [];
var QueenTrailColor = 7;
var QueenTrailColor2 = 8;
var QueensPosition = -1; //Future use...

var rotations =   
[ 0,1,2,
  3,4,5,
  6,7,8,

  6,3,0,
  7,4,1,
  8,5,2,

  8,7,6,
  5,4,3,
  2,1,0,

  2,5,8,
  1,4,7,
  0,3,6];

var moves = [];
getMoves();
return findBestMove();

function getMoves()
{
    var matchIdx = -1;
    //Initialization of current state
    for(ii = 0; ii < 9; ii++)
    {
        if(ii != 4)
        {
            if(view[ii].color == QueenTrailColor)
            {
                QueenTrail.push(ii);
            }
            else if(view[ii].color == QueenTrailColor2)
            {
                QueenTrail.push(ii);
            }
            else if(view[ii].color != 1)
            {
                EnemyColors.push(ii);
            }
        }

        if(ii != 4 && view[ii].ant != null)
        {
            if(view[ii].ant.friend)
            {
                if(view[ii].ant.type == Queen)
                {
                    QueensPosition = ii * ii;
                }
            }
            else
            {
                EnemyAnts.push(ii);
            }
        }
    }

    switch (view[4].ant.type) 
    {
        case Queen:
        {        
            //first get the food
            for (var ii = 0; ii < 9; ii++) 
            {
                if (view[ii].food > 0 && view[ii].ant == null) 
                {
                    moves.push(getCell(ii)) ;
                }
            }
            if(EnemyAnts.length == 0)
            {
                lm(AA(-QueenTrailColor),AA(4), {cell:4, color:QueenTrailColor});
            }

            if(QueenTrail.length >= 5 || EnemyAnts.length > 0)
            {
                lm(AA(-QueenTrailColor), AA(0,1,2),{cell:0});
                lm(AA(-QueenTrailColor), AA(0,1,3),{cell:0});
                lm(AA(-QueenTrailColor), AA(0,1,5),{cell:0});
                lm(AA(-QueenTrailColor), AA(0,1,6),{cell:0});
                lm(AA(-QueenTrailColor), AA(0,1,7),{cell:0});
                lm(AA(-QueenTrailColor), AA(0,1,8),{cell:0});
                lm(AA(-QueenTrailColor), AA(0,2,3),{cell:0});
                lm(AA(-QueenTrailColor), AA(0,2,6),{cell:0});
                lm(AA(-QueenTrailColor), AA(0,2,7),{cell:0});
                lm(AA(-QueenTrailColor), AA(0,3,7),{cell:0});
                lm(AA(-QueenTrailColor), AA(0,3,8),{cell:0});
                lm(AA(-QueenTrailColor), AA(0,5,7),{cell:0});
                lm(AA(-QueenTrailColor), AA(1,2,7),{cell:1});
                lm(AA(-QueenTrailColor), AA(1,3,5),{cell:1});
                lm(AA(-QueenTrailColor), AA(0,1),{cell:0});
                lm(AA(-QueenTrailColor), AA(0,2),{cell:0});
                lm(AA(-QueenTrailColor), AA(0,3),{cell:0});
                lm(AA(-QueenTrailColor), AA(0,5),{cell:0});
                lm(AA(-QueenTrailColor), AA(0,7),{cell:0});
                lm(AA(-QueenTrailColor), AA(0,8),{cell:0});
                lm(AA(-QueenTrailColor), AA(1,3),{cell:1});
                lm(AA(-QueenTrailColor), AA(1,7),{cell:1});
            }
            if(QueenTrail.length == 4)
            {
                lmQT(AA(0,1,2,3),{cell:7});
                lmQT(AA(0,1,2,5),{cell:7});
                lmQT(AA(0,1,2,6),{cell:7});
                lmQT(AA(0,1,2,7),{cell:5});
                lmQT(AA(0,1,2,8),{cell:7});
                lmQT(AA(0,1,3,5),{cell:7});
                lmQT(AA(0,1,3,7),{cell:8});
                lmQT(AA(0,1,3,8),{cell:2});
                lmQT(AA(0,1,5,6),{cell:8});
                lmQT(AA(0,1,5,7),{cell:6});
                lmQT(AA(0,1,5,8),{cell:3});
                lmQT(AA(0,1,6,7),{cell:8});
                lmQT(AA(0,1,6,8),{cell:2});
                lmQT(AA(0,1,7,8),{cell:2});
                lmQT(AA(0,2,3,7),{cell:8});
                lmQT(AA(0,2,3,8),{cell:6});
                lmQT(AA(0,2,6,8),{cell:1});
                lmQT(AA(0,3,5,7),{cell:2});
                lmQT(AA(0,3,5,8),{cell:2});
                lmQT(AA(1,3,5,7),{cell:0});
            }
            if(QueenTrail.length == 1)
            {                
                lmQT(AA(0), {cell:8});
                lmQT(AA(1), {cell:7});
            }
            else if(QueenTrail.length == 0)
            {
                moves.push(getCell(1));
            }

            if(QueenTrail.length == 0) // starting out or someone is messing with us
            {
                moves.push( getCellColor(1, QueenTrailColor));
            }    
            else if (QueenTrail.length >= 5) //queen is stuck? move her randomly until we get a straight trail
            {    
                moves.push( getCellColor(1, QueenTrailColor2));
            }
            else if (QueenTrail.length >= 3)
            {
                lmQT(AA(0,1,2),{cell:3});
                lmQT(AA(0,1,3),{cell:7});
                lmQT(AA(0,1,5),{cell:3});
                lmQT(AA(0,1,6),{cell:7});
                lmQT(AA(0,1,7),{cell:3});
                lmQT(AA(0,1,8),{cell:3});
                lmQT(AA(0,2,3),{cell:6});
                lmQT(AA(0,2,6),{cell:3});
                lmQT(AA(0,2,7),{cell:1});
                lmQT(AA(0,3,7),{cell:8});
                lmQT(AA(0,3,8),{cell:5});
                lmQT(AA(0,5,7),{cell:6});
                lmQT(AA(1,2,7),{cell:0});
                lmQT(AA(1,3,5),{cell:6});
            }
            else if(QueenTrail.length == 2)
            {
                lmQT(AA(0,1),{cell:7});
                lmQT(AA(0,2),getCellColor(1, QueenTrailColor));
                lmQT(AA(0,3),{cell:6});
                lmQT(AA(0,5),{cell:1});
                lmQT(AA(0,7),{cell:3});
                lmQT(AA(0,8),{cell:3});
                lmQT(AA(1,3),{cell:6});
                lmQT(AA(1,7),{cell:0});
            }
            else if(QueenTrail.length == 1) //we are either going in a straight line or trapped?
            {    
                if(view[4].ant.food > 0)
                {
                    lmQT(AA(0), getCell(0));
                    //clear out the area for the ants
                    if(EnemyColors.length > 0)
                    {
                        moves.push( getCellColor(EnemyColors[0],1));
                    }
                }
                lmQT(AA(0), getCell(8));
                lmQT(AA(1), getCell(7));
                lmQT(AA(2), getCell(6));
            }
            break;
        }
    }
    moves.push( getCell(4));
}

function leftOfPos(x)
{
    if (x == 0)
    {
        return 3;
    }
    else if (x == 1)
    {
        return 0;
    }
    else if (x == 2)
    {
        return 1;
    }
    else if (x == 3)
    {
        return 6;
    }
    else if (x == 5)
    {
        return 2;
    }
    else if (x == 6)
    {
        return 7;
    }
    else if (x == 7)
    {
        return 8;
    }
    else if (x == 8)
    {
        return 5;
    }
}

function findBestMove() 
{
    var keeper = 0;
    for(var ii = 0; ii < moves.length ; ii++)
    {
        if(moves[ii].cell < 0 || moves[ii].cell > 8 || (moves[ii].cell != 4 && (moves[ii].color == null || moves[ii].color == 0) && view[moves[ii].cell].ant != null) || (view[moves[ii].cell].food > 0 && (view[4].ant.food > 0 && view[4].ant.type < 5))) 
        {
            continue;
        }
        else if(moves[ii].type != null && (view[moves[ii].cell].ant != null || view[moves[ii].cell].food > 0 || view[0].color == 1)) //semi random here. 
        {
            continue;
        }
        else
        {
            keeper = ii;
            break;
        }
    }
    return moves[keeper];
}

function lm(matchingColors, coords, matchCell)
{
    var matchTarget = coords.length ;
    var matchCount = [0,0,0,0];
    var returnVal = -1;
    for(var ii = 0; ii < coords.length; ii++)
    {        
        for(var jj = 0; jj < 4; jj++)
        {
            var actualIndex = rotations[coords[ii] + (jj * 9)];
            var foundMatch = false;
            for(var kk = 0; kk < matchingColors.length; kk++)
            {
                var matchingColor = matchingColors[kk];

                if(matchingColor >= 1 && matchingColor <= 8 && view[actualIndex].color == matchingColor)
                {
                    foundMatch = true;
                    break;
                }    
                else if(matchingColor < 0 && view[actualIndex].color != -matchingColor)
                {
                    foundMatch = true;
                    break;
                }
            }
            if(foundMatch)
            {
                matchCount[jj] = matchCount[jj] + 1;
                if(matchCount[jj] == matchTarget)
                {
                    matchCell.cell = rotations[matchCell.cell + (jj * 9)];
                    moves.push(matchCell);
                    returnVal = jj;
                }
            }
        }
    }
    return returnVal;
}

function lmQT(coords, matchCell)
{
    return lm(AA(QueenTrailColor, QueenTrailColor2), coords,matchCell);
}

function AA()
{
    return arguments;
}

function getCell(x)
{
    return {cell:x};
}

function getCellColor(x, y)
{
    return {cell:x, color:y};
}

La reina azul dejará un rastro azul, evita el negro y deja migas negras si está "atascado".

Ella busca "formas" azules / negras específicas usando las 4 rotaciones y crea una lista de movimientos potenciales. Los movimientos descalificadores se eliminan y se elige un solo resultado. La reina es algo predecible, pero ciertas formas provocarán una aleatoriedad. La mayoría de las veces cambiará de dirección después de encontrar comida debido al hecho de que la orientación cambiará qué movimientos se descubren primero.


3
Bienvenido al sitio! :)
DJMcMayhem

¡Es bueno estar aquí!
Algún corredor

4

FireFlyMkII

Tenga en cuenta que hasta que mi entrada esté completa, este código será feo ya que se transcompila desde mi fuente de desarrollo maestra que se realiza en Java.

    // maps current view's cells' indecies to the rotated cell's location's indecies for each direction
    var rotate = 
            [[0,1,2,3,4,5,6,7,8],
             [2,5,8,1,4,7,0,3,6],
             [8,7,6,5,4,3,2,1,0],
             [6,3,0,7,4,1,8,5,2]];

    // the colours that form the pattern of the trail back to the queen
    var TRAIL_COLOR_A = 8;
    var TRAIL_COLOR_B = 2;
    var TRAIL_COLOR_C = 5;
    var trailColours = [TRAIL_COLOR_A,TRAIL_COLOR_B,TRAIL_COLOR_C];
    var trailColoursLookUp = [-1,-1,1,-1,-1,2,-1,-1,0];

    var ORIENTATION_MARKER = 8;

    // Queens Modes
    var QUEEN_MODE_HUNTING_MOVING = 6;
    var QUEEN_MODE_HUNTING_PAINTING = 1;
    var QUEEN_MODE_RESETTING = 5;
    var QUEEN_MODE_RESETTING_SPAWNING = 3;
    var QUEEN_MODE_COUNTING_EVEN = 7;
    var QUEEN_MODE_COUNTING_ODD = 4;
    var QUEEN_MODE_NESTING = 2;

    // the number of non-blank (i.e. not colour 1 ) colours to used to encode the queen's worker spawn counter. Min of 1. Max of 7
    var SPAWN_COUNTER_NON_BLANK_COLOURS_COUNT = 7;


    // the maximum number that can be encoded using the queen's worker spawn counter
    var SPAWN_COUNTER_MAX = SPAWN_COUNTER_NON_BLANK_COLOURS_COUNT*SPAWN_COUNTER_NON_BLANK_COLOURS_COUNT*SPAWN_COUNTER_NON_BLANK_COLOURS_COUNT -1;//SPAWN_COUNTER_NON_BLANK_COLOURS_COUNT * SPAWN_COUNTER_USED_CELLS_COUNT_MAX;

    // the minimum game ticks between spawning a worker. Min of 0, Max of SPAWN_COUNTER_MAX
    var TICKS_BETWEEN_FOOD_RETURN_MAX = 50;

    // No Operation... i.e. stay put do nothing
    var NO_OP = {cell:4};

    var ANT_TYPE_WORKER = 1; 
    var ANT_TYPE_QUEEN = 5;

    var orientationMarkerRotation = -1;

    var i=0;
    var j=0;

    // returns true of the provided colour is a trail colour
function isTrailColour(colour)
    {
        return colour === trailColours[0] || colour === trailColours[1] || colour === trailColours[2];
    }

    // returns the colour of the colour in the trail away from queen
function nextTrailColor(currentTrailColour)
    {
        return trailColours[(trailColoursLookUp[currentTrailColour]+1)%3];
    }

    // returns the colour of the colour in the trail toward from queen
function prevTrailColor(currentTrailColour)
    {
        return trailColours[(3+trailColoursLookUp[currentTrailColour]-1)%3];
    }

    // RNG
function randomNumberGenerator(seed)
    {
        return (1103515245 * seed + 12345) % 2147483647;
    }

    // returns a positive random integer based on the provided ant's view and seed
function randomInt(view,seed)
    {
        for (var i=0;i<9;i++)
        {
            if (view[i].ant !=null)
            {
                seed=randomNumberGenerator(seed+view[i].ant.food);
                seed=randomNumberGenerator(seed+view[i].ant.type);
                seed=randomNumberGenerator(seed+(view[i].ant.friend?1:0));
            }
            seed=randomNumberGenerator(seed+view[i].color);
            seed=randomNumberGenerator(seed+view[i].food);
        }
        return seed<0?-seed:seed;
    }

    // SHUFFLE *NOT* IMPLEMENTED 
function shuffleIndecies(view,seed,range)
    {
        var indecies = new Array(range);

        for (var i=0;i<range;i++)
        {
            indecies[i]=i;
        }

        return indecies;
    }

function processOrientation(view)
    {
        // count orientation markers
        var orientationMarkerCount = 0;
        for (var i=0; i<rotate.length;i++)
        {
            if (view[rotate[i][1]].color === ORIENTATION_MARKER)
            {
                orientationMarkerCount++;
                orientationMarkerRotation = i;
            }
        }

        // corruption detected
        if (orientationMarkerCount >1)
        {
            return {cell:4, color: QUEEN_MODE_RESETTING};
        }

        // place the orientation marker
        if (orientationMarkerCount === 0)
        {
            return {cell:1, color: ORIENTATION_MARKER};
        }
        return null;
    }

function incrementSpawnCounter(view)
    {
        var action = processOrientation(view);
        if (action != null)
        {
            return action;
        }

        var newCount = decodeThreeCellsToInt(view) + 1;

        var MSD = view[rotate[orientationMarkerRotation][3]].color-1;
        var NSD = view[rotate[orientationMarkerRotation][7]].color-1;
        var LSD = view[rotate[orientationMarkerRotation][5]].color-1;

        var MSDisEven =(MSD & 1) ===0;
        var NSDisEven =(NSD & 1) ===0; 

        var MSDdelta =  Math.floor(newCount / 49) - MSD;
        var NSDdelta =  (MSDisEven ? Math.floor(Math.floor(newCount%49)/7) :( 6 - Math.floor(Math.floor(newCount%49)/7))) - NSD;
        var LSDdelta =  (((MSDisEven && NSDisEven) || (!MSDisEven && !NSDisEven)) ? Math.floor(newCount%7) :( 6 - Math.floor(newCount%7))) - LSD;

        // check for roll over 
        if (MSDdelta > 6)
        {
            return {cell:rotate[orientationMarkerRotation][3], color:1};
        }

        // Most Significant Digit (cell) update
        if (MSDdelta != 0)
        {
            return {cell:rotate[orientationMarkerRotation][3], color:(MSD+MSDdelta)+1};
        }

        // Next Significant Digit (cell) update
        if (NSDdelta != 0)
        {
            return {cell:rotate[orientationMarkerRotation][7], color:(NSD+NSDdelta)+1};
        }

        // Least Significant Digit (cell) update
        if (LSDdelta != 0)
        {
            return {cell:rotate[orientationMarkerRotation][5], color:(LSD+LSDdelta)+1};
        }

        return null;
    }

function decodeThreeCellsToInt(view)
    {
        var MSD = view[rotate[orientationMarkerRotation][3]].color-1;
        var NSD = view[rotate[orientationMarkerRotation][7]].color-1;
        var LSD = view[rotate[orientationMarkerRotation][5]].color-1;

        var MSDisEven =(MSD & 1) ===0;
        var NSDisEven =(NSD & 1) ===0; 
        return MSD * 49 + 
               (MSDisEven?NSD:6-NSD) * 7 + 
               ((MSDisEven && NSDisEven) || (!MSDisEven && !NSDisEven)?LSD:6-LSD);
    }
    // Performs a paint command to reset the queen's worker spawn counter to 0.
    // NOTE that is may take multiple calls on sequential game ticks to complete the reset.
    // returns null if the counter is reset
function resetSpawnCounter(view)
    {
        var orientationMarkerCount = 0;
        for (i=1; i<9; i+=2) 
        {
            if (view[i].color === ORIENTATION_MARKER && orientationMarkerCount ===0)
            {
                orientationMarkerCount++;
            }
            else if (view[i].color!=1)
            {
                return {cell:i, color:1};
            }
        }

