Codificar imágenes en tweets (Extreme Image Compression Edition) [cerrado]


59

Basado en el exitoso desafío de codificación de imágenes de Twitter en Stack Overflow.

Si una imagen vale más que 1000 palabras, ¿qué cantidad de una imagen puede caber en 114.97 bytes?

Te reto a que encuentres un método de propósito general para comprimir imágenes en un comentario estándar de Twitter que contenga solo texto ASCII imprimible .

Reglas:

  1. Debe escribir un programa que pueda tomar una imagen y generar el texto codificado.
  2. El texto creado por el programa debe tener como máximo 140 caracteres y solo debe contener caracteres cuyos puntos de código estén en el rango de 32-126, inclusive.
  3. Debe escribir un programa (posiblemente el mismo programa) que pueda tomar el texto codificado y generar una versión decodificada de la fotografía.
  4. Su programa puede usar bibliotecas y archivos externos, pero no puede requerir una conexión a Internet o una conexión a otras computadoras.
  5. El proceso de decodificación no puede acceder o contener las imágenes originales de ninguna manera.
  6. Su programa debe aceptar imágenes en al menos uno de estos formatos (no necesariamente más): mapa de bits, JPEG, GIF, TIFF, PNG. Si algunas o todas las imágenes de muestra no están en el formato correcto, puede convertirlas usted mismo antes de la compresión por su programa.

Juzgando:

Este es un desafío algo subjetivo, por lo que el ganador será (eventualmente) juzgado por mí. Centraré mi juicio en un par de factores importantes, enumerados a continuación en importancia decreciente:

  1. Capacidad para hacer un trabajo razonable de comprimir una amplia variedad de imágenes, incluidas las que no figuran como imagen de muestra
  2. Capacidad para preservar los contornos de los elementos principales de una imagen.
  3. Capacidad para comprimir los colores de los elementos principales de una imagen.
  4. Capacidad para preservar contornos y colores de los detalles menores en una imagen.
  5. Tiempo de compresión. Aunque no es tan importante como qué tan bien se comprime una imagen, los programas más rápidos son mejores que los programas más lentos que hacen lo mismo.

Su envío debe incluir las imágenes resultantes después de la descompresión, junto con el comentario de Twitter generado. Si es posible, también puede dar un enlace al código fuente.

Imágenes de muestra:

El Hindenburg , paisaje montañoso , Mona Lisa , formas 2D


U + 007F (127) y U + 0080 (128) son caracteres de control. Sugeriría prohibirlos también.
favor

Buena observación. Lo arreglaré
PhiNotPi

¿Twitter no permite a Unicode hasta cierto punto?
marinus

44
Siento que me gustaría patentar una solución para esto.
Shmiddty

2
"Paisajes montañosos" 1024x768 - ¡Consíguelo antes de que desaparezca! -> i.imgur.com/VaCzpRL.jpg <-
jdstankosky

Respuestas:


58

He mejorado mi método agregando compresión real. Ahora funciona haciendo iterativamente lo siguiente:

  1. Convierte la imagen a YUV
  2. Reduzca el tamaño de la imagen conservando la relación de aspecto (si la imagen es en color, el croma se muestrea a 1/3 del ancho y alto de la luminancia)

  3. Reduzca la profundidad de bits a 4 bits por muestra

  4. Aplique la predicción mediana a la imagen, haciendo que la distribución de la muestra sea más uniforme

  5. Aplique compresión de rango adaptativo a la imagen.

  6. Vea si el tamaño de la imagen comprimida es <= 112

La imagen más grande que cabe en los 112 bytes se usa como la imagen final, con los dos bytes restantes para almacenar el ancho y la altura de la imagen comprimida, más una bandera que indica si la imagen está en color. Para la decodificación, el proceso se invierte y la imagen se amplía para que la dimensión más pequeña sea 128.

Hay margen de mejora, es decir, no todos los bytes disponibles se usan normalmente, pero creo que estoy a punto de disminuir significativamente los retornos para la disminución de resolución + compresión sin pérdidas.

