Definimos un binarray como una matriz que satisface las siguientes propiedades:
- no está vacío
- el primer valor es un
1
- el último valor es un
1
- todos los demás valores son
0
o1
Por ejemplo, la matriz [ 1, 1, 0, 1 ]
es una matriz binaria válida .
La tarea
Dada una matriz no vacía A de enteros no negativos y un entero positivo N , su trabajo es encontrar una matriz binaria B de longitud N que permita generar A al sumar un número ilimitado de copias de B , desplazado por un número ilimitado de puestos.
Ejemplo
A = [ 1, 1, 2, 4, 1, 2, 2, 1, 0, 1, 0, 1, 1, 0, 1 ]
N = 4
Para esta entrada, el binarray B = [ 1, 1, 0, 1 ]
sería una respuesta válida porque podemos hacer:
[ 1, 1, 0, 1 ]
+ [ 1, 1, 0, 1 ]
+ [ 1, 1, 0, 1 ]
+ [ 1, 1, 0, 1 ]
+ [ 1, 1, 0, 1 ]
+ [ 1, 1, 0, 1 ]
-----------------------------------------------
= [ 1, 1, 2, 4, 1, 2, 2, 1, 0, 1, 0, 1, 1, 0, 1 ]
Reglas
- La entrada puede tomarse en cualquier formato razonable.
- La salida puede ser una matriz nativa (por ejemplo
[1, 1, 0, 1]
) o una cadena binaria con o sin separador (por ejemplo,"1,1,0,1"
o"1101"
) - Solo debe imprimir o devolver un binarray válido . Alternativamente, usted puede optar por imprimir o devolver todos ellos cuando existen varias soluciones.
- No está obligado a admitir entradas que no conducen a ninguna solución.
- La suma puede incluir ceros implícitos que no se solapan con cualquier copia de B . El segundo cero en la suma anterior es un cero implícito.
- Puede suponer que el tamaño máximo de A es 100 y el tamaño máximo de B es 30.
- Este es el código de golf, por lo que gana la respuesta más corta en bytes. Las lagunas estándar están prohibidas.
Casos de prueba
Input : N = 1 / A = [ 1, 2, 3, 4, 5 ]
Output: [ 1 ]
Input : N = 2 / A = [ 1, 2, 100, 99 ]
Output: [ 1, 1 ]
Input : N = 3 / A = [ 1, 1, 1 ]
Output: [ 1, 1, 1 ]
Input : N = 3 / A = [ 1, 1, 3, 2, 2 ]
Output: [ 1, 1, 1 ]
Input : N = 3 / A = [ 1, 0, 2, 1, 1, 1, 0, 0, 1, 0, 1 ]
Output: [ 1, 0, 1 ]
Input : N = 4 / A = [ 1, 2, 2, 2, 1 ]
Output: [ 1, 1, 1, 1 ]
Input : N = 4 / A = [ 1, 1, 2, 4, 1, 2, 2, 1, 0, 1, 0, 1, 1, 0, 1 ]
Output: [ 1, 1, 0, 1 ]
Input : N = 4 / A = [ 1, 1, 0, 2, 1, 0, 1 ]
Output: [ 1, 0, 0, 1 ] or [ 1, 1, 0, 1 ]
Input : N = 5 / A = [ 1, 3, 6, 9, 8, 6, 3, 4 ]
Output: [ 1, 1, 1, 0, 1 ]
Input : N = 8 / A = [ 2, 1, 0, 2, 3, 3, 1, 2, 1 ]
Output: [ 1, 0, 0, 1, 1, 1, 0, 1 ]
Input : N = 10 / A = [ 1, 2, 1, 2, 2, 1, 3, 3, 3, 2, 3, 0, 2, 1, 1, 0, 1 ]
Output: [ 1, 1, 0, 1, 0, 1, 1, 1, 0, 1 ]
Input : N = 13 / A = [ 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1 ]
Output: [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ]
Input : N = 5 / A = [ 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 ]
Output: [ 1, 1, 1, 1, 1 ]
Input : N = 6 / A = [ 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 ]
Output: [ 1, 0, 0, 0, 0, 1 ]
Input : N = 7 / A = [ 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 ]
Output: [ 1, 1, 0, 0, 0, 1, 1 ]
Input : N = 9 / A = [ 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 ]
Output: [ 1, 0, 1, 0, 1, 0, 1, 0, 1 ]
N=4, A = [ 1, 1, 2, 4, 1, 2, 2, 2, 1, 2, 2, 1, 2, 0, 1 ]
, obtienes 30459 que es divisible por 11 y 13 pero solo uno de [ 1, 1, 0, 1 ]
y [ 1, 0, 1, 1 ]
es una respuesta válida.
N
eso razonablemente debe ser compatible?