        // place the orientation marker
        if (orientationMarkerCount === 0)
        {
            return {cell:1, color: ORIENTATION_MARKER};
        }

        return null;
    }


function spawnNewWorker(view,type,defaultAction)
    {
        // ensure that we do not try and create a worker when having no food
        if (view[4].ant.food > 0)
        {
            // now try to spawn an ant
            if (view[1].ant===null && view[1].food===0)
            {
                return {cell:1, type:type};
            }

            // previous spawn cell was blocked, try another 
            if (view[3].ant===null && view[3].food===0)
            {
                return {cell:3, type:type};
            }

            // previous spawn cell was blocked, try another
            if (view[5].ant===null && view[5].food===0)
            {
                return {cell:5, type:type};
            }

            // previous spawn cell was blocked, try another
            if (view[7].ant===null && view[7].food===0)
            {
                return {cell:7, type:type};
            }
        }
        return defaultAction;
    }

function isCellTrailToQueen(cell,currentAntCellColour)
    {
        // is cell containing our queen, or is the cell the next cell colour on the trail back
        return (cell.ant!=null && cell.ant.friend && cell.ant.type === ANT_TYPE_QUEEN) ||
                cell.color === prevTrailColor(currentAntCellColour);
    }

    // entry point into ant logic
function getAction(view)
    {
        var random = 1;
        var food = view[4].ant.food;
        var currentCellColour = view[4].color;

/////////////////////////////////////// QUEEN ///////////////////////////////////////
        if (view[4].ant.type === ANT_TYPE_QUEEN)
        {
            // move to visible food. this queen is greedy!
            for (i=0; i<9; i++) 
            {
                if (view[i].food>0) {
                    return {cell:i};
                }
            }

            // see if we have spawned a worker in the last few turns
            var workerSpawned = false;
            // look in orthogonal cells
            for (i=1; i<9; i+=2) 
            {
                // ant detected and is friendly and of worker type
                if (view[i].ant !=null && view[i].ant.friend && view[i].ant.type===ANT_TYPE_WORKER)
                {
                    workerSpawned=true;
                    break;
                }
            }

            var queenMode = currentCellColour;
            var foodModRemainder=1;

            var minFoodLatch = 0;
            if (food>=500) minFoodLatch = 500;
            else if (food>=400) minFoodLatch = 400;
            else if (food>=300) minFoodLatch = 300;
            else if (food>=200) minFoodLatch = 200;
            else if (food>=100) minFoodLatch = 100;
            else if (food>=50) minFoodLatch = 50;
            else if (food>=20) minFoodLatch = 30;
            else if (food>=20) minFoodLatch = 20;
            else if (food>=10) minFoodLatch = 10;
            else if (food>=5) minFoodLatch = 5;

            switch (queenMode)
            {
                case QUEEN_MODE_HUNTING_MOVING:
                {


                    // move to the cell mirror of the trail cell
                    for (i=0; i<9; i++) {
                        if (view[i].ant===null && view[i].color===QUEEN_MODE_HUNTING_MOVING) {
                            if (view[8-i].ant==null)
                            {
                                return {cell:8-i};
                            }
                        }
                    }

                    // Otherwise move to one of the diagonal cells if not occupied
                    for (i=0; i<9; i+=2) 
                    {
                        if (view[i].ant===null) 
                        {
                            return {cell:i};
                        }
                    }

                    // Otherwise move to one of the vertical or horizontal cells if not occupied
                    for (i=1; i<9; i+=2)
                    {
                        if (view[i].ant===null)
                        {
                            return {cell:i};
                        }
                    }
                    return {cell:4};
                }
                case QUEEN_MODE_HUNTING_PAINTING:
                {
                    // no food found, change to move mode
                    if (food ===0)
                    {
                        // Queenie places a trail
                        return {cell:4, color:QUEEN_MODE_HUNTING_MOVING};
                    }
                    // found food, now change to nesting mode
                    else
                    {
                        return {cell:4, color:QUEEN_MODE_NESTING};
                    }
                }

                // initialise colony
                case QUEEN_MODE_NESTING:
                {
                    // we have spawned a worker so change to counting mode
                    if (workerSpawned===true)
                    {
                        return {cell:4, color:QUEEN_MODE_COUNTING_ODD};
                    }

                    var action = processOrientation(view);
                    if (action != null)
                    {
                        return action;
                    }

                    // ensure that we have the initial band constructed around the queen
                    for (i=0; i<9; i+=2) 
                    {
                        if (i!=4 && view[i].color!=TRAIL_COLOR_A)
                        {
                            return {cell:i, color:TRAIL_COLOR_A};
                        }
                    }

                    // ensure that the counter cells are reset.
                    action = resetSpawnCounter(view);
                    if (action != null)
                    {
                        return action;
                    }

                    // spawn initial worker
                    return spawnNewWorker(view, ANT_TYPE_WORKER, NO_OP);
                }


                case QUEEN_MODE_RESETTING_SPAWNING:

                    // spawn the worker if we have not spawned a worker in the last few turns 
                    if (!workerSpawned===true)
                    {
                        return spawnNewWorker(view, ANT_TYPE_WORKER, NO_OP);
                    }
                    // must have spawned a worker previously, so reset the counter 
                    var action = resetSpawnCounter(view);

                    // still in process of resetting counter...
                    if (action != null)
                    {
                        return action;
                    }


                    // spawn counter as been reset. We will set the queen back to counting mode;
                    return {cell:4, color:food%2===0?QUEEN_MODE_COUNTING_EVEN:QUEEN_MODE_COUNTING_ODD};

                case QUEEN_MODE_RESETTING:

                    action = resetSpawnCounter(view);

                    // still in process of resetting counter...
                    if (action != null)
                    {
                        return action;
                    }


                    // spawn counter as been reset. We will set the queen back to counting mode;
                    return {cell:4, color:food%2===0?QUEEN_MODE_COUNTING_ODD:QUEEN_MODE_COUNTING_EVEN};

                case QUEEN_MODE_COUNTING_ODD:
                    foodModRemainder = 2;
                case QUEEN_MODE_COUNTING_EVEN:
                {
                    foodModRemainder--;

                    action = processOrientation(view);
                    if (action != null)
                    {
                        return action;
                    }

                    var spawnCounter = decodeThreeCellsToInt(view);

                    // repair any damage to the initial band constructed around the queen
                    for (i=0; i<9; i+=2) 
                    {
                        if (i!=4 && view[i].color!=TRAIL_COLOR_A)
                        {
                            return {cell:i, color:TRAIL_COLOR_A};
                        }
                    }

//                    // spawn interval time threshold as been reached and we have food to convert into workers...
//                    if (spawnCounter>=TICKS_BETWEEN_FOOD_RETURN_MAX && food>minFoodLatch)
//                    {
//                        // change to reset spawn counter mode to spawn a new worker
//                        return new Paint(4,QUEEN_MODE_RESETTING_SPAWNING);
//                    }
//
//                    // Check to see if a worker has just returned some food.
//                    if (food>0 && food%2 == foodModRemainder)
//                    {
//                        // change to reset spawn counter mode
//                        return new Paint(4,QUEEN_MODE_RESETTING);
//                    }

                    // Check to see if a worker has just returned some food.
                    if (food>0 && food%2 === foodModRemainder)
                    {

                        // spawn interval time threshold as been reached and we have food to convert into workers...
                        if (spawnCounter>=TICKS_BETWEEN_FOOD_RETURN_MAX && food>0)
                        {
                            // change to reset spawn counter mode to spawn a new worker
                            return {cell:4, color:QUEEN_MODE_RESETTING_SPAWNING};
                        }

                        // change to reset spawn counter mode
                        return {cell:4, color:QUEEN_MODE_RESETTING};
                    }


                    if (spawnCounter < SPAWN_COUNTER_MAX)
                    {
                        // simply increment the counter
                        return incrementSpawnCounter(view);
                    }

                    return NO_OP;
                }
                default:
                {
                }

            }


        }

/////////////////////////////////////// WORKER ///////////////////////////////////////



        var expectedNextPathColourToEdge = nextTrailColor(currentCellColour);

        // worker is looking for food
        if (food===0)
        {
/////////////////////////////////// WORKER HUNTNING //////////////////////////////////    

            // determine whether we are a recently spawned worker
            for (var i=1;i<9;i+=2)
            {
                // are we orthogonal to the queen?
                if (view[i].ant!=null && view[i].ant.friend && view[i].ant.type === ANT_TYPE_QUEEN)
                {
                    // test to see whether queen's counter has reset so worker is free to move
                    if (view[i].color === QUEEN_MODE_COUNTING_ODD || view[i].color === QUEEN_MODE_COUNTING_EVEN )
                    {
                        for (var j=1;j<9;j+=2)
                        {
                            if (view[j].ant===null && view[j].color===TRAIL_COLOR_A)
                            {
                                return {cell:j};
                            }
                        }
                    }
                    // wait until queen's counter has reset
                    return NO_OP;
                }
            }

//            // this is to try and unstick stuck ants... not overly well i might add
//            if (randomInt(view,1)%20==1)
//            {
//                // attempt to pick an empty random trail-cell
//                for (i = randomInt(view,666)%9;i>0;i--)
//                {
//                    if (view[i].ant==null && view[i].food==0 && isTrailColour(view[i].color))
//                    {
//                        return new Move(i);
//                    }
//                }
//            }

            // see if there is any food off band that is enclosed or almost enclosed by trail cells
            // if so, then move to claim the food
            if (view[1].food>0 &&
                isTrailColour(view[0].color) &&
                isTrailColour(view[2].color))
            {
                return {cell:1};
            }

            if (view[3].food>0 &&
                isTrailColour(view[0].color) &&
                isTrailColour(view[6].color))
            {
                return {cell:3};
            }

            if (view[5].food>0 &&
                isTrailColour(view[2].color) &&
                isTrailColour(view[8].color))
            {
                return {cell:5};
            }

            if (view[7].food>0 &&
                isTrailColour(view[6].color) &&
                isTrailColour(view[8].color))
            {
                return {cell:7};
            }


            // if not on trail, attempt see if cells surrounding are trail colours... and set our own cell accordingly
            if (!isTrailColour(currentCellColour))
            {
                for (var priority = 0; priority <4;priority++)
                {
                    // repeat for each rotation
                    var indecies = shuffleIndecies(view,random,4);
                    for (var j=0;j<4;j++)
                    {
                        var r = indecies[j];
                        switch(priority)
                        {
                        // C??  ...
                        // ???  .P.
                        // P?N  ...
                        case 0:
                            if (isTrailColour(view[rotate[r][0]].color) && 
                                nextTrailColor(view[rotate[r][0]].color) === view[rotate[r][8]].color &&
                                prevTrailColor(view[rotate[r][0]].color) === view[rotate[r][6]].color)
                            {
                                return {cell:4, color: view[rotate[r][6]].color};
                            }
                            break;

                        // ??C  ...
                        // ???  .C.
                        // N?C  ...
                        case 1:
                            if (isTrailColour(view[rotate[r][2]].color) && 
                                view[rotate[r][2]].color === view[rotate[r][8]].color &&
                                nextTrailColor(view[rotate[r][2]].color) === view[rotate[r][6]].color)
                            {
                                return {cell:4, color: view[rotate[r][2]].color};
                            }
                            break;

                        // C??  ...
                        // ???  .C.
                        // P??  ...
                        case 2:
                            if (isTrailColour(view[rotate[r][0]].color) && 
                                prevTrailColor(view[rotate[r][0]].color) === view[rotate[r][6]].color)
                            {
                                return {cell:4, color: view[rotate[r][0]].color};
                            }
                            break;

                        // C??  ...
                        // ???  .C.
                        // ???  ...
                        case 3:
                            if (isTrailColour(view[rotate[r][0]].color))
                            {
                                return {cell:4, color: view[rotate[r][0]].color};
                            }
                            break;
                        }
                    }
                }
                // we are completely lost! lets perform a random walk and hopefully find the surface again
                return {cell:view[2].ant === null?2:4};
            }

            // decide worker action...
            for (var priority = 0; priority <13;priority++)
            {
                // repeat for each rotation
                var indecies = shuffleIndecies(view,random,4);
                for (var j=0;j<4;j++)
                {
                    var r = indecies[j];
                    var cellToMoveTo =-1;

                    switch(priority)
                    {
                    /////// AVOID MOVING/PAINTING LOCK-STEP ///////

                    // X?X  ...
                    // ?C?  .M.
                    // C?W  ...

                    case 0:
                        if (view[rotate[r][6]].color === currentCellColour &&
                            !isTrailColour(view[rotate[r][0]].color) &&
                            !isTrailColour(view[rotate[r][2]].color) &&
                            view[rotate[r][8]].ant!=null &&
                            view[rotate[r][8]].ant.type!=ANT_TYPE_QUEEN) 
                        {
                            // step back on path back to queen
                            return NO_OP;
                        }
                        break;

                    /////// REPAIR PATH ///////

                    // P?X  ..C
                    // ?C?  ...
                    // C??  ...

                    case 1:
                        if (view[rotate[r][2]].color != currentCellColour &&
                            view[rotate[r][6]].color === currentCellColour &&
                            isCellTrailToQueen(view[rotate[r][0]],currentCellColour))
                        {
                            return {cell:rotate[r][2], color:currentCellColour};
                        }
                        break;

                    // ??C  N..
                    // ?C?  ...
                    // X?P  ...

                    case 2:
                        if (view[rotate[r][2]].color === currentCellColour &&
                            isCellTrailToQueen(view[rotate[r][8]],currentCellColour) &&
                            !isTrailColour(view[rotate[r][6]].color) &&
                            view[rotate[r][0]].color != expectedNextPathColourToEdge)
                        {
                            return {cell:rotate[r][0], color:expectedNextPathColourToEdge};
                        }
                        break;

                    // C?N  ...
                    // ?C?  .N.
                    // ??P  ...

                    case 3:
                        if (view[rotate[r][0]].color === currentCellColour &&
                            view[rotate[r][2]].color === expectedNextPathColourToEdge &&
                            isCellTrailToQueen(view[rotate[r][8]],currentCellColour))
                        {
                            return {cell:4, color:expectedNextPathColourToEdge};
                        }
                        break;

                    // C??  N..
                    // ?C?  ...
                    // ??P  ...

                    case 4:
                        if (view[rotate[r][0]].color === currentCellColour &&
                            isCellTrailToQueen(view[rotate[r][8]],currentCellColour))
                        {
                            return {cell:rotate[r][0], color:expectedNextPathColourToEdge};
                        }
                        break;

                    /////// MOVING ///////

                    // C?P  ...
                    // ?C?  ...
                    // ??C  N..
                    case 5:
                        if (view[rotate[r][0]].color === currentCellColour &&
                            view[rotate[r][8]].color === currentCellColour &&
                            isCellTrailToQueen(view[rotate[r][2]],currentCellColour) &&
                            view[rotate[r][6]].color != expectedNextPathColourToEdge)
                        {

                            if (view[rotate[r][6]].ant === null)
                            {
                                return {cell:rotate[r][6], color:expectedNextPathColourToEdge};
                            }
                            else
                            {
                                return NO_OP;
                            }
                        }
                        break;

                    // C?P  ...
                    // ?C?  ...
                    // N?C  M..
                    case 6:
                        if (view[rotate[r][0]].color === currentCellColour &&
                            view[rotate[r][8]].color === currentCellColour &&
                            isCellTrailToQueen(view[rotate[r][2]],currentCellColour) &&
                            view[rotate[r][6]].color === expectedNextPathColourToEdge)
                        {
                            cellToMoveTo = rotate[r][6];
                        }
                        break;

                    // Special case. we need to first paint the cell prior to moving other wise will cause corruption
                    // C??  ...
                    // ?C?  ...
                    // C??  ..N
                    case 7:
                        if (view[rotate[r][0]].color === currentCellColour &&
                            view[rotate[r][6]].color === currentCellColour &&
                            view[rotate[r][8]].color != expectedNextPathColourToEdge)
                        {
                            if (view[rotate[r][8]].ant === null)
                            {
                                return {cell:rotate[r][8], color:expectedNextPathColourToEdge};
                            }
                            else
                            {
                                return NO_OP;
                            }
                        }
                        break;
                    // C??  ...
                    // ?C?  ...
                    // C?N  ..M
                    case 8:
                        if (view[rotate[r][0]].color === currentCellColour &&
                            view[rotate[r][6]].color === currentCellColour &&
                            view[rotate[r][8]].color === expectedNextPathColourToEdge)
                        {
                            cellToMoveTo = rotate[r][8];
                        }
                        break;
                    // C??  ..M
                    // ?C?  ...
                    // P?C  ...
                    case 9:
                        if (view[rotate[r][0]].color === currentCellColour &&
                            view[rotate[r][8]].color === currentCellColour &&
                            isCellTrailToQueen(view[rotate[r][6]],currentCellColour))
                        {
                            cellToMoveTo = rotate[r][2];
                        }
                        break;
                    // C??  ...
                    // ?C?  ...
                    // P??  ..M
                    case 10:
                        if (view[rotate[r][0]].color === currentCellColour &&
                            isCellTrailToQueen(view[rotate[r][6]],currentCellColour))
                        {
                            cellToMoveTo = rotate[r][8];
                        }
                        break;
                    // C??  ...
                    // ?C?  ...
                    // ???  M..
                    case 11:
                        if (view[rotate[r][0]].color === currentCellColour)