Fuente C ++ rápida y sucia

Windows exe

Mona Lisa (13x20 luminancia, 4x6 croma)

&Jhmi8(,x6})Y"f!JC1jTzRh}$A7ca%/B~jZ?[_I17+91j;0q';|58yvX}YN426@"97W8qob?VB'_Ps`x%VR=H&3h8K=],4Bp=$K=#"v{thTV8^~lm vMVnTYT3rw N%I           

Mona Lisa Mona Lisa Twitter codificado

Hindenburg (21x13 luminancia)

GmL<B&ep^m40dPs%V[4&"~F[Yt-sNceB6L>Cs#/bv`\4{TB_P Rr7Pjdk7}<*<{2=gssBkR$>!['ROG6Xs{AEtnP=OWDP6&h{^l+LbLr4%R{15Zc<D?J6<'#E.(W*?"d9wdJ'       

Hindenburg Hindenburg twitter codificado

Montañas (luminancia 19x14, croma 6x4)

Y\Twg]~KC((s_P>,*cePOTM_X7ZNMHhI,WeN(m>"dVT{+cXc?8n,&m$TUT&g9%fXjy"A-fvc 3Y#Yl-P![lk~;.uX?a,pcU(7j?=HW2%i6fo@Po DtT't'(a@b;sC7"/J           

Montaña Twitter de montaña codificado

Formas 2D (21x15 luminancia, 7x5 croma)

n@|~c[#w<Fv8mD}2LL!g_(~CO&MG+u><-jT#{KXJy/``#S@m26CQ=[zejo,gFk0}A%i4kE]N ?R~^8!Ki*KM52u,M(his+BxqDCgU>ul*N9tNb\lfg}}n@HhX77S@TZf{k<CO69!    

Formas 2D Formas 2D codificadas en twitter


77
Esto me hace sentir que estoy desarrollando cataratas o algo así. Jaja, buen trabajo!
jdstankosky

¡Buenas mejoras!
jdstankosky

37

Ir

Funciona dividiendo la imagen en regiones de forma recursiva. Intento dividir regiones con alto contenido de información y elegir la línea divisoria para maximizar la diferencia de color entre las dos regiones.

Cada división se codifica utilizando unos pocos bits para codificar la línea divisoria. Cada región de la hoja está codificada como un solo color.

ingrese la descripción de la imagen aquí

4vN!IF$+fP0~\}:0d4a's%-~@[Q(qSd<<BDb}_s|qb&8Ys$U]t0mc]|! -FZO=PU=ln}TYLgh;{/"A6BIER|{lH1?ZW1VNwNL 6bOBFOm~P_pvhV)]&[p%GjJ ,+&!p"H4`Yae@:P

ingrese la descripción de la imagen aquí

<uc}+jrsxi!_:GXM!'w5J)6]N)y5jy'9xBm8.A9LD/^]+t5#L-6?9 a=/f+-S*SZ^Ch07~s)P("(DAc+$[m-:^B{rQTa:/3`5Jy}AvH2p!4gYR>^sz*'U9(p.%Id9wf2Lc+u\&\5M>

ingrese la descripción de la imagen aquí

lO6>v7z87n;XsmOW^3I-0'.M@J@CLL[4z-Xr:! VBjAT,##6[iSE.7+as8C.,7uleb=|y<t7sm$2z)k&dADF#uHXaZCLnhvLb.%+b(OyO$-2GuG~,y4NTWa=/LI3Q4w7%+Bm:!kpe&

ingrese la descripción de la imagen aquí

ZoIMHa;v!]&j}wr@MGlX~F=(I[cs[N^M`=G=Avr*Z&Aq4V!c6>!m@~lJU:;cr"Xw!$OlzXD$Xi>_|*3t@qV?VR*It4gB;%>,e9W\1MeXy"wsA-V|rs$G4hY!G:%v?$uh-y~'Ltd.,(

La imagen de Hindenburg se ve bastante horrible, pero las otras me gustan.

package main

import (
    "os"
    "image"
    "image/color"
    "image/png"
    _ "image/jpeg"
    "math"
    "math/big"
)

// we have 919 bits to play with: floor(log_2(95^140))

// encode_region(r):
//   0
//      color of region (12 bits, 4 bits each color)
// or
//   1
//      dividing line through region
//        2 bits - one of 4 anchor points
//        4 bits - one of 16 angles
//      encode_region(r1)
//      encode_region(r2)
//
// start with single region
// pick leaf region with most contrast, split it

type Region struct {
    points []image.Point
    anchor int  // 0-3
    angle int // 0-15
    children [2]*Region
}

// mean color of region
func (region *Region) meanColor(img image.Image) (float64, float64, float64) {
    red := 0.0
    green := 0.0
    blue := 0.0
    num := 0
    for _, p := range region.points {
        r, g, b, _ := img.At(p.X, p.Y).RGBA()
        red += float64(r)
        green += float64(g)
        blue += float64(b)
        num++
    }
    return red/float64(num), green/float64(num), blue/float64(num)
}