                        {
                            cellToMoveTo = rotate[r][6];
                        }
                        break;
                    // ???  ...
                    // ?C?  ...
                    // P??  ?.M
                    case 12:
                        if (isCellTrailToQueen(view[rotate[r][6]],currentCellColour))

                        {
                            cellToMoveTo = rotate[r][8];
                        }
                        break;
                    }
                    if (cellToMoveTo>-1)
                    {
                        return {cell:view[cellToMoveTo].ant === null?cellToMoveTo:4};
                    }
                }
            }
            return NO_OP;
        }

        // worker is transporting food
        else
        {
            // worker deadlock avoidance
            for (i=0; i<9; i+=2)
            {
                // does the cell have another ant in it?
                if (i!=4 && view[i].ant!=null && !(view[i].ant.type===ANT_TYPE_QUEEN && view[i].ant.friend))
                {
                    // attempt to pick an empty random trail-cell
                    for (i = randomInt(view,54321)%9;i>0;i--)
                    {
                        if (view[i].ant===null && view[i].food===0 && isTrailColour(view[i].color))
                        {
                            return {cell:i};
                        }
                    }

                    // no luck... just pick a random empty cell
                    for (i = randomInt(view,12345)%9;i>0;i--)
                    {
                        if (view[i].ant===null && view[i].food===0)
                        {
                            return {cell:i};
                        }
                    }

                    // deadlock unavoidable!
                    return NO_OP;
                }
            }

//            // this is to try and unstick stuck ants
//            if (randomInt(view,1)%20==1)
//            {
//                // attempt to pick an empty random trail-cell
//                for (i = randomInt(view,666)%9;i>0;i--)
//                {
//                    if (view[i].ant==null && view[i].food==0 && isTrailColour(view[i].color))
//                    {
//                        return new Move(i);
//                    }
//                }
//            }


            // decide move action
            for (var priority = 0; priority <14;priority++)
            {
                // repeat for each rotation
                var indecies = shuffleIndecies(view,random,4);
                for (var j=0;j<4;j++)
                {
                    var r = indecies[j];
                    var cellToMoveTo =-1;

                    switch(priority)
                    {
                        // PRE-EMPTIVE PATH PRUNING

                    // C?X  X..
                    // ?X?  ...
                    // P?X  ...
                    case 0:
                        if (isTrailColour(view[rotate[r][0]].color) &&
                            !isTrailColour(view[rotate[r][2]].color) &&
                            !isTrailColour(view[rotate[r][4]].color) && 
                            prevTrailColor(view[rotate[r][0]].color) === view[rotate[r][5]].color)
                        {
                            return {cell:rotate[r][0], color: 1};
                        }
                        break;


                        // ?C?  ...
                        // CXN  X..
                        // ?X?  ...
                        case 1:
                            if (!isTrailColour(view[rotate[r][4]].color) &&
                                !isTrailColour(view[rotate[r][7]].color) &&
                                isTrailColour(view[rotate[r][1]].color) && 
                                view[rotate[r][3]].color === view[rotate[r][1]].color &&
                                nextTrailColor(view[rotate[r][1]].color) === view[rotate[r][5]].color)
                            {
                                return {cell:rotate[r][3], color: 1};
                            }
                            break;

                        // ?C?  ...
                        // PXC  ..X
                        // ?X?  ...
                        case 2:
                            if (!isTrailColour(view[rotate[r][4]].color) &&
                                !isTrailColour(view[rotate[r][7]].color) &&
                                isTrailColour(view[rotate[r][1]].color) && 
                                view[rotate[r][5]].color === view[rotate[r][1]].color &&
                                prevTrailColor(view[rotate[r][1]].color) === view[rotate[r][3]].color)
                            {
                                return {cell:rotate[r][5], color: 1};
                            }
                            break;

                        // N??  ..N
                        // ?C?  ...
                        // C?C  ...

                        case 3:
                            if (isTrailColour(view[rotate[r][4]].color) &&
                                view[rotate[r][2]].color != expectedNextPathColourToEdge &&
                                view[rotate[r][8]].color === currentCellColour &&
                                view[rotate[r][0]].color === expectedNextPathColourToEdge &&
                                view[rotate[r][6]].color === currentCellColour)
                            {
                                return {cell:rotate[r][2], color:expectedNextPathColourToEdge};
                            }
                            break;

                        // N??  ...
                        // ?X?  .C.
                        // C?C  ...


                        case 4:
                            if (!isTrailColour(view[rotate[r][4]].color) && 
                                isTrailColour(view[rotate[r][8]].color) &&
                                view[rotate[r][0]].color === nextTrailColor(view[rotate[r][8]].color) &&
                                view[rotate[r][8]].color === view[rotate[r][6]].color)
                            {
                                return {cell:rotate[r][4], color:view[rotate[r][8]].color};
                            }
                            break;

                        // N??  ..C
                        // ?C?  ...
                        // C?P  ...

                        case 5:
                            if (isTrailColour(view[rotate[r][4]].color) && 
                                view[rotate[r][0]].color === expectedNextPathColourToEdge &&
                                view[rotate[r][6]].color === currentCellColour &&
                                isCellTrailToQueen(view[rotate[r][8]],currentCellColour) &&
                                view[rotate[r][2]].color != currentCellColour)
                            {
                                return {cell:rotate[r][2], color:currentCellColour};
                            }
                            break;

                        // C?N  ...
                        // ?X?  .N.
                        // ??P  ...

                        case 6:
                            if (!isTrailColour(view[rotate[r][4]].color) && 
                                isTrailColour(view[rotate[r][0]].color) && 
                                view[rotate[r][2]].color === nextTrailColor(view[rotate[r][0]].color) &&
                                view[rotate[r][8]].color === prevTrailColor(view[rotate[r][0]].color))
                            {
                                return {cell:rotate[r][4], color:nextTrailColor(view[rotate[r][0]].color)};
                            }
                            break;

                        // ??P  ...
                        // ?X?  .N.
                        // ??N  ...

                        case 7:
                            if (!isTrailColour(view[rotate[r][4]].color) && 
                                isTrailColour(view[rotate[r][2]].color) &&
                                nextTrailColor(view[rotate[r][2]].color) === view[rotate[r][8]].color)
                            {
                                return {cell:4, color:view[rotate[r][8]].color};
                            }
                            break;



                        // if we are on the corner of a trail band... move opposite to the apex
                        case 8:
                            if (isTrailColour(currentCellColour) &&
                                view[rotate[r][0]].color === currentCellColour &&
                                view[rotate[r][2]].color === currentCellColour)
                            {
                                if (randomInt(view,currentCellColour)%2 === 0)
                                {
                                    cellToMoveTo = rotate[r][0];
                                }
                                else
                                {
                                    cellToMoveTo = rotate[r][2];
                                }
                            }
                            break;

                        // if we on the opposite corner of a trail band... move back toward the apex
                        case 9:
                            if (isTrailColour(currentCellColour) &&
                                isCellTrailToQueen(view[rotate[r][0]],currentCellColour) &&
                                isCellTrailToQueen(view[rotate[r][2]],currentCellColour))
                            {
                                if (randomInt(view,currentCellColour)%2 === 0)
                                {
                                    cellToMoveTo = rotate[r][0];
                                }
                                else
                                {
                                    cellToMoveTo = rotate[r][2];
                                }
                            }
                            break;
                        // if an adjacent cell is a trail to the queen, move that way
                        case 10:
                            if (isTrailColour(currentCellColour) &&
                                isCellTrailToQueen(view[rotate[r][0]],currentCellColour))
                            {
                                cellToMoveTo = rotate[r][0];
                            }
                            break;
                        // if we are not on a trail and an adjacent cell is a trail, then move that way
                        case 11:
                            if (!isTrailColour(currentCellColour) && isTrailColour(view[rotate[r][8]].color))
                            {
                                cellToMoveTo = rotate[r][8];
                            }
                            break;
                        // are we on a cell between trail cells? if so then move onto a cell on the trail.
                        case 12:
                            if (isTrailColour(view[rotate[r][1]].color))
                            {
                                cellToMoveTo = rotate[r][1];
                            }
                            break;
                        // are we on a terminal trail cell? if so then move onto a cell on the trail.
                        case 13:
                            if (isTrailColour(view[rotate[r][0]].color))
                            {
                                cellToMoveTo = rotate[r][0];
                            }
                            break;

                    }
                    if (cellToMoveTo>-1)
                    {
                        if (view[cellToMoveTo].ant != null || view[cellToMoveTo].food > 0) continue;
                        return {cell:cellToMoveTo};
                    }
                }
            }
            return NO_OP;
        }

    }

    return getAction(view);

VERSIÓN 1

versión 1

La premisa básica de esta entrada será buscar en una espiral cuadrada en constante expansión. La expansión del perímetro cuadrado de búsqueda creará un patrón repetitivo de tres bandas que permite la entrega rápida de alimentos y el retorno al perímetro.

El nombre de la entrada es del enemigo "luciérnaga" en el clásico juego de rompecabezas BolderDash, el patrón repetitivo de tres colores recuerda al enemigo.

Esta versión inicial, aunque tiene errores latentes, cumple los requisitos básicos para ser una entrada básica: las hormigas recogen y devuelven comida a la reina. Sin embargo, la comida se convierte inmediatamente en trabajadores, por lo que nunca se colocará bien en un torneo.

Sin embargo, para la próxima versión, creo que cambiaré fundamentalmente la forma y ordenaré que las hormigas se muevan / pinten: de pintar luego mover, mover y pintar. Si bien no puedo estar seguro, creo que parte del daño del patrón de color de las celdas se produce en las celdas que contienen hormigas que son pintadas por hormigas adyacentes. Cambiar el orden debería ayudar a reducir ese riesgo ... pero será potencialmente más complicado / arriesgado moverse antes de pintar.

VERSIÓN 2

versión 2

Esta versión es superior, ahora se gira 45 grados, lo que permite una mayor exploración por trabajador y paso de hormiga.

Ahora también recolecta alimentos (si no se distrae)

Sin embargo, no es robusto y se ve fácilmente interrumpido por los rastros de otras hormigas. Por lo tanto, no es un buen contendiente en la actualidad.

Sin embargo, cuando se deja solo, promedia 700 alimentos recolectados con 300 trabajadores.

VERSIÓN 2.1

Se agregó control de cordura para garantizar que la reina no intente hacer un trabajador cuando no tiene comida.

VERSIÓN 2.1.1

solucionó la solución en 2.1 (en realidad no utilicé el campo "comida" de la vista de la hormiga y, por lo tanto, hacía referencia a un objeto nulo.

VERSIÓN 2.1.1.1

/ me esconde la cabeza en las manos

Encontré un error de indexación simple en la función de desove, lo que significaba que la reina podría intentar engendrar sobre sí misma ... no hace falta decir que eso es motivo de descalificación. Ahora arreglado.

VERSIÓN 2.2

Se corrigió el error de copiar y pegar que reintroducía un error de generación ilegal

VERSIÓN 2.2.1

Se corrigió un posible movimiento ilegal en la lucha inicial cuando la reina intenta encontrar la primera pieza de comida.


Su estrategia también sufre la misma debilidad que Zigurrat: el robo. Podría ajustar el código de identificación de Zigurrat en Vampire para apuntar a Firefly en aproximadamente 90 segundos. Literalmente sería "copiar 60 líneas de código, pegar 60 líneas de código, cambiar 3 números". Sin embargo, preferiría que el código Zigurrat-ID sea modular en su lugar ("haz esto con estos colores").
Draco18s

Tus hormigas también se acumulan mucho: si estás pintando, una aparecerá detrás de ella y esperará hasta que la combinación correcta de disparadores haga que el camarero salte y comience una nueva línea. Detectar que hay una hormiga amigable al frente y salir para comenzar una nueva línea debería ser fácil. Ni siquiera debería necesitar esperar un rincón para hacerlo. El segundo problema es cuando dos hormigas en líneas separadas están en el mismo paso de dibujo. El que está afuera dibuja una esquina, el interior lo vuelve a dibujar. También debería poder detectar hormigas vecinas en esta situación (la mejor acción podría ser esperar a que la otra hormiga se mueva).
Draco18s

@ Draco18s Sí, hay algunas fallas con esta versión inicial :-) pero es un lugar para comenzar. Con respecto a la amenaza de robo: planeo hacer una hormiga guardiana que busque a la reina ladrona enemiga y "robe" de vuelta. Debería minimizar la pérdida.
Moogie

Oh, me doy cuenta de que es un lugar para comenzar, solo haciendo algunas observaciones. :)
Draco18s

1
¿Está hecho? ¿Puedo entrar y destrozar el lugar con un murciélago vampírico? : D
Draco18s

4

Mandelbrant

Todas mis respuestas contienen una lógica similar de bajo nivel en forma del Marco de funciones fórmicas.

"LA LÓGICA DE ALTO NIVEL COMIENZA AQUÍ" marca el final del código del Marco.

ADVERTENCIA: esta entrada es principalmente una demostración de lo que es posible dentro del conjunto de reglas de funciones formales. No se probó a fondo en un mapa no vacío. Aunque sobrevivió a dos juegos completos, no espero que se mantenga calificado por mucho tiempo.

// FORMIC FRAMEWORK \\
//  Version 7.0.4   \\
const QUEEN = 5;
const HERE = view[4];
const ME = HERE.ant;
const ORTHOGONALS = [1, 3, 5, 7];
const DIAGONALS = [0, 2, 6, 8];
const DIAGONALS_ORTHOGONALS = [0, 2, 6, 8, 1, 3, 5, 7];
const DIRECTIONS = [0, 1, 2, 3, 5, 6, 7, 8];
const CLOCKWISE_DIRECTIONS = [0, 1, 2, 5, 8, 7, 6, 3];
const ROTATIONS = [
    [0, 1, 2,
     3, 4, 5,
     6, 7, 8],

    [6, 3, 0,
     7, 4, 1,
     8, 5, 2],

    [8, 7, 6,
     5, 4, 3,
     2, 1, 0],

    [2, 5, 8,
     1, 4, 7,
     0, 3, 6]
];
const NEIGHBORS = [
    [1, 4, 3],
    [2, 5, 4, 3, 0],
    [5, 4, 1],
    [0, 1, 4, 7, 6],
    [0, 1, 2, 5, 8, 7, 6, 3],
    [8, 7, 4, 1, 2],
    [3, 4, 7],
    [6, 3, 4, 5, 8],
    [7, 4, 5]
];
const HORIZONTAL_FLIP = [2, 1, 0, 5, 4, 3, 8, 7, 6];
const VERTICAL_FLIP = [6, 7, 8, 3, 4, 5, 0, 1, 2];

const DEBUG_MODE = false;
const log = DEBUG_MODE ? console.log : () => { };

function cells(...indices) {
    return indices.map(i => view[i]);
}
function colors(...indices) {
    return cells(...indices).map(c => c.color);
}
function ants(...indices) {
    return cells(...indices).map(c => c.ant);
}

function isColor(color, index) {
    return view[index].color === color;
}
function isAnyColor(colors, index) {
    return colors.includes(view[index].color);
}
function hasFood(index) {
    return view[index].food === 1;
}
function hasAnt(qualifies, index) {
    const a = view[index].ant;
    return a && (!(qualifies instanceof Function) || qualifies(a));
}
function hasFriend(type, index) {
    return hasAnt(a => a.friend && (!type || a.type === type), index);
}
const hasAnyFriend = bind(hasFriend, null);
function bind(f, ...args) {
    return f.bind(null, ...args);
}

function noTransform() {
    return { revert() { }, detransformAction() { } };
}
function indexTransform(indices) {
    const revertedIndices = new Array(9);
    for (let i = 0; i < 9; ++i) {
        revertedIndices[indices[i]] = i;
    }

    view = indices.map(index => view[index]);

    return { revert() { view = revertedIndices.map(index => view[index]); }, detransformAction(action) { action.cell = indices[action.cell]; } };
}

const rotationTransformers = [noTransform, ...ROTATIONS.slice(1).map(r => bind(indexTransform, r))];

function bestTransformers(transformers, scorer) {
    let bestScore = 0;
    const bestIndices = [];
    const bestTransformers = [];
    for (let i = 0; i < transformers.length; ++i) {
        const t = transformers[i];
        const {revert} = t();
        const score = scorer();
        revert();
        if (score > bestScore) {
            bestScore = score;
            bestIndices.length = 0;
            bestTransformers.length = 0;
        }
        if (score >= bestScore) {
            bestIndices.push(i);
            bestTransformers.push(t);
        }
    }

    return {score: bestScore, indices: bestIndices, transformers: bestTransformers};
}
function* withBestTransformation(transformers, scorer, continuation) {
    const best = bestTransformers(transformers, scorer);
    if (best.score > 0) {
        const {revert, detransformAction} = best.transformers[0]();
        for (const output of continuation(best)) {
            if (isAction(output)) {
                detransformAction(output);
            }
            yield output;
        }
        revert();
    }
}
const withBestRotation = bind(withBestTransformation, rotationTransformers);

const wait = {cell: 4};
function move(index) {
    return index >= 0 && index < 9 && view[index].ant === null && (view[index].food === 0 || ME.food === 0 || ME.type === QUEEN) ? { cell: index } : null;
}
function moveMany(...indices) {
    return indices.map(move);
}
function paint(color, index) {
    return index >= 0 && index < 9 && color >= 1 && color <= 8 && view[index].color !== color ? { cell: index, color } : null;
}
function paintMany(colors, ...indices) {
    return pairMap(indices, colors, paint);
}
function spawn(type, index) {
    return index >= 0 && index < 9 && view[index].ant === null && view[index].food === 0 && ME.food > 0 && ME.type === QUEEN && type >= 1 && type <= 4 ? { cell: index, type } : null;
}
function spawnMany(types, ...indices) {
    return pairMap(indices, types, spawn);
}
function pairMap(mainArr, sideArr, func) {
    return mainArr.map((v, i) => func(sideArr[i % sideArr.length], v));
}

function isAction(value) {
    return value instanceof Object && value.cell !== undefined; // TODO: Make this more strict.
}

log('=== start logic ===');
for (const output of main()) {
    if (isAction(output)) {
        log('=== end logic ===');
        return output;
    }
}

throw 'Decision was omitted.';

function* main() {
    // HIGH-LEVEL LOGIC STARTS HERE \\

    // TARGET SIZE:  2^21 pixels -- SUPPORTED
    // STRETCH GOAL: 2497 x 996
    // MAX POSSIBLE: 2500 x 1000

    // How long the painting triplet will go on for until they begin returning to the shifting station.
    // This value should not exceed 997 for the painter to work in all cases, or 2497 if you don't care about being positioned vertically.
    // It also shouldn't be too low. The exact lowest value is unclear, but it's likely to be in the teens.
    const LENGTH = 6 * 11;

    // Which function will be used for painting in the pixels.
    const getPictureColorAt = mandelbrot;

    function notReallyRainbow(index) {
        return index % 6 + 2;
    }
    function fromColorString(index) {
        // Input your own color string ({ a, b, c, d, e, f, g, h } => { 8, 7, 6, 4, 5, 3, 2, 1 }).
        const colorString = '';

        return [8, 7, 6, 4, 5, 3, 2, 1][colorString.charCodeAt(index % colorString.length) - 'a'.charCodeAt(0)];
    }
    function mandelbrot(index) {
        const ESCAPE = 2 ** 2, MAX_I = 8 * 10 - 1;
        const x0 = (index % LENGTH) / (LENGTH - 1) * 3 - 2, y0 = Math.floor(index / LENGTH) / (Math.floor(LENGTH * 2 / 3) - 1) * 2 - 1;
        let x = 0, y = 0;
        for (let i = 0; i < MAX_I; ++i) {
            [x, y] = [x * x - y * y + x0, 2 * x * y + y0];
            if (x * x + y * y > ESCAPE) {
                return (i + 1) % 8 + 1;
            }
        }
        return 8;
    }

    // WARNING! Beyond likely lies awful code.
    // There are no more tunable parameters.
    // Continue reading at your own risk.

    const L1_OVERFLOW = 4096;
    const FILL_ORDER_INDEX = [1, 2, 3, 6];
    const FILL_ORDER_DIGIT = [0, 1, 2, 4];

    function parseNumber(...indices) {
        return indices.reduceRight((a, index) => (a << 3) + (index !== -1 ? view[index].color - 1 : 0), 0);
    }

    function colorAtDigit(n, d) {
        return ((n >>> (d * 3)) & 7) + 1;
    }

    function paintPictureFragment(number) {
        log(`initialized painter with ${number}`);
        return paint(getPictureColorAt(number), 0);
    }

    const COPIER = 1;
    const COUNTER = 2;
    const MAJOR = 3;
    const MINOR = 4;

    function* moveWait(index) {
        yield move(index);
        yield wait;
    }

    log(`type: ${ME.type}`);
    switch (ME.type) {
        case COPIER: {
            yield* withBestRotation(() => Math.max(hasFriend(QUEEN, 7) + hasFriend(MINOR, 3), hasFriend(QUEEN, 6) + hasFriend(MINOR, 0)) - 1, bind(moveWait, 5));
            yield* withBestRotation(bind(hasFriend, COUNTER, 7), function*() {
                if ([6, 3].findIndex(hasAnyFriend) === -1) {
                    yield paint(8, 3);
                    yield move(3);
                }
                yield wait;
            });
            yield* withBestRotation(bind(hasFriend, COUNTER, 8), function*() {
                const targetIndex = FILL_ORDER_INDEX[view[4].color - 3];
                yield paint(view[5].color, targetIndex);
                yield wait;
            });
            yield wait;
        }

        case COUNTER: {
            yield* withBestRotation(() => hasFriend(COPIER, 2) + hasFriend(MAJOR, 0) - 1, bind(moveWait, 5));
            yield* withBestRotation(bind(hasFriend, COPIER, 1), function*() {
                if (hasFriend(MAJOR, 0)) {
                    yield paint(view[6].color, 8);
                }
                yield wait;
            });
            yield* withBestRotation(bind(hasFriend, COPIER, 0), function*() {
                if (!hasAnyFriend(6)) {
                    const progress = view[0].color;
                    if (progress === 8) {
                        const number = parseNumber(8, 7, 4, 1) + 1;
                        yield* paintMany([1, 2, 3].map(bind(colorAtDigit, number)), 3, 5, 2);
                        yield paint(7, 0);
                    } else if (progress === 7) {
                        const number = parseNumber(8) + 1;
                        yield paint(colorAtDigit(number, 0), 4);
                        yield paint(6, 0);
                    } else {
                        const number = parseNumber(...progress === 6 ? [4, 3] : [7, 8], 5, 2) * LENGTH;
                        if (progress > 2) {
                            if (progress === 6) {
                                yield* paintMany(colors(4, 3), 7, 8);
                            } else if (progress === 5) {
                                yield* paintMany([5, 6].map(bind(colorAtDigit, number)), 3, 4);
                            }
                            yield paint(colorAtDigit(number, FILL_ORDER_DIGIT[progress - 3]), 1);
                            if (progress !== 3) {
                                yield paint(progress - 1, 0);
                            } else {
                                yield paint(number + 1 === L1_OVERFLOW ? 2 : 1, 0);
                            }
                        } else {
                            yield paint(colorAtDigit(number, 3), 1);
                            yield wait;
                        }
                    }
                }
            });
            yield wait;
        }

        case MAJOR: {
            yield* withBestRotation(bind(hasFriend, COPIER, 5), bind(moveWait, 6));
            yield* withBestRotation(() => hasFriend(QUEEN, 7) + hasFriend(MINOR, 1) - 1, bind(moveWait, 5));
            yield* withBestRotation(bind(hasFriend, QUEEN, 2), bind(moveWait, 1));
            yield* withBestRotation(bind(hasFriend, MINOR, 2), function*() {
                const number = parseNumber(-1, -1, -1, -1, 3, 4, 5) + (isColor(2, 1) ? L1_OVERFLOW : 0);
                yield* paintMany([4, 5, 6].map(bind(colorAtDigit, number)), 6, 7, 8);
                yield move(7);
            });
            yield wait;
        }

        case MINOR: {
            yield* withBestRotation(() => hasFriend(COPIER, 8) + hasFriend(QUEEN, 6) - hasFriend(MAJOR, 3) - 1, bind(moveWait, 7));
            yield* withBestRotation(() => hasFriend(MAJOR, 6) + hasFriend(QUEEN, 7) - 1, bind(moveWait, 3));
            yield* withBestRotation(() => hasFriend(MAJOR, 8) - hasFriend(QUEEN, 7), bind(moveWait, 5));
            yield* withBestRotation(() => hasFriend(MAJOR, 7) + hasFriend(QUEEN, 5) - 1, bind(moveWait, 1));
            yield* withBestRotation(bind(hasFriend, QUEEN, 6), function*() {
                if (hasFriend(MAJOR, 3)) {
                    yield wait;
                }
                const number = parseNumber(0, 1) + 1;
                yield* paintMany([0, 1].map(bind(colorAtDigit, number)), 3, 4);
                yield move(7);
            });
            yield wait;
        }

        case QUEEN: {
            if (DIRECTIONS.some(hasAnyFriend)) {
                yield* withBestRotation(bind(hasFriend, COPIER, 5), function*() {
                    if (!hasFriend(COUNTER, 7)) {
                        yield spawn(COUNTER, 8);
                    }
                    if (!hasFriend(MAJOR, 3) && !hasFriend(MAJOR, 0)) {
                        yield spawn(MAJOR, 6);
                    }
                    yield spawn(MINOR, 0);
                    if (!hasFriend(MAJOR, 0) && hasFriend(MAJOR, 3)) {
                        yield move(7);
                    }
                    yield wait;
                });

                yield* withBestRotation(bind(hasFriend, MAJOR, 2), function*() {
                    if (!hasFriend(MINOR, 8)) {
                        yield move(1);
                    }
                    yield wait;
                });

                yield* withBestRotation(bind(hasFriend, MINOR, 0), function*() {
                    if (hasFriend(MAJOR, 3)) {
                        yield move(1);
                        yield wait;
                    } else if (hasFriend(MAJOR, 6)) {
                        yield wait;
                    }
                });

                yield* withBestRotation(bind(hasFriend, MAJOR, 7), function*() {
                    if (!hasFriend(COPIER, 6)) {
                        yield paintPictureFragment(parseNumber(1, 2, 3, 5, 6, 7, 8));
                    }
                    yield wait;
                });

                yield* withBestRotation(bind(hasFriend, MINOR, 5), function*() {
                    if (isColor(3, 4)) {
                        const number = parseNumber(1, 2, 3, 5) + 1;
                        yield* paintMany([colorAtDigit(number, 2), number + 1 === L1_OVERFLOW ? 2 : 1, colorAtDigit(number, 3)], 6, 7, 8);
                        yield move(7);
                        yield wait;
                    } else {
                        const number = parseNumber(1, 2, 3, 5, 6, 7, 8);
                        yield paintPictureFragment(number);
                        if ((number + 1) % LENGTH === 0) {
                            yield move(8);
                            yield wait;
                        }
                        yield paint(3, 4);
                    }

                    throw 'illogical failure 1';
                });

                throw 'illogical failure 2';
            }

            yield* moveMany(...DIAGONALS_ORTHOGONALS.filter(hasFood));

            if (ME.food >= 4) {
                yield* spawnMany([COPIER], ...ORTHOGONALS);
            }

            yield* moveMany(...DIAGONALS_ORTHOGONALS.filter(bind(isColor, 1)), ...DIAGONALS_ORTHOGONALS); // TODO: Watch out for accidental entrapment.
            yield wait;
        }
    }
}

Galería

Mandelbrot lleno Mandelbrot pequeño


Explicación

Mantendré la explicación bastante corta, pero tenga en cuenta que hay muchos detalles desagradables que tuve que resolver al hacer esto que no voy a entrar.

Fase 1

Primero, la reina recolecta 4 alimentos para hacer 4 trabajadores, cada uno con un propósito diferente. Ella no deja ningún color para minimizar la posibilidad de arruinar la pintura. Verá por qué eso es en breve.

Fase 2

Después de generar los 4 trabajadores, el bucle central de la entrada comienza de inmediato. De ahora en adelante, asumiré una orientación de vista consistente, ya que la entrada también lo hace.

Primero se realiza un baile coordinado de 5 hormigas para lograr la orientación correcta para la pintura. Esta es probablemente la fase más volátil, y es probable que la entrada sea descalificada debido a la intervención del enemigo aquí. Luego las hormigas se separaron.

3 hormigas (la reina y 2 trabajadores) entran en un circuito de pintura. Llevan un entero de 21 bits (7 celdas * 3 bits por celda) en forma de colores con ellos, que se puede usar para indexar cualquier imagen deseada. Por defecto, esta imagen es el conjunto de Mandelbrot. Además, la celda superior izquierda está reservada para el píxel que se está pintando, y la celda central está reservada para cosas que están fuera del alcance de esta explicación. El triplete no necesita ningún color para guiarlos, ya que descubren la orientación encontrándose. Cada ciclo desplazan el entero en 1 celda hacia abajo, asegurándose de incrementarlo en 1 cada vez que lo hacen. El bucle termina cuando se alcanza el final de la línea pintada, que se configura medianteLENGTHconstante. En ese punto, comienza un baile coordinado de 3 hormigas y el trío termina en una configuración incómoda. La reina también se desplaza hacia la celda correcta durante el baile. Viajan hacia arriba hasta que se encuentran con el par de hormigas que los esperan.

Mientras esperaban que la reina y sus ayudantes regresaran, dicho par de hormigas establece el ambiente de color local para que los pintores puedan continuar trabajando después de su llegada. Esta fue la parte más difícil de resolver. Una hormiga mantiene un número entero de 4 colores (12 bits), que utiliza para proporcionar instrucciones a la otra hormiga. Esas instrucciones describen qué celda debe ser pintada por ella y de qué color. Esto es necesario porque una sola hormiga no tiene suficiente espacio en su vista para almacenar toda la información requerida para colorear por sí misma. Antes y durante este proceso, también es necesario que el mantenedor de enteros mueva el número 1 a la derecha, y también lo incremente 1. Después de que se realiza el relé de instrucciones, el mantenedor de enteros llena las celdas a las que tiene acceso y completa el configuración del entorno Comienza la hibernación: el par está inactivo,

El ciclo se completa cuando las tres hormigas regresan a la pareja y comienzan a realizar nuevamente el baile de las 5 hormigas.


Esta entrada presenta parámetros. Actualmente está sintonizado para dibujar un pequeño conjunto de Mandelbrot. Puede ajustar la LENGTHimagen, cambiar la función de pintura de la imagen o incluso rodar la suya. ¡Que te diviertas!

Controlador recomendado: dzaima's .


Registro de cambios

Version 1.0

  • Versión inicial

Guau. Diseñé específicamente este desafío para que sea limitado y con poca información, y todavía me sorprende cuánto se puede solucionar con la cooperación entre las hormigas.
Trichoplax

Aprecio que esto sea una prueba de concepto más que una entrada competitiva, pero también me hace preguntarme si podría tener una aplicación práctica como trampa de la reina, con un patrón adecuado para llevar a otras reinas a que les roben su comida.
Trichoplax

1
Después de haber corrido algunos juegos para ver cómo funciona esto contra todos los demás jugadores, vale la pena señalar que, incluso como prueba de concepto, esto no tiene el puntaje más bajo, mejor que varios de los otros jugadores. Una vez que se haya ejecutado un torneo completo, este no será el último.
Trichoplax

1
¿Por qué? ¿POR QUÉ? ¿Por qué harías esto? Crikey, este desafío ha tenido respuestas publicadas mientras estuve en tres trabajos diferentes.
Draco18s

1
@ Draco18s Me encanta este desafío: P
Alion

3

Lobo solitario

Todas mis respuestas comparten el mismo conjunto de funciones auxiliares de bajo nivel. Busque "La lógica de alto nivel comienza aquí" para ver el código específico de esta respuesta.