// total non-uniformity in region's color
func (region *Region) deviation(img image.Image) float64 {
    mr, mg, mb := region.meanColor(img)
    d := 0.0
    for _, p := range region.points {
        r, g, b, _ := img.At(p.X, p.Y).RGBA()
        fr, fg, fb := float64(r), float64(g), float64(b)
        d += (fr - mr) * (fr - mr) + (fg - mg) * (fg - mg) + (fb - mb) * (fb - mb)
    }
    return d
}

// centroid of region
func (region *Region) centroid() (float64, float64) {
    cx := 0
    cy := 0
    num := 0
    for _, p := range region.points {
        cx += p.X
        cy += p.Y
        num++
    }
    return float64(cx)/float64(num), float64(cy)/float64(num)
}

// a few points in (or near) the region.
func (region *Region) anchors() [4][2]float64 {
    cx, cy := region.centroid()

    xweight := [4]int{1,1,3,3}
    yweight := [4]int{1,3,1,3}
    var result [4][2]float64
    for i := 0; i < 4; i++ {
        dx := 0
        dy := 0
        numx := 0
        numy := 0
        for _, p := range region.points {
            if float64(p.X) > cx {
                dx += xweight[i] * p.X
                numx += xweight[i]
            } else {
                dx += (4 - xweight[i]) * p.X
                numx += 4 - xweight[i]
            }
            if float64(p.Y) > cy {
                dy += yweight[i] * p.Y
                numy += yweight[i]
            } else {
                dy += (4 - yweight[i]) * p.Y
                numy += 4 - yweight[i]
            }
        }
        result[i][0] = float64(dx) / float64(numx)
        result[i][1] = float64(dy) / float64(numy)
    }
    return result
}

func (region *Region) split(img image.Image) (*Region, *Region) {
    anchors := region.anchors()
    // maximize the difference between the average color on the two sides
    maxdiff := 0.0
    var maxa *Region = nil
    var maxb *Region = nil
    maxanchor := 0
    maxangle := 0
    for anchor := 0; anchor < 4; anchor++ {
        for angle := 0; angle < 16; angle++ {
            sin, cos := math.Sincos(float64(angle) * math.Pi / 16.0)
            a := new(Region)
            b := new(Region)
            for _, p := range region.points {
                dx := float64(p.X) - anchors[anchor][0]
                dy := float64(p.Y) - anchors[anchor][1]
                if dx * sin + dy * cos >= 0 {
                    a.points = append(a.points, p)
                } else {
                    b.points = append(b.points, p)
                }
            }
            if len(a.points) == 0 || len(b.points) == 0 {
                continue
            }
            a_red, a_green, a_blue := a.meanColor(img)
            b_red, b_green, b_blue := b.meanColor(img)
            diff := math.Abs(a_red - b_red) + math.Abs(a_green - b_green) + math.Abs(a_blue - b_blue)
            if diff >= maxdiff {
                maxdiff = diff
                maxa = a
                maxb = b
                maxanchor = anchor
                maxangle = angle
            }
        }
    }
    region.anchor = maxanchor
    region.angle = maxangle
    region.children[0] = maxa
    region.children[1] = maxb
    return maxa, maxb
}

// split regions take 7 bits plus their descendents
// unsplit regions take 13 bits
// so each split saves 13-7=6 bits on the parent region
// and costs 2*13 = 26 bits on the children, for a net of 20 bits/split
func (region *Region) encode(img image.Image) []int {
    bits := make([]int, 0)
    if region.children[0] != nil {
        bits = append(bits, 1)
        d := region.anchor
        a := region.angle
        bits = append(bits, d&1, d>>1&1)
        bits = append(bits, a&1, a>>1&1, a>>2&1, a>>3&1)
        bits = append(bits, region.children[0].encode(img)...)
        bits = append(bits, region.children[1].encode(img)...)
    } else {
        bits = append(bits, 0)
        r, g, b := region.meanColor(img)
        kr := int(r/256./16.)
        kg := int(g/256./16.)
        kb := int(b/256./16.)
        bits = append(bits, kr&1, kr>>1&1, kr>>2&1, kr>>3)
        bits = append(bits, kg&1, kg>>1&1, kg>>2&1, kg>>3)
        bits = append(bits, kb&1, kb>>1&1, kb>>2&1, kb>>3)
    }
    return bits
}

func encode(name string) []byte {
    file, _ := os.Open(name)
    img, _, _ := image.Decode(file)

    // encoding bit stream
    bits := make([]int, 0)

    // start by encoding the bounds
    bounds := img.Bounds()
    w := bounds.Max.X - bounds.Min.X
    for ; w > 3; w >>= 1 {
        bits = append(bits, 1, w & 1)
    }
    bits = append(bits, 0, w & 1)
    h := bounds.Max.Y - bounds.Min.Y
    for ; h > 3; h >>= 1 {
        bits = append(bits, 1, h & 1)
    }
    bits = append(bits, 0, h & 1)