// == Shared low-level helpers for all solutions ==

var QUEEN = 5;

var WHITE = 1;
var COL_MIN = WHITE;
var COL_LIM = 9;

var CENTRE = 4;

var NOP = {cell: CENTRE};

var DIR_FORWARDS = false;
var DIR_REVERSE = true;
var SIDE_RIGHT = true;
var SIDE_LEFT = false;

function sanity_check(movement) {
  var me = view[CENTRE].ant;
  if(!movement || movement.cell < 0 || movement.cell > 8) {
    return false;
  }
  if(movement.type) {
    if(movement.color) {
      return false;
    }
    if(movement.type < 1 || movement.type > 4) {
      return false;
    }
    if(view[movement.cell].ant || view[movement.cell].food) {
      return false;
    }
    if(me.type !== QUEEN || me.food < 1) {
      return false;
    }
    return true;
  }
  if(movement.color) {
    if(movement.color < COL_MIN || movement.color >= COL_LIM) {
      return false;
    }
    if(view[movement.cell].color === movement.color) {
      return false;
    }
    return true;
  }
  if(view[movement.cell].ant) {
    return false;
  }
  if(view[movement.cell].food + me.food > 1 && me.type !== QUEEN) {
    return false;
  }
  return true;
}

function as_array(o) {
  if(Array.isArray(o)) {
    return o;
  }
  return [o];
}

function best_of(movements) {
  var m;
  for(var i = 0; i < movements.length; ++ i) {
    if(typeof(movements[i]) === 'function') {
      m = movements[i]();
    } else {
      m = movements[i];
    }
    if(sanity_check(m)) {
      return m;
    }
  }
  return null;
}

function play_safe(movement) {
  // Avoid disqualification: no-op if moves are invalid
  return best_of(as_array(movement)) || NOP;
}

var RAND_SEED = (() => {
  var s = 0;
  for(var i = 0; i < 9; ++ i) {
    s += view[i].color * (i + 1);
    s += view[i].ant ? i * i : 0;
    s += view[i].food ? i * i * i : 0;
  }
  return s % 29;
})();

var ROTATIONS = [
  [0, 1, 2, 3, 4, 5, 6, 7, 8],
  [6, 3, 0, 7, 4, 1, 8, 5, 2],
  [8, 7, 6, 5, 4, 3, 2, 1, 0],
  [2, 5, 8, 1, 4, 7, 0, 3, 6],
];

function try_all(fns, limit, wrapperFn, checkFn) {
  var m;
  fns = as_array(fns);
  for(var i = 0; i < fns.length; ++ i) {
    if(typeof(fns[i]) !== 'function') {
      if(checkFn(m = fns[i])) {
        return m;
      }
      continue;
    }
    for(var j = 0; j < limit; ++ j) {
      if(checkFn(m = wrapperFn(fns[i], j))) {
        return m;
      }
    }
  }
  return null;
}

function identify_rotation(testFns) {
  // testFns MUST be functions, not constants
  return try_all(
    testFns,
    4,
    (fn, r) => fn(ROTATIONS[r]) ? ROTATIONS[r] : null,
    (r) => r
  );
}

function near(a, b) {
  return (
    Math.abs(a % 3 - b % 3) < 2 &&
    Math.abs(Math.floor(a / 3) - Math.floor(b / 3)) < 2
  );
}

function try_all_angles(solverFns) {
  return try_all(
    solverFns,
    4,
    (fn, r) => fn(ROTATIONS[r]),
    sanity_check
  );
}

function try_all_cells(solverFns, skipCentre) {
  return try_all(
    solverFns,
    9,
    (fn, i) => ((i === CENTRE && skipCentre) ? null : fn(i)),
    sanity_check
  );
}

function try_all_cells_near(p, solverFns) {
  return try_all(
    solverFns,
    9,
    (fn, i) => ((i !== p && near(p, i)) ? fn(i) : null),
    sanity_check
  );
}

function ant_type_at(i, friend) {
  return (view[i].ant && view[i].ant.friend === friend) ? view[i].ant.type : 0;
}

function friend_at(i) {
  return ant_type_at(i, true);
}

function foe_at(i) {
  return ant_type_at(i, false);
}

function foe_near(p) {
  for(var i = 0; i < 9; ++ i) {
    if(foe_at(i) && near(i, p)) {
      return true;
    }
  }
  return false;
}

function move_agent(agents) {
  var me = view[CENTRE].ant;
  var buddies = [0, 0, 0, 0, 0, 0];
  for(var i = 0; i < 9; ++ i) {
    ++ buddies[friend_at(i)];
  }

  for(var i = 0; i < agents.length; i += 2) {
    if(agents[i] === me.type) {
      return agents[i+1](me, buddies);
    }
  }
  return null;
}

function grab_nearby_food() {
  return try_all_cells((i) => (view[i].food ? {cell: i} : null), true);
}

function go_anywhere() {
  return try_all_cells((i) => ({cell: i}), true);
}

function colours_excluding(cols) {
  var r = [];
  for(var i = COL_MIN; i < COL_LIM; ++ i) {
    if(cols.indexOf(i) === -1) {
      r.push(i);
    }
  }
  return r;
}

function generate_band(start, width) {
  var r = [];
  for(var i = 0; i < width; ++ i) {
    r.push(start + i);
  }
  return r;
}

function colour_band(colours) {
  return {
    contains: function(c) {
      return colours.indexOf(c) !== -1;
    },
    next: function(c) {
      return colours[(colours.indexOf(c) + 1) % colours.length];
    }
  };
}

function random_colour_band(colours) {
  return {
    contains: function(c) {
      return colours.indexOf(c) !== -1;
    },
    next: function() {
      return colours[RAND_SEED % colours.length];
    }
  };
}

function fast_diagonal(colourBand) {
  var m = try_all_angles([
    // Avoid nearby checked areas
    (rot) => {
      if(
        !colourBand.contains(view[rot[0]].color) &&
        colourBand.contains(view[rot[5]].color) &&
        colourBand.contains(view[rot[7]].color)
      ) {
        return {cell: rot[0]};
      }
    },

    // Go in a straight diagonal line if possible
    (rot) => {
      if(
        !colourBand.contains(view[rot[0]].color) &&
        colourBand.contains(view[rot[8]].color)
      ) {
        return {cell: rot[0]};
      }
    },

    // When in doubt, pick randomly but avoid doubling-back
    (rot) => (colourBand.contains(view[rot[0]].color) ? null : {cell: rot[0]}),

    // Double-back when absolutely necessary
    (rot) => ({cell: rot[0]})
  ]);

  // Lay a colour track so that we can avoid doubling-back
  // (and mess up our foes as much as possible)
  if(!colourBand.contains(view[CENTRE].color)) {
    var prevCol = m ? view[8-m.cell].color : WHITE;
    return {cell: CENTRE, color: colourBand.next(prevCol)};
  }

  return m;
}

function follow_edge(obstacleFn, side) {
  // Since we don't know which direction we came from, this can cause us to get
  // stuck on islands, but the random orientation helps to ensure we don't get
  // stuck forever.

  var order = ((side === SIDE_LEFT)
    ? [0, 3, 6, 7, 8, 5, 2, 1, 0]
    : [0, 1, 2, 5, 8, 7, 6, 3, 0]
  );
  return try_all(
    [obstacleFn],
    order.length - 1,
    (fn, i) => (fn(order[i+1]) && !fn(order[i])) ? {cell: order[i]} : null,
    sanity_check
  );
}

function start_dotted_path(colourBand, side, protectedCols) {
  var right = (side === SIDE_RIGHT);
  return try_all_angles([
    (rot) => ((
      !protectedCols.contains(view[rot[right ? 5 : 3]].color) &&
      !colourBand.contains(view[rot[right ? 5 : 3]].color) &&
      !colourBand.contains(view[rot[right ? 2 : 0]].color) &&
      !colourBand.contains(view[rot[1]].color)
    )
      ? {cell: rot[right ? 5 : 3], color: colourBand.next(WHITE)}
      : null)
  ]);
}

function lay_dotted_path(colourBand, side, protectedCols) {
  var right = (side === SIDE_RIGHT);
  return try_all_angles([
    (rot) => {
      var ahead = rot[right ? 2 : 0];
      var behind = rot[right ? 8 : 6];
      if(
        colourBand.contains(view[behind].color) &&
        !protectedCols.contains(view[ahead].color) &&
        !colourBand.contains(view[ahead].color) &&
        !colourBand.contains(view[rot[right ? 6 : 8]].color)
      ) {
        return {cell: ahead, color: colourBand.next(view[behind].color)};
      }
    }
  ]);
}

function follow_dotted_path(colourBand, side, direction) {
  var forwards = (direction === DIR_REVERSE) ? 7 : 1;
  var right = (side === SIDE_RIGHT);

  return try_all_angles([
    // Cell on our side? advance
    (rot) => {
      if(
        colourBand.contains(view[rot[right ? 5 : 3]].color) &&
        // Prevent sticking / trickery
        !colourBand.contains(view[rot[right ? 3 : 5]].color) &&
        !colourBand.contains(view[rot[0]].color) &&
        !colourBand.contains(view[rot[2]].color)
      ) {
        return {cell: rot[forwards]};
      }
    },

    // Cell ahead and behind? advance
    (rot) => {
      var passedCol = view[rot[right ? 8 : 6]].color;
      var nextCol = view[rot[right ? 2 : 0]].color;
      if(
        colourBand.contains(passedCol) &&
        nextCol === colourBand.next(passedCol) &&

        // Prevent sticking / trickery
        !colourBand.contains(view[rot[right ? 3 : 5]].color) &&
        !colourBand.contains(view[rot[right ? 0 : 2]].color)
      ) {
        return {cell: rot[forwards]};
      }
    }
  ]);
}

function escape_dotted_path(colourBand, side, newColourBand) {
  var right = (side === SIDE_RIGHT);
  if(!newColourBand) {
    newColourBand = colourBand;
  }

  return try_all_angles([
    // Escape from beside the line
    (rot) => {
      var approachingCol = view[rot[right ? 2 : 0]].color;
      if(
        !colourBand.contains(view[rot[right ? 8 : 6]].color) ||
        !colourBand.contains(approachingCol) ||
        colourBand.contains(view[rot[7]].color) ||
        colourBand.contains(view[rot[right ? 6 : 8]].color)
      ) {
        // not oriented, or in a corner
        return null;
      }
      return best_of([
        {cell: rot[right ? 0 : 2], color: newColourBand.next(approachingCol)},
        {cell: rot[right ? 3 : 5]},
        {cell: rot[right ? 0 : 2]},
        {cell: rot[right ? 6 : 8]},
        {cell: rot[right ? 2 : 0]},
        {cell: rot[right ? 8 : 6]},
        {cell: rot[right ? 5 : 3]}
      ]);
    },

    // Escape from inside the line
    (rot) => {
      if(
        !colourBand.contains(view[rot[7]].color) ||
        !colourBand.contains(view[rot[1]].color) ||
        colourBand.contains(view[CENTRE].color)
      ) {
        return null;
      }
      return best_of([
        {cell: rot[3]},
        {cell: rot[5]},
        {cell: rot[0]},
        {cell: rot[2]},
        {cell: rot[6]},
        {cell: rot[8]}
      ]);
    }
  ]);
}

function latch_to_dotted_path(colourBand, side) {
  var right = (side === SIDE_RIGHT);

  return try_all_angles([
    (rot) => {
      var approachingCol = view[rot[right ? 2 : 0]].color;
      if(
        colourBand.contains(approachingCol) &&
        view[rot[right ? 8 : 6]].color === colourBand.next(approachingCol) &&
        !colourBand.contains(view[rot[right ? 5 : 3]].color)
      ) {
        // We're on the wrong side; go inside the line
        return {cell: rot[right ? 5 : 3]};
      }
    },

    // Inside the line? pick a side
    (rot) => {
      var passedCol = view[rot[7]].color;
      var approachingCol = view[rot[1]].color;
      if(
        !colourBand.contains(passedCol) ||
        !colourBand.contains(approachingCol) ||
        colourBand.contains(view[CENTRE].color)
      ) {
        return null;
      }
      if((approachingCol === colourBand.next(passedCol)) === right) {
        return best_of([{cell: rot[3]}, {cell: rot[6]}, {cell: rot[0]}]);
      } else {
        return best_of([{cell: rot[5]}, {cell: rot[2]}, {cell: rot[8]}]);
      }
    }
  ]);
}


// == High-level logic begins here ==


var COLOURS = random_colour_band(colours_excluding([1]));
return play_safe([
  grab_nearby_food,
  fast_diagonal.bind(null, COLOURS),
  go_anywhere,
  {cell: 1, color: COLOURS.next()}
]);

Entonces se me ocurrió que en un par de mis respuestas utilicé el mismo paso inicial para recolectar comida de inicio rápidamente. ¿Qué sucede si una hormiga usa esa estrategia para todo el juego? Pues resulta que les va bastante bien.

Esto solo corre alrededor del campo a la mitad de la velocidad de la luz, agarrando cualquier alimento cercano. Existe la posibilidad de que la dirección cambie aleatoriamente cuando agarre alimentos, e intentará evitar cualquier área que ya esté cubierta por sí misma o por otras personas. No se generan hormigas obreras.

En teoría, esto cubre 2.5 celdas por cuadro, lo cual no es terrible, y es prácticamente imposible atraparlo o estropearlo de alguna manera. Parece hacerlo mejor que todo excepto Black Hole (aunque eso puede cambiar ahora que Black Hole tiene un saboteador).

Prometo dejar de enviar spam a este desafío con respuestas ahora ...


La última actualización hace que sea un poco menos probable que vuelva a buscar terreno cubierto al alejarlo de más tipos de áreas llenas.


¡No es spam cuando todas son estrategias distintas e interesantes!
trichoplax

¿Qué entrada es el saboteador de Black Hole?
Draco18s

@ Draco18s no está seguro de cuál es, pero rápidamente dibuja líneas diagonales azules que a menudo parecen hacer que Black Hole deje de engendrar trabajadores antes de lo que quiere, y hace que se vuelva súper alargado, lo que hace que todos los trabajadores tarden una eternidad en llegar a cualquier parte. También está el misil de pintura blanca que está causando dolor a todos, que realmente puede enloquecer si pone sus manos en el agujero negro.
Dave

@Dave El bot que hace eso es Antdom Walking Artist
pppery

3

atravesar

Este bot obtiene constantemente cerca de 90 alimentos, superando a la mayoría de los otros bots.

var ORTHOGONALS = [1,3,5,7];
var CORNERS = [0,2,6,8];
var CENTER = 4;

var QUEEN = 5;

var no_op = {cell:CENTER};
var me = view[4].ant;

var ants;
var food;
var friendlies;
var unfriendlies;
var colors;

var j = 0;
var i = 0;
var cell = 0;
var rotation;

var out;

init_arrays();
var seed = rSeed();

var response;

var adjacents_all = {0:[1,3,4],1:[0,2,3,4,5],2:[1,4,5],3:[0,1,4,6,7],4:[0,1,2,3,4,5,6,7,8],5:[1,2,4,7,8],6:[3,4,7],7:[3,4,5,6,8],8:[4,5,7]};
var adjacents_ortho = {0:[1,3],1:[0,2,4],2:[1,5],3:[0,4,6],4:[1,3,5,7],5:[2,4,8],6:[3,7],7:[4,6,8],8:[5,7]};
var adjacents_diag = {0:[4],1:[3,5],2:[4],3:[1,7],4:[0,2,6,8],5:[1,7],6:[4],7:[3,5],8:[4]};

function valid_move(move) {
  if(!move || move.cell == undefined || move.cell < 0 || move.cell > 8) {return false;}
  if(move.type) {
    if(move.color) {return false;}
    if(move.type < 1 || move.type > 4) {return false;}
    if(view[move.cell].ant || view[move.cell].food) {return false;}
    if(me.type != QUEEN || me.food < 1) {return false;}
    return true;
  }
  if(move.color) {
    if(move.color < 1 || move.color > 8) {return false;}
    return true;
  }
  if(view[move.cell].ant){return false;}
  if(view[move.cell].food && me.food&& me.type != 5) {return false;}
  return true;
}

function steal_then_road(){
  if(count(unfriendlies, 5)>=1 && me.food==0){
    //steal from a queen with more than 30 food
    if(ants[unfriendlies.indexOf(5)].food>30){
      for(i=0;i<adjacents_ortho[unfriendlies.indexOf(5)].length;i++){
        if(ants[adjacents_ortho[unfriendlies.indexOf(5)][i]]==null){
          return {cell:adjacents_ortho[unfriendlies.indexOf(5)][i]};
        }
      }
    }
  }
  return road();
}

function try_corners(){
  for(i=0;i<4;i++){
    if(view[CORNERS[i]].ant==null){
      return {cell:CORNERS[i]};
    }
  }
}

function try_ortho(){
  for(i=0;i<4;i++){
    if(view[ORTHOGONALS[i]].ant==null){
      return {cell:ORTHOGONALS[i]};
    }
  }
}

function corner_then_ortho(){
  if(try_corners()){return try_corners();}
  if(try_ortho()){return try_ortho();}
  return {cell:4}; //PANIC!
}

function ortho_then_corner(){
  if(try_ortho()){return try_ortho();}
  if(try_corners()){return try_corners();}
  return {cell:4}; //PANIC!
}

function road(color){
  if (colors[color] != color) {
      return {cell:CENTER,color:color};
    }
  for (i = 0; i < 9; i++) {
    if (colors[i] == color && ants[8 - i] == null && i != color) {
      return {cell:8-i};
    }
  }
}

function color_self(color){
  return {cell:4,color:color};
}

function make_valid_move(move){
  if(valid_move(move)){return move;}
  return no_op;
  //return{cell:seed%9,color:seed%7+1};
}

function count(array, element) {
  out = 0;
  for (j = 0; j < array.length; j++) {
    if (array[j] == element) {
      out++;
    }
  }
  return out;
}

function target_ant(ant_type, location) {
  for (i = 0; i < 4; i++) {
    if (ants[location] != null) {
      if (ants[location].type == ant_type) {
        return i;
      }
    }
    ants = rot_left(ants);
    friendlies = rot_left(friendlies);
    unfriendlies = rot_left(unfriendlies);
    food = rot_left(food);
    colors = rot_left(colors);
  }
}


function target_color(color, location) {
  for (i = 0; i < 4; i++) {
    if (colors[location] != null) {
      if (colors[location].type == color) {
        return i;
      }
    }
    ants = rot_left(ants);
    friendlies = rot_left(friendlies);
    unfriendlies = rot_left(unfriendlies);
    food = rot_left(food);
    colors = rot_left(colors);
  }
}

function init_arrays() {
    ants = new Array(9);
  for (cell = 0; cell < 9; cell++) {ants[cell] = view[cell].ant;}


  food = new Array(9);
  for (cell = 0; cell < 9; cell++) {food[cell] = view[cell].food;}

  colors = new Array(9);
  for (cell = 0; cell < 9; cell++) {colors[cell] = view[cell].color;}

  friendlies = new Array(9);
  for (cell = 0; cell < 9; cell++) {
    if (ants[cell] != null) {
      if (ants[cell].friend) {friendlies[cell] = ants[cell].type;}
    }
  }

  unfriendlies = new Array(9);
  for (cell = 0; cell < 9; cell++) {
    if (ants[cell] != null) {
      if (!ants[cell].friend) {unfriendlies[cell] = ants[cell].type;}
    }
  }
}

function rot_n_pos(pos, n) {
  for (i = 0; i < n; i++) {
    pos = [2, 5, 8, 1, 4, 7, 0, 3, 6][pos];
  }
  return pos;
}

function rot_left(a) {
  return [a[2], a[5], a[8], a[1], a[4], a[7], a[0], a[3], a[6]];
} 

function rot_right(a) {
  return [a[6], a[3], a[0], a[7], a[4], a[1], a[8], a[5], a[2]];
}

function rSeed(){
  out=23;
  for(i=0;i<9;i++){
    if(food[i]){
      out+=17;
    }
    out += 3 * colors[i];
    if(ants[i]){
      out *= 19;
    }
  }
  return out;
}

function get_response(){
  if (me.type == 5) { //Queen Case:
    return type5();
  }
  else if (me.type == 1) {
    return type1();
  }
  else if (me.type == 2) {
    return type2();
  }
  else if (me.type == 3) {
    return type3();
  }
  else if(me.type == 4){
    return type4();
}

function type5(){
  if (me.food == 0 && count(friendlies, 1) == 0 && count(friendlies, 2) == 0) {
    if (count(food, 1) > 0) {
      for (j = 0; j < 9; j++) {
        if (food[j]) {
          return {cell: j};
        }
      }
    }
    // travel up
    // color own cell if not 4

    if(road()){return road();}

    //move
    for (i = 0; i < 9; i++) {
      if (ants[i] == null && i != 4) {
        return {cell:i};
      }
    }
    return corner_then_ortho();
  }
  if (me.food >= 1 && count(friendlies, 1) == 0 && count(friendlies, 2) == 0) {
    if (ants[5] == null) {
      return {cell:5,type:1};
    }
    if (ants[1] == null) {
      return {cell:5, type:1};
    }
    if (ants[3] == null) {
      return {cell:5,type:1};
    }
    if (ants[7] == null) {
      return {cell:5, type:1};
    }
    return color_self(5);
  }
  if (me.food == 0 && count(friendlies, 1) == 1 && count(friendlies, 2) == 0) {
    if (friendlies.indexOf(1) % 2 == 0) {
      return ortho_then_corner();//PANIC!!! TODO: FIX
    }
    rotation = target_ant(1, 1);
    if (ants[0] == null) {
      return {cell: rot_n_pos(0, rotation)};
    } else {
      return corner_then_ortho;
    }
  }
  if (me.food >= 1 && count(friendlies, 1) == 1 && count(friendlies, 2) == 0) {
    if (friendlies.indexOf(1) % 2 == 0) {
      return corner_then_ortho(); //PANIC!!! TODO: FIX
    }
    rotation = target_ant(1, 1);
    if (ants[3] == null) {
      return {cell: rot_n_pos(3, rotation),type: 2};
    }
    if (ants[0] == null) {
      return { cell: rot_n_pos(0, rotation)};
    }
    return {cell: 4};
  }
  if (count(friendlies, 1) == 1 && count(friendlies, 2) == 1) {
    if (friendlies.indexOf(1) % 2 == 0) {
      return ortho_then_corner();
    }
    rotation = target_ant(1, 1);
    if(food[0] || food[8]){
      return no_op;
    }
    if(ants[5]!=null){
      if(ants[5].type == 2 && ants[2]==null){
        return {cell: rot_n_pos(2, rotation)};
      }
    }
    return corner_then_ortho();
  }
  return corner_then_ortho();
}

function type1(){
//right flank
  if (count(friendlies, 5) == 0 && count(friendlies, 2) == 0 && count(friendlies,1) == 1) {
    //no friends = destruction
    return steal_then_road();
  }
  if (count(friendlies, 5) == 1 && count(friendlies, 2) == 0 && count(friendlies,1) == 1) {
    if (friendlies.indexOf(5) % 2 == 0) {
      return ortho_then_corner();
    }
    rotation = target_ant(5, 3);
    if (ants[0] == null) {
      return {cell: rot_n_pos(0, rotation)};
    }
    return corner_then_ortho(); // PANIC!! TODO: FIX
  }
  if (count(friendlies, 5) == 1 && count(friendlies, 2) == 1 && count(friendlies,1) == 1) {
    if (friendlies.indexOf(5) % 2 == 0) {
      return ortho_then_corner(); 
    }
    rotation = target_ant(5, 3);
    if(friendlies[8] !=null){
      if(friendlies[8].type==2){
        if (ants[0] == null){
          return {cell: rot_n_pos(0, rotation)};
        }
      }
    }
    if (ants[0] != null) {
      if (ants[0].type == 2 && ants[6] == null) {
        return {cell: rot_n_pos(6, rotation)};
      }
    }
    if (ants[6] != null) {
      if (ants[6].type == 2 && ants[0] == null) {
        return {cell: rot_n_pos(0, rotation)};
      }
    }
    return corner_then_ortho();
  }
  return corner_then_ortho();
}

function type2(){
  //left flank
  if (count(friendlies, 5) == 0 && count(friendlies, 1) == 0  && count(friendlies,2) == 1) {
    return steal_then_road();
  }
  if (count(friendlies, 5) == 1 && count(friendlies, 1) == 0  && count(friendlies,2) == 1) {
    if (friendlies.indexOf(5) % 2 == 0) {
      return ortho_then_corner();
    }
    rotation = target_ant(5, 1);
    if (ants[0] == null) {
      return {cell: rot_n_pos(2, rotation)};
    }
    return corner_then_ortho();
    }
    if (count(friendlies, 5) == 1 && count(friendlies, 2) == 1) {
      return {cell: 4,color:2};
    }
    }
  return corner_then_ortho();
}

function type3(){}
function type4(){}

response = get_response();

return make_valid_move(response);

Estrategia.

Fase 1: Queen scramble.

La reina busca comida usando una técnica similar al camino de Romanesco (usa la road()función). Cada vez que ve un alimento, lo toma y genera un trabajador tipo 1, activando la fase 2.

Fase 2: lucha de la reina-pareja.

La reina y la pareja se usan para orientarse, por lo que viajan a la velocidad de la luz. Ignoran cualquier alimento a su alrededor y solo obtienen lo que les golpea. Cuando la reina obtiene un alimento, genera un trabajador tipo 2, activando la fase 3.

Fase 3: Pierce.

Las tres hormigas se usan para encontrar su camino, viajando a la velocidad de la luz. Cada vez que la reina ve un alimento que ninguno de los trabajadores puede obtener, se detiene, lo que hace que los trabajadores giren a su alrededor y giren la formación 90 grados.

Fortalezas:

La formación de tres hormigas no crea rastros, no se envuelve y viaja a la velocidad de la luz, obteniendo un promedio de 0.1% * 3 = 0.003 comida por movimiento. Esto equivale a 0.003 * 30000 = 90 alimentos por juego en promedio, que generalmente se obtiene.

Debilidades:

El bot tiene dos debilidades. La principal es una hormiga caminando delante de la formación. El manejo para eso no es el mejor y a veces hace que la reina cree cantidades excesivas de trabajadores. Afortunadamente, los trabajadores están programados para robar a otras reinas ( steal_then_road()). Pero como la formación no crea senderos, es prácticamente imposible de encontrar.

Otra debilidad es el road()algoritmo que parece tener problemas que estoy trabajando para solucionar. Un camino siendo movimiento browniano no es bueno. Esto significa un comienzo muy lento y un mal escape de situaciones poco saludables.


Estas hormigas son prácticamente las mismas que mis hormigas apisonadoras , pero parecen empeorar en mis pruebas. La única diferencia que noto es que tus hormigas giran cuando la reina ve comida que los otros trabajadores no pueden alcanzar, mientras que la mía gira cuando el trabajador tipo 2 golpea algo de comida. Creo que tus hormigas también deberían funcionar bien, pero no entiendo por qué a veces no funciona.
K Zhang

@KZhang Interesante. En mis pruebas, a Pierce le va mejor en general, excepto cuando golpea una interferencia importante de hormigas (¿Wildfire? ¿Agujero negro?) Cuando crea decenas de hormigas nuevas innecesariamente. Solo el tiempo y las pruebas lo dirán.
fireflame241

Reincluido en el torneo actual listo para la próxima tabla de clasificación después de la edición.
trichoplax

2
Me he dado cuenta de que, en situaciones excepcionales, este patrón puede quedar atrapado en un bucle sin fin. Específicamente, si hay dos piezas de comida que están separadas por 1 espacio, y luego la reina entra en una posición adyacente a ambas; cuando esto ocurre, el patrón se vuelve constante, presumiblemente debido a que sólo reacciona a "alimentos que perder si no nos volvemos" y no "de alimentos que será omitida Si hacemos girar"
Kamil Drakari

3

Reina soltera

var C = 5;

for(var i = 0; i<9; i++)
{
  if(view[i].food === 1)
    return {cell:i};
}


if(view[4].color != 5 && !view[0].ant && !view[1].ant && !view[2].ant && !view[3].ant && !view[5].ant && !view[6].ant && !view[7].ant && !view[8].ant)
  return {cell:4, color:C};

if(!view[0].ant && 
   view[0].color != C && view[8].color === C && view[1].color != C && view[3].color != C && view[2].color != C && view[6].color != C)

      return {cell:0};

if(!view[2].ant && 
   view[2].color != C && view[6].color === C && view[1].color != C && view[5].color != C  && view[0].color != C && view[8].color != C)

     return {cell:2};

if(!view[6].ant && 
   view[6].color != C && view[2].color ===  C && view[3].color != C && view[7].color != C  && view[0].color != C && view[8].color != C)

     return {cell:6};

if(!view[8].ant && 
   view[8].color != C && view[0].color === C && view[5].color != C && view[7].color != C  && view[2].color != C && view[6].color != C)

     return {cell:8};


if(!view[0].ant)
  return {cell:0};

if(!view[2].ant)
  return {cell:2};

if(!view[6].ant)
  return {cell:6};

if(!view[8].ant)
  return {cell:8};


return {cell:4};

Código simple en busca de comida en diagonal. Intenta evitar buscar en su área antigua, pero buscará otras áreas para tratar de atravesar sus áreas con la esperanza de encontrar un espacio abierto.

Parece ser una estrategia similar a Lone Wolf (no intencional).


3

Explorador

¡Extiende a Gang!

Explorer es un equipo de 5 hombres que tiene el objetivo de separarse lo más posible, mientras le devuelve la comida a la reina.

La reina

La reina misma usa una configuración de 3 etapas.

Nivel 1.

Al comienzo de un partido, es una carrera salvaje para la comida, como cualquier buena reina. Simplemente recorre en línea recta en diagonal hasta que encuentra comida, luego cambia de dirección al azar. Cuando tiene 4 alimentos, pasa a la etapa 2.

Etapa 2.

Esto probablemente no tomará más de 8 movimientos. Establece los cuatro mosaicos a su alrededor en cuatro colores únicos, y genera hormigas en ellos, con sus respectivos tipos. Después de que todos se generan, la etapa 3 se mueve a.

Etapa 3.

Todo lo que hace la etapa 3 es quedarse quieto durante el resto del partido, asegurando que las cuatro fichas a su alrededor estén configuradas correctamente.

Los trabajadores

Los propios trabajadores son criaturas muy simples de dos etapas. Primero, esperan a que la reina indique que ha terminado la Etapa 2. La segunda etapa es mucho más compleja (pero aún bastante simple). Camina en sentido horario alrededor de su propio camino hasta que encuentra su final, luego continúa expandiéndolo. Cuando encuentra comida, la alcanza, luego orbita en sentido horario alrededor del camino nuevamente, lo que la lleva de regreso a la reina.

var me = view[4].ant
var turf = view[4].color

var queenHolder = 2 // "Queen Holder", the turf colour for the queen in stage 3.
var queenBuild = 7 // "Queen Build", the turf colour for the queen in stage 2.
var antTrail = [3, 4, 5, 6] // Various colours of the ant's trails.
var orth = [1, 3, 5, 7] // Orthogonal Directions.
var rotates = [[1,3,5,7],[3,7,1,5],[5,1,7,3],[7,5,3,1]] // These are the orthogonal directions rotated so 0 is the first position, used in the queen build stage.
var outside = [1,2,3,5,6,7,8] // Every tile but the center one.
var diag = [0,2,6,8] // Diagonal Directions.

// Define a move function to avoid throwing an error.
function move(dir){
    if(view[dir].ant)   // If we're going to move onto an ant.
        dir = 4 // Don't move anywhere.
    if(view[dir].food && me.type < 5 && me.food > 0)    // If we're going to over-eat.
        dir = 4 // Don't move anywhere.
    return {cell: dir}  // Build the move output.
}

if(me.type == 5){ // If we're the queen.
    var invDiag = [8,6,2,0] // Inverse of diagonals, using the indexing of diag. So 0 becomes 8, and such.
    if(turf == 1 || turf == 8){
        // Stage 1.
        // Find enough food to start a hive.
        for(var i=0; i < view.length; i++){ // Check every tile in view
            if(view[i].food){   // Is it food?
                return move(i)  // Move to it.
            }
        }
        if(me.food > 3) // Do we have 4 food?
            return {cell:4, color:queenBuild}   // Move to stage 2.
        if(turf == 1)   // Are we on a white tile?
            return {cell:4, color:8}    // Set the tile to black.
        for(var i=0; i < diag.length; i++)  // Check all diagonals.
            if(view[diag[i]].color == 8)    // Is it black?
                return move(invDiag[i]) // Move in the opposite direction. This creates a straight diagonal line.
        return move(2)  // When in doubt, move randomly diagonally.
    }else if(turf == queenBuild){
        // Stage 2.
        // Spawn ants around, and set up their movement paths.
        if(me.food < 1) // Have we used all our food?
            return {cell:4, color:queenHolder}  // Move to stage 3.

        var firstHolder = -1; // Stores which way we're facing.
        for(var i=0; i < orth.length; i++){ // Check orthogonals.
            if(view[orth[i]].color == antTrail[0]){ // Is it the first trail colour?
                firstHolder = i // THIS WAY UP
                break;
            }
        }
        if(firstHolder==-1) // No way is up?
            return {cell:1, color:antTrail[0]} // Set a random direction to up.

        var orthRot = rotates[firstHolder]  // Get the rotated orthogonal set for the current up direction.
        for(var i=0; i < orthRot.length; i++){  // For each of them.
            if(!view[orthRot[i]].ant)   // Is there an ant on this tile yet?
                return {cell:orthRot[i], type:(i+1)}    // If not, place one down with the correct type.
            if(view[orthRot[i]].color!=antTrail[i]) // Otherwise, is the turf set correctly yet?
                return {cell:orthRot[i], color:antTrail[i]} // If not, set the turf.
        }
        return {cell:4, color:queenHolder}; // After all's said and done, move to stage 3. Probably won't happen this way.
    }else if(turf == queenHolder){
        // Stage 3.
        // Sit still, ensure rails exist around.

        var firstHolder = -1;   // Same behavoir of which way is up from stage 2.
        for(var i=0; i < orth.length; i++){
            if(view[orth[i]].color == antTrail[0]){
                firstHolder = i
                break;
            }
        }
        if(firstHolder==-1)
            return {cell:1, color:antTrail[0]}

        var orthRot = rotates[firstHolder]
        for(var i=0; i < orthRot.length; i++)   // Basically stage 2 without the spawning of ants.
            if(view[orthRot[i]].color!=antTrail[i])
                return {cell:orthRot[i], color:antTrail[i]}

        return {cell:4, color:queenHolder}  // And if there's nothing better to do, waste your time.
    }else{
        return {cell:4, color:1}    // We're lost, go back to stage 1, and try again.
        // I could probably add logic to check if we're stage 3 or something, but meh.
    }

}else{  // If we're a worker!

    for(var i=0; i < orth.length; i++)  // Check around.
        if(view[orth[i]].ant && view[orth[i]].ant.type == 5 && view[orth[i]].ant.friend && view[orth[i]].color == queenBuild)   // Is there a queen, in build mode, around us?
            return move(4)  // Wait politely for her to finish.

    var col = antTrail[me.type-1] // Which colour I use.

    if(me.food < 1){    // If we have no food.
        for(i=0; i < orth.length; i++){ // Check Orthogonals
            if(view[orth[i]].food){ // Is there food there?
                if(turf != col) // If we're not standing on our trail.
                    return {cell: 4, color: col}    // Place our trail here, so we can still find our way back.
                return move(orth[i])    // Otherwise, move to the food!
            }
        }
    }

    if(turf == col) // If we're sitting on our trail.
        return move(2) // Move off it randomly

    var corq = (t)=>t.color == col || (t.ant && t.ant.type == 5 && t.ant.friend)    // Helper function, does this tile contain our trail or the queen?
    var corqorf = (t)=>corq(t) || t.food    // Helper function, odes this tile contain our trail, the queen, or a piece of food?
    var queenInView = false;
    for(var i=0; i < view.length; i++)  // Check the entire view.
        if(view[i].ant && view[i].ant.type == 5 && view[i].ant.friend) // Can we see the queen?
            queenInView = true; // Remember this.

    // Using food > 0 behavoir if we see a queen, makes it so that we don't accidentally build our path over the queen or something silly.

    if(me.food > 0 || queenInView){ // If we have food, or we can see the queen.
        // DON'T build paths, just orbit our path clockwise.
        var orthmov = [3,7,1,5] // Directions to move if we see a path on an orthogonal.
        var diagC = [3,1,7,5]   // Directions to move if we see a path on a diagonal.
        for(var i=0; i < orth.length; i++)  // For each Orthogonal, which takes preference.
            if(corqorf(view[orth[i]]))  // Is there the queen, a trail, or food here?
                return move(orthmov[i]) // move CW to it.
        for(var i=0; i < diag.length; i++)  // Ditto for Diagonals.
            if(corqorf(view[diag[i]]))
                return move(diagC[i])

    }else{
        // EXTEND paths, or continue orbiting clockwise.
        var orthM = [0,6,2,8]   // Directions a path should be when we check an orthogonal.
        var orthMo = [3,7,1,5]  // Directions to move if we see an orthogonal, and the diagonal is there.
        var diagC = [3,1,7,5]   // Directions to place a path if we only see an orthogonal.
        for(var i=0; i < orth.length; i++){ // In each Orthogonal.
            var v = view[orth[i]]
            if(corq(v)){    // Is there a trial?
                if(corq(view[orthM[i]]))    // Is there a trail in the after it position?
                    return move(orthMo[i])  // Move in the correct direction.
                return {cell:orthM[i], color:col}   // Place the trail in the after it position.
            }
        }
        for(var i=0; i < diag.length; i++)  // Check diagonals as a last resort.
            if(corq(view[diag[i]])) // Is there a path /HERE/?
                return {cell:diagC[i], color:col}   // Place the respective diagonal's orthogonal.

    }
    return move(2)  // When we're lost, scamper around. Just like Trail-eraser wants us to.
}

Este jugador fue descalificado en un juego de torneo y será excluido de las tablas de clasificación hasta que se edite para corregirlo. Más detalles en el próximo comentario.
trichoplax

Motivo: No se puede crear un nuevo trabajador encima de la comida. Entrada: [{"color": 7, "comida": 0, "hormiga": nulo}, {"color": 1, "comida": 0, "hormiga": nulo}, {"color": 8, "food": 0, "ant": null}, {"color": 3, "food": 1, "ant": null}, {"color": 7, "food": 0, "ant": {"comida": 1, "tipo": 5, "amigo": verdadero}}, {"color": 1, "comida": 0, "hormiga": nulo}, {"color": 1, "comida ": 0," hormiga ": nulo}, {" color ": 1," alimento ": 0," hormiga ": nulo}, {" color ": 7," alimento ": 0," hormiga ": nulo} ] Respuesta: {"celda": 3, "tipo":

3

Camino Romanesco

Este jugador no produce trabajadores, y la reina se mueve en línea recta, marcando cada celda que visita. El movimiento en línea recta es posible a pesar de la orientación aleatoria de las celdas visibles de entrada, porque la reina puede ver la celda marcada que acaba de dejar y se mueve en la dirección opuesta a esta para garantizar una línea recta.

El primer bloque de código en una respuesta es el que se incluye automáticamente en el juego:

// Full version that won't be disqualified for moving onto another ant

var i

// Color own cell if white
if (view[4].color === 1) {
    return {cell:4, color:3}
}

// Otherwise move to food if visible
for (i=0; i<9; i++) {
    if (view[i].food) {
        return {cell:i}
    }
}

// Otherwise move to a white cell opposite a colored cell
for (i=0; i<9; i++) {
    if (view[i].color === 1 && view[8-i].color > 1 && !view[i].ant) {
        return {cell:i}
    }
}

// Otherwise move to an unoccupied cell
for (i=0; i<9; i++) {
    if (!view[i].ant) {
        return {cell:i}
    }
}

// Otherwise don't move at all
return {cell:4}

Aquí hay una versión más simple que no busca otras hormigas, pero tiene un comportamiento idéntico hasta el punto en que se descalifica por intentar pisar otra hormiga:

// Basic version for an intuitive understanding

var i

// Color own cell if white
if (view[4].color === 1) {
    return {cell:4, color:3}
}

// Otherwise move to food if visible
for (i=0; i<9; i++) {
    if (view[i].food) {
        return {cell:i}
    }
}

// Otherwise move to a white cell opposite a colored cell
for (i=0; i<9; i++) {
    if (view[i].color === 1 && view[8-i].color > 1) {
        return {cell:i}
    }
}

// Otherwise move "left and up", which will be a random direction
return {cell:0}

El juego no recogerá este segundo bloque de código; esto significa que puede incluir bloques de código adicionales como parte de la explicación de su respuesta. Solo asegúrate de que el bloque de código que deseas competir en el juego sea el primero en la respuesta.

Para ver un ejemplo de producir movimiento aleatorio en lugar de una línea recta, vea Brownian Jig .


3

VinceAnt

¿Sientes que después de nueve meses, la arena todavía se ve un poco soso?

¿Crees que el Artista ambulante Antdom y los trabajadores huérfanos de The Formation podrían ayudarlo con un poco de ayuda para decorarlo de manera atractiva?

¡Entonces te gustará este!

Una autopista, remodelada

De vez en cuando, según lo permitan nuestros medios, la reina patrocinará y generará un pintor o dos. Estos se enredarán con los colores que los rodean, en varios estilos personales, a menudo teniendo en cuenta los colores existentes, pero reorganizándolos y retorciéndolos como mejor les parezca. Por lo general, trabajan solos o, a veces, en parejas. (Que dos hormigas pueden seguir una línea recta horizontal o vertical había sido claro desde el primer día y las hormigas forenses de Dave , pero ten cuidado ahora con un tándem que cambia los patrones que encuentran por el valor de una celda).

Claude y Jean

Para que esto sea asequible, hay una columna vertebral levantada de mi molino de viento : imagine una reina del molino de viento y una secretaria / navegante que nunca crecen y se establecen. (La idea había sido perfeccionada previamente por Lightspeed , siendo pionera en la instalación de gorilas del Vampiro . Sin embargo, la implementación es diferente de la de Lightspeed). Se necesitaban varias modificaciones para evitar que las cosas se desmoronaran cuando nos topamos con nuestra propia descendencia. .

Por su naturaleza, esta entrada no puede vencer a Lightspeed, pero se espera que lo haga razonablemente bien para toda su extravagancia, aproximadamente el quinto entre los contendientes actuales (a partir de abril de 2018).

El código fuente comentado sin golf está en GitHub , y planeo agregar más detalles sobre cada tipo y estilo de pintor allí una vez que tenga la oportunidad de recopilar algunas capturas de pantalla agradables.

var ANV=1;var AMK=2;var AGS=3;var AWM=4;var AQ=5;var THC=1;var THP=[0,0,0,0,0,0];THP[AMK]=19;THP[AGS]=17;THP[AWM]=15;var RM=15;var SPDAT =[0,AMK,AGS,0,AWM,0,AGS,AWM,0,AMK,0,AWM,AMK,0,AGS];var PW=1;var PY=2;var PP=3;var PC=4;var PR=5;var PG=6;var PB=7;var PK=8;var LCLR=PW;var LT=PY;var LLSF=PG;var TN=8;var POSC=4;var NOP={cell:POSC};var CCW=[6,7,8,5,2,1,0,3,6,7,8,5,2,1,0,3,6,7,8,5,2,1];
var xn=-1;var here=view[POSC];var mC=here.color;var myself=here.ant;var mT=myself.type;var mF=myself.food;var mS=(mT!=AQ&&mF>0);var dOK=[true,true,true,true,true,true,true,true,true];
var uo=true;var sL=[0,0,0,0,0,0,0,0,0];var sD=[0,0,0,0,0,0,0,0,0];var sN=[0,0,0,0,0,0,0,0,0];var sT=[0,0,0,0,0,0,0,0,0];var fdL=0;var fdD=0;var fdT=0;sT[mC]++;for (var i=0; i<TN; i+=2){var cell=view[CCW[i]];sD[cell.color]++;sN[cell.color]++;sT[cell.color]++;if (cell.food>0){fdD++;fdT++;if (mS){dOK[CCW[i]]=false;uo=false;}}}for (var i=1; i<TN; i+=2){var cell=view[CCW[i]];sL[cell.color]++;sN[cell.color]++;sT[cell.color]++;if (cell.food>0){fdL++;fdT++;if (mS){dOK[CCW[i]]=false;uo=false;}}}var aF=[0,0,0,0,0,0];var aLF=[0,0,0,0,0,0];var aUF=[0,0,0,0,0,0];var fT=0;var mQ=0;var aE=[0,0,0,0,0,0];var aLE=[0,0,0,0,0,0];var aUE=[0,0,0,0,0,0];var eT=0;for (var i=0; i<TN; i++){var cell=view[CCW[i]];if (cell.ant){if (cell.ant.friend){aF[cell.ant.type]++;fT++;if (cell.ant.type==AQ){xn=i&6;mQ=i&1;}if (cell.ant.food>0){aLF[cell.ant.type]++;} else {aUF[cell.ant.type]++;}} else {aE[cell.ant.type]++;eT++;if (cell.ant.food>0){aLE[cell.ant.type]++;} else {aUE[cell.ant.type]++;}}dOK[CCW[i]]=false;uo=false;}}switch (mT){case AQ:return (rQSs());case ANV:return (rNSs());case AMK:return (rMSs());case AGS:return (rGSs());case AWM:return (rWSs());default:return NOP;}function rQSs(){switch (aF[ANV]){case 0:return (rQScrSy());case 1:for (var i=0; i<TN; i++){var cell=view[CCW[i]];if (cell.ant&&cell.ant.friend&&cell.ant.type==ANV){xn=i&6;if (i&1){return (rQLsSy());} else {return (rQCSy());}}}break;default:return (rQCNSy());}return NOP;}function rNSs(){if (aF[AQ]>0){if (mQ==1){return (rSLSy());} else {return (rNRSy());}} else if ((mF==0)&&(fdT>0)){return (rPEgSy());} else {return (rPPgSy());}}function rMSs(){if ((aF[AQ]>0)&&(mF==0)){if (dOK[CCW[xn+4]]){return {cell:CCW[xn+4]};} else if (dOK[CCW[xn+3]]){return {cell:CCW[xn+3]};} else if (dOK[CCW[xn+5]]){return {cell:CCW[xn+5]};} else if (dOK[CCW[xn+2]]){return {cell:CCW[xn+2]};} else {return NOP;}} else if ((mF>0)&&(aF[AQ]+aF[ANV]>0)){return NOP;} else if ((mF==0)&&(fdT>0)){return (rPEgSy());} else if (aF[AGS]+aF[AWM]>1){return (rPMgSy());} else if (aF[AGS]==1){return (rCPgSy());} else {return (rMPgSy());}}function rGSs(){if ((aF[AQ]>0)&&(mF==0)){if (dOK[CCW[xn+4]]){return {cell:CCW[xn+4]};} else if (dOK[CCW[xn+3]]){return {cell:CCW[xn+3]};} else if (dOK[CCW[xn+5]]){return {cell:CCW[xn+5]};} else if (dOK[CCW[xn+2]]){return {cell:CCW[xn+2]};} else {return NOP;}} else if ((mF>0)&&(aF[AQ]+aF[ANV]>0)){return NOP;} else if ((mF==0)&&(fdT>0)){return (rPEgSy());} else if (aF[AMK]+aF[AWM]>1){return (rPMgSy());} else if (aF[AMK]==1){return (rJPgSy());} else {return (rGPgSy());}}function rWSs(){if ((aF[AQ]>0)&&(mF==0)){if (dOK[CCW[xn+4]]){return {cell:CCW[xn+4]};} else if (dOK[CCW[xn+3]]){return {cell:CCW[xn+3]};} else if (dOK[CCW[xn+5]]){return {cell:CCW[xn+5]};} else if (dOK[CCW[xn+2]]){return {cell:CCW[xn+2]};} else {return NOP;}} else if ((mF>0)&&(aF[AQ]+aF[ANV]>0)){return NOP;} else if ((mF==0)&&(fdT>0)){return (rPEgSy());} else if (aF[AMK]+aF[AGS]>1){return (rPMgSy());} else {return (rWPgSy());}}function rQScrSy(){if (uo){if (fdT>0){return (rQSETc());} else if (mF>=THC){for (var i=0; i<TN; i+=2){if ((view[CCW[i]].color==LT)||(view[CCW[i+1]].color==LT)){return {cell:CCW[i+1],type:ANV};}}return {cell:1,type:ANV};} else if (mC!=LT){if ((mC==LCLR)||(sN[LCLR]>=TN-1)){return {cell:POSC,color:LT};} else {return (rQSTCTc());}} else if ((sN[LCLR]>=4)&&(sN[LT]==1)){for (var i=0; i<TN; i+=2){if ((view[CCW[i]].color==LT)||(view[CCW[i+1]].color==LT)){return {cell:CCW[i+4]};}}} else if (sN[LCLR]==TN){return {cell:0};} else {return (rQSATc());}} else {if ((fdT>0)&&(eT>0)&&(eT==aE[AQ])){return (rQSSTc());} else {return (rQSEvTc());}}return NOP;}function rQLsSy(){if ((sT[LCLR]<=2)&&(mF>1)&&(eT==0)){var artist=SPDAT[mF % RM];if ((artist!=0)&&(mF>=THP[artist])&&(aF[artist]<=1)){var tc=[6,2,4,5,3];for (var i=0; i<tc.length; i++){var c=CCW[xn+tc[i]];if (dOK[c]&&(view[c].food==0)){return {cell:c,type:artist};}}}}if ((eT==0)&&(fT==1)){if (view[CCW[xn+2]].food>0){return {cell:CCW[xn+2]};} else if ((view[CCW[xn+3]].food +view[CCW[xn+4]].food>0)&&(view[CCW[xn+1]].color!=LLSF)){return NOP;} else {return {cell:CCW[xn+2]};}} else if (dOK[CCW[xn+2]]&&dOK[CCW[xn+3]]){return {cell:CCW[xn+2]};} else if (dOK[CCW[xn]]&&dOK[CCW[xn+7]]){return {cell:CCW[xn]};} else if (dOK[CCW[xn+6]]){return {cell:CCW[xn+6]};} else if (dOK[CCW[xn+5]]){return {cell:CCW[xn+5]};} else if (dOK[CCW[xn+4]]){return {cell:CCW[xn+4]};} else {return NOP;}}function rQCNSy(){for (var i=0; i<TN; i++){var cell=view[CCW[i]];if (cell.ant&&cell.ant.friend&&cell.ant.type==ANV){if (i&1){if (dOK[CCW[i-1]]){return {cell:CCW[i-1]};} else if (dOK[CCW[i+1]]){return {cell:CCW[i+1]};} else if (dOK[CCW[i+4]]){return {cell:CCW[i+4]};} else {return NOP;}} else {if (dOK[CCW[i+7]]){return {cell:CCW[i+7]};} else if (dOK[CCW[i+1]]){return {cell:CCW[i+1]};} else if (dOK[CCW[i+4]]){return {cell:CCW[i+4]};} else {return NOP;}}}}return (rQCSy());}function rQCSy(){return NOP;}function rSLSy(){if ((eT==0)&&(fT==1)){if (view[CCW[xn]].food>0){return {cell:CCW[xn]};} else if (view[CCW[xn+7]].food +view[CCW[xn+6]].food>0){return {cell:POSC,color:LLSF};} else {return {cell:CCW[xn]};}} else if ((eT>0)&&view[CCW[xn+2]].ant&&!view[CCW[xn+2]].ant.friend){return {cell:POSC,color:LLSF};} else if ((fT>1)&&((view[CCW[xn+6]].ant&&view[CCW[xn+6]].ant.friend&&
(view[CCW[xn+6]].ant.food>0))||(view[CCW[xn+5]].ant&&view[CCW[xn+5]].ant.friend&&
(view[CCW[xn+5]].ant.food>0)))){return {cell:POSC,color:LLSF};} else {if (dOK[CCW[xn]]){return {cell:CCW[xn]};} else if (dOK[CCW[xn+2]]){return {cell:CCW[xn+2]};}}return NOP;}function rNRSy(){if (view[CCW[xn+1]].ant&&view[CCW[xn+1]].ant.friend&&
(view[CCW[xn+1]].ant.type==mT)){if (dOK[CCW[xn+5]]){return {cell:CCW[xn+5]};} else if (dOK[CCW[xn+6]]){return {cell:CCW[xn+6]};} else if (dOK[CCW[xn+3]]){return {cell:CCW[xn+3]};} else if (dOK[CCW[xn+2]]){return {cell:CCW[xn+2]};} else {return NOP;}} else if (view[CCW[xn+7]].ant&&view[CCW[xn+7]].ant.friend&&(view[CCW[xn+7]].ant.type==mT)){if (dOK[CCW[xn+3]]){return {cell:CCW[xn+3]};} else if (dOK[CCW[xn+4]]){return {cell:CCW[xn+4]};} else if (dOK[CCW[xn+2]]){return {cell:CCW[xn+2]};} else if (dOK[CCW[xn+5]]){return {cell:CCW[xn+5]};} else {return NOP;}} else if (dOK[CCW[xn+1]]){return {cell:CCW[xn+1]};} else if (dOK[CCW[xn+7]]){return {cell:CCW[xn+7]};} else if (dOK[CCW[xn+4]]){return {cell:CCW[xn+4]};} else if (dOK[CCW[xn+3]]){return {cell:CCW[xn+3]};} else if (dOK[CCW[xn+5]]){return {cell:CCW[xn+5]};} else if (dOK[CCW[xn+2]]){return {cell:CCW[xn+2]};} else if (dOK[CCW[xn+6]]){return {cell:CCW[xn+6]};} else {return NOP;}}function rPPgSy(){if (aLF[AMK]+aLF[AGS] +aLF[AWM]>0){for (var i=0; i<TN; i++){if (view[CCW[i]].ant&&view[CCW[i]].ant.friend&&
(view[CCW[i]].ant.food>0)){if (dOK[CCW[i+4]]){return {cell:CCW[i+4]};} else if (dOK[CCW[i+3]]){return {cell:CCW[i+3]};} else if (dOK[CCW[i+5]]){return {cell:CCW[i+5]};}}}} else if (aF[mT]>0){return (rSPTc());}return (rPPgTc());}function rMPgSy(){if (aF[mT]>0){return (rSPTc());}return (rMPgTc());}function rGPgSy(){if (aF[mT]>0){return (rSPTc());}return (rGPgTc());}function rWPgSy(){if (aF[mT]>0){return (rSPTc());}return (rWPgTc());}function rCPgSy(){var phase=0;for (var i=0; i<TN; i++){if (view[CCW[i]].ant&&view[CCW[i]].ant.friend&&
(view[CCW[i]].ant.type==AGS)){xn=i&6;phase=i&1;break;}}if ((phase==1)&&(mC==view[CCW[xn+7]].color)&&(view[CCW[xn]].color==view[CCW[xn+1]].color)){if (dOK[CCW[xn+3]]){return {cell:CCW[xn+3]};} else if (dOK[CCW[xn]]){return {cell:CCW[xn]};} else if (dOK[CCW[xn+5]]){return {cell:CCW[xn+5]};} else if (dOK[CCW[xn+4]]){return {cell:CCW[xn+4]};} else if (dOK[CCW[xn+6]]){return {cell:CCW[xn+6]};} else {return NOP;}} else {return {cell:CCW[xn+7],color:mC};}return NOP;}function rJPgSy(){var phase=0;for (var i=0; i<TN; i++){if (view[CCW[i]].ant&&view[CCW[i]].ant.friend&&
(view[CCW[i]].ant.type==AMK)){xn=i&6;phase=i&1;break;}}if (phase==0){if (dOK[CCW[xn+7]]){return {cell:CCW[xn+7]};} else if (dOK[CCW[xn+1]]){return {cell:CCW[xn+1]};} else if (dOK[CCW[xn+4]]){return {cell:CCW[xn+4]};} else if (dOK[CCW[xn+5]]){return {cell:CCW[xn+5]};} else if (dOK[CCW[xn+6]]){return {cell:CCW[xn+6]};} else {return NOP;}} else {return {cell:CCW[xn+3],color:mC};}return NOP;}function rPEgSy(){for (var i=0; i<TN; i++){if ((view[CCW[i]].food>0)&&dOK[CCW[i]]){return {cell:CCW[i]};}}return NOP;}function rPMgSy(){for (var i=0; i<TN; i+=2){if (view[CCW[i]].ant&&view[CCW[i]].ant.friend&&
(view[CCW[i]].ant.type!=mT)){if (dOK[CCW[i+1]]&&!view[CCW[i+7]].ant&&!view[CCW[i+2]].ant&&!view[CCW[i+3]].ant){return {cell:CCW[i+1]};} else if (dOK[CCW[i+7]]&&!view[CCW[i+1]].ant&&
!view[CCW[i+6]].ant&&!view[CCW[i+5]].ant){return {cell:CCW[i+7]};}}}for (var i=1; i<TN; i+=2){if (view[CCW[i]].ant&&view[CCW[i]].ant.friend&&
(view[CCW[i]].ant.type!=mT)){if (dOK[CCW[i-1]]&&!view[CCW[i+6]].ant){return {cell:CCW[i-1]};} else if (dOK[CCW[i+1]]&&!view[CCW[i+2]].ant){return {cell:CCW[i+1]};}}}for (var i=0; i<TN; i++){if (dOK[CCW[i]]){return {cell:CCW[i]};}}return {cell:POSC,color:view[CCW[0]].color};}function rQSETc(){if (mC!=LT){return {cell:POSC,color:LT};}for (var i=0; i<TN; i++){if (view[CCW[i]].food>0){return {cell:CCW[i]};}}return NOP;}function rQSSTc(){for (var i=0; i<TN; i++){if ((view[CCW[i]].food>0)&&(dOK[CCW[i]])){return {cell:CCW[i]};}}return NOP;}function rQSTCTc(){if ((mC!=LCLR)&&(sN[mC]>=4)){if (sN[LT]==0){return {cell:POSC,color:LT};} else if (sN[LT]>=3){return {cell:POSC,color:LT};} else {for (var i=0; i<TN; i++){if ((view[CCW[i]].color==LT)&&(view[CCW[i+2]].color!=LT)){return {cell:CCW[i+2],color:LT};}}return NOP;}} else if (sN[LT]==1){for (var i=0; i<TN; i++){if ((view[CCW[i]].color==LT)&&(view[CCW[i+4]].color!=LCLR)){if (view[CCW[i+1]].color==LCLR){return { cell:CCW[i+1]};} else if (view[CCW[i+7]].color==LCLR){return { cell:CCW[i+7]};} else {return {cell:POSC,color:LT};}}}return {cell:POSC,color:LT};} else {return {cell:POSC,color:LT};}return NOP;}function rQSATc(){for (var i=0; i<TN; i++){if ((view[CCW[i]].color==LCLR)&&(view[CCW[i+1]].color==LCLR)&&(view[CCW[i+2]].color==LCLR)){if ((view[CCW[i+3]].color==LCLR)&&(view[CCW[i+4]].color==LCLR)){return {cell:CCW[i+2]};}return {cell:CCW[i+1]};}}for (var i=TN-1; i>=0; i--){if (view[CCW[i]].color!=LT){return {cell:CCW[i]};}}for (var i=0; i<TN; i++){if (view[CCW[i]].color!=LT){return {cell:CCW[i],color:LCLR};}}return {cell:0,color:LCLR};}function rQSEvTc(){if (sN[LT]>0){for (var i=0; i<TN; i++){if (view[CCW[i]].color==LT){xn=i&6;}}if ( dOK[CCW[xn+7]]&&dOK[CCW[xn]]&&dOK[CCW[xn+1]]&&dOK[CCW[xn+2]]&&dOK[CCW[xn+3]] ){return {cell:CCW[xn+1]};} else if (dOK[CCW[xn+5]]&&dOK[CCW[xn+6]]&&dOK[CCW[xn+7]]&&dOK[CCW[xn]]&&dOK[CCW[xn+1]]){return {cell:CCW[xn+7]};} else if (dOK[CCW[xn+3]]&&dOK[CCW[xn+4]]&&dOK[CCW[xn+5]]){return {cell:CCW[xn+4]};} else if (dOK[CCW[xn+5]]&&dOK[CCW[xn+6]]&&dOK[CCW[xn+7]]){return {cell:CCW[xn+6]};} else if (dOK[CCW[xn+1]]&&dOK[CCW[xn+2]]&&dOK[CCW[xn+3]]){return {cell:CCW[xn+2]};} else if (dOK[CCW[xn+7]]&&dOK[CCW[xn]]&&dOK[CCW[xn+1]]){return {cell:CCW[xn]};} else {for (var i=0; i<TN; i++){if (dOK[CCW[i]]){return {cell:CCW[i]};}}return NOP;}} else {for (var i=0; i<TN; i++){if (dOK[CCW[i]]&&dOK[CCW[i+1]]&&dOK[CCW[i+2]]&&dOK[CCW[i+3]]&&dOK[CCW[i+4]]){return {cell:CCW[i+2]};}}for (var i=0; i<TN; i++){if (dOK[CCW[i]]&&dOK[CCW[i+1]]&&dOK[CCW[i+2]]){return {cell:CCW[i+1]};}}for (var i=0; i<TN; i++){if (dOK[CCW[i]]){return {cell:CCW[i]};}}return NOP;}return NOP;}function rPPgTc(){if (sL[mC]==0){return {cell:1,color:mC};}for (var i=1; i<TN; i+=2){if (view[CCW[i]].color==mC){xn=i&6;break;}}var col1=(mC+1) % 8+1;if ((view[CCW[xn+5]].color==mC)&&(view[CCW[xn+3]].color==col1)&&(view[CCW[xn+7]].color!=col1)){xn=(xn+4) % 8;}if (view[CCW[xn+7]].color!=col1){return {cell:CCW[xn+7],color:col1};} else if (view[CCW[xn]].color!=col1){return {cell:CCW[xn],color:col1};}var col2=(mC+5) % 8+1;if (view[CCW[xn+3]].color!=col2){return {cell:CCW[xn+3],color:col2};} else if (view[CCW[xn+2]].color!=col2){return {cell:CCW[xn+2],color:col2};} else if (view[CCW[xn+5]].color!=mC){return {cell:CCW[xn+5],color:mC};} else if (view[CCW[xn+4]].color!=col2){return {cell:CCW[xn+4],color:col2};} else if (dOK[CCW[xn+5]]){return {cell:CCW[xn+5]};} else {return (rWgPTc());}}function rMPgTc(){switch (sT[mC]){case 9:var col=((mC+2) % 8)+1;return {cell:CCW[0],color:col};case 8:for (var i=0; i<TN; i++){var col=view[CCW[i]].color;if (col!=mC){if (i==0){return {cell:POSC,color:col};} else if ((i==1)&&dOK[CCW[i+3]]){return {cell:CCW[i+3]};} else if ((i==2)&&dOK[CCW[i+5]]){return {cell:CCW[i+5]};} else {return {cell:CCW[i-1],color:col};}}}break;case 7:return rWgPTc();case 6:for (var i=0; i<TN; i++){if (view[CCW[i]].color!=mC){if ((i==0)&&dOK[CCW[i+5]]){return {cell:CCW[i+5]};} else if ((i==1)&&dOK[CCW[i+4]]){return {cell:CCW[i+4]};} else {return {cell:CCW[i],color:mC};}}}break;case 5:case 4:case 3:for (var i=0; i<TN; i++){if (view[CCW[i]].color!=mC){return {cell:CCW[i],color:mC};}}break;case 2:case 1:default:for (var i=TN-1; i>=0; i--){var col=view[CCW[i]].color;if ((col==mC)&&(sT[view[CCW[i+4]].color]==7)&&dOK[CCW[i+4]]){return {cell:CCW[i+4]};}if (sT[col]>=3){return {cell:POSC,color:col};}}var col=view[CCW[1]].color;if (view[CCW[0]].color!=col){return {cell:CCW[0],color:col};} else if (view[CCW[2]].color!=col){return {cell:CCW[2],color:col};}break;}return (rWgPTc());}function rGPgTc(){var col=0;for (var c0=view[CCW[0]].color; c0<view[CCW[0]].color+8; c0++){var c=(c0 % 8)+1;if (sN[c]==0){col=c;}}if (col==0){return (rWgPTc());}for (var i=0; i<TN; i++){if (sN[view[CCW[i]].color]>1){return {cell:CCW[i],color:col};}}return (rWgPTc());}function rWPgTc(){var col=((mC+6) % 8)+1;if (sT[mC]==9){return {cell:CCW[0],color:col};}var myRand=(view[CCW[0]].color+sT[view[CCW[2]].color]) % 3;
switch (myRand){case 0:for (var i=0; i<TN; i+=2){if (dOK[CCW[i]]){return {cell:CCW[i]};}}break;case 1:if (view[CCW[1]].color!=view[CCW[7]].color){return {cell:CCW[1],color:view[CCW[7]].color};} else if (view[CCW[5]].color!=view[CCW[3]].color){return {cell:CCW[5],color:view[CCW[3]].color};}break;case 2:if (view[CCW[5]].color!=view[CCW[3]].color){return {cell:CCW[5],color:view[CCW[3]].color};} else if (view[CCW[1]].color!=view[CCW[7]].color){return {cell:CCW[1],color:view[CCW[7]].color};}break;default:break;}for (var i=1; i<TN; i+=2){if (dOK[CCW[i]]){return {cell:CCW[i]};}}return (rWgPTc());}function rSPTc(){for (var i=0; i<TN; i++){if (view[CCW[i]].ant&&view[CCW[i]].ant.friend&&
(view[CCW[i]].ant.type==mT)){if (dOK[CCW[i+4]]){return {cell:CCW[i+4]};} else if (dOK[CCW[i+3]]){return {cell:CCW[i+3]};} else if (dOK[CCW[i+5]]){return {cell:CCW[i+5]};} else if (dOK[CCW[i+2]]){return {cell:CCW[i+2]};} else if (dOK[CCW[i+6]]){return {cell:CCW[i+6]};} else if (dOK[CCW[i+1]]){return {cell:CCW[i+1]};}}}return NOP;}function rWgPTc(){for (var i=0; i<TN; i++){if (dOK[CCW[i]]){return {cell:CCW[i]};}}return NOP;}

¡Disfrutar!

** v1.0.1 Ahora compatible con controladores de modo estricto.

** v1.0.2 Corrige un error tipográfico descalificador.


Tenga en cuenta que si las hormigas son lo suficientemente "creativas" y logran confundir a las hormigas más avanzadas, entonces esta entrada podría tener la posibilidad de superar la velocidad de la luz: competidores menos fuertes = puntaje más alto. Sin embargo, ese probablemente no será el caso aquí, ya que incluso Highway generalmente logra sobrevivir al tratamiento de los artistas ...
Alion

Los pintores de @Alion the VinceAnt ocasionalmente confunden a las hormigas Windmill entre otros, y a veces bloquean a los trabajadores enemigos, o hacen que los mineros Sliding Miners o Windmill comiencen nuevos rieles en los lugares equivocados, pero si Lightspeed también está jugando en los mismos juegos, entonces Lightspeed también se beneficiará ...
GNiklasch

La versión independiente de la formación intenta agruparse alrededor de los trabajadores enemigos y colorearlos con basura, pero incluso esto no siempre conduce a la flexión de los rieles. E incluso cuando lo hace, es poco común que esto afecte la capacidad de otros trabajadores para navegar hacia y desde la reina. Tómalo de mí, es bastante difícil engañar a los nidos de rieles.
eaglgenes101

@trichoplax Corregido - lo siento y gracias!
GNiklasch

2

HalfThere

if(view[4].ant.type==5&&view[4].food>1)
{
    for(var i = 0; i<9; i++)
    {
        if(!view[i].ant)
        {
            return{cell:i,type: 1};
        }
    }
}
if(view[4].color != 3){
    return {cell: 4, color: 3};
}
for(var i = 0; i<9; i++)
{
    if(view[i].food==1)
    {
        return({cell:i})
    }

}


var i, j
var orthogonals = [1, 3, 7, 5]  // These are the non-diagonal cells



// Otherwise move to a white cell opposite a colored cell
for (i=0; i<4; i++) {
    j = (i+2) % 4
    if (view[orthogonals[i]].color === 1 &&
        view[orthogonals[j]].color > 1 && !view[orthogonals[i]].ant) {
        return {cell:orthogonals[i]}
    }
}

// Otherwise move to one of the vertical or horizontal cells if not occupied
for (i=1; i<9; i+=2) {
    if (!view[i].ant) {
        return {cell:i}
    }
}

// Otherwise move to one of the diagonal cells if not occupied
for (i=0; i<9; i+=2) {
    if (!view[i].ant) {
        return {cell:i}
    }
}


for(var i = 0; i<9; i++)
{
    if(view[i].color==1)
    {
        return {cell:i};
    }
}
for(var i = 0; i<9; i++)
{
    if(view[i].ant==null)
    {
        return {cell:i};
    }
}

Este bot está a la mitad ... Básicamente, solo hace una línea y va en línea recta y se derrumba si ve otra línea.

ESTE ES UN TRABAJO EN PROGRESO BOT.


Esto puede ser descalificado por crear trabajadores en alimentos en circunstancias exóticas
pppery

@ppperry en realidad no puede. Nunca hace trabajadores: /
Christopher

En realidad, no puede, porque la lógica de "crear trabajador" es solo un código muerto. Todavía vale la pena señalarlo
pppery

Estaba confundido por el view[4].food > 1cheque muerto , que es un error que cometí una vez yo mismo
pppery

1
Cambiar view[4].food > 1a view[4].ant.food > 1en la primera línea
pppery
Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.