    // make new region containing whole image
    region := new(Region)
    region.children[0] = nil
    region.children[1] = nil
    for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
        for x := bounds.Min.X; x < bounds.Max.X; x++ {
            region.points = append(region.points, image.Point{x, y})
        }
    }

    // split the region with the most contrast until we're out of bits.
    regions := make([]*Region, 1)
    regions[0] = region
    for bitcnt := len(bits) + 13; bitcnt <= 919-20; bitcnt += 20 {
        var best_reg *Region
        best_dev := -1.0
        for _, reg := range regions {
            if reg.children[0] != nil {
                continue
            }
            dev := reg.deviation(img)
            if dev > best_dev {
                best_reg = reg
                best_dev = dev
            }
        }
        a, b := best_reg.split(img)
        regions = append(regions, a, b)
    }

    // encode regions
    bits = append(bits, region.encode(img)...)

    // convert to tweet
    n := big.NewInt(0)
    for i := 0; i < len(bits); i++ {
        n.SetBit(n, i, uint(bits[i]))
    }
    s := make([]byte,0)
    r := new(big.Int)
    for i := 0; i < 140; i++ {
        n.DivMod(n, big.NewInt(95), r)
        s = append(s, byte(r.Int64() + 32))
    }
    return s
}

// decodes and fills in region.  returns number of bits used.
func (region *Region) decode(bits []int, img *image.RGBA) int {
    if bits[0] == 1 {
        anchors := region.anchors()
        anchor := bits[1] + bits[2]*2
        angle := bits[3] + bits[4]*2 + bits[5]*4 + bits[6]*8
        sin, cos := math.Sincos(float64(angle) * math.Pi / 16.)
        a := new(Region)
        b := new(Region)
        for _, p := range region.points {
            dx := float64(p.X) - anchors[anchor][0]
            dy := float64(p.Y) - anchors[anchor][1]
            if dx * sin + dy * cos >= 0 {
                a.points = append(a.points, p)
            } else {
                b.points = append(b.points, p)
            }
        }
        x := a.decode(bits[7:], img)
        y := b.decode(bits[7+x:], img)
        return 7 + x + y
    }
    r := bits[1] + bits[2]*2 + bits[3]*4 + bits[4]*8
    g := bits[5] + bits[6]*2 + bits[7]*4 + bits[8]*8
    b := bits[9] + bits[10]*2 + bits[11]*4 + bits[12]*8
    c := color.RGBA{uint8(r*16+8), uint8(g*16+8), uint8(b*16+8), 255}
    for _, p := range region.points {
        img.Set(p.X, p.Y, c)
    }
    return 13
}

func decode(name string) image.Image {
    file, _ := os.Open(name)
    length, _ := file.Seek(0, 2)
    file.Seek(0, 0)
    tweet := make([]byte, length)
    file.Read(tweet)

    // convert to bit string
    n := big.NewInt(0)
    m := big.NewInt(1)
    for _, c := range tweet {
        v := big.NewInt(int64(c - 32))
        v.Mul(v, m)
        n.Add(n, v)
        m.Mul(m, big.NewInt(95))
    }
    bits := make([]int, 0)
    for ; n.Sign() != 0; {
        bits = append(bits, int(n.Int64() & 1))
        n.Rsh(n, 1)
    }
    for ; len(bits) < 919; {
        bits = append(bits, 0)
    }

    // extract width and height
    w := 0
    k := 1
    for ; bits[0] == 1; {
        w += k * bits[1]
        k <<= 1
        bits = bits[2:]
    }
    w += k * (2 + bits[1])
    bits = bits[2:]
    h := 0
    k = 1
    for ; bits[0] == 1; {
        h += k * bits[1]
        k <<= 1
        bits = bits[2:]
    }
    h += k * (2 + bits[1])
    bits = bits[2:]

    // make new region containing whole image
    region := new(Region)
    region.children[0] = nil
    region.children[1] = nil
    for y := 0; y < h; y++ {
        for x := 0; x < w; x++ {
            region.points = append(region.points, image.Point{x, y})
        }
    }

    // new image
    img := image.NewRGBA(image.Rectangle{image.Point{0, 0}, image.Point{w, h}})

    // decode regions
    region.decode(bits, img)

    return img
}

func main() {
    if os.Args[1] == "encode" {
        s := encode(os.Args[2])
        file, _ := os.Create(os.Args[3])
        file.Write(s)
        file.Close()
    }
    if os.Args[1] == "decode" {
        img := decode(os.Args[2])
        file, _ := os.Create(os.Args[3])
        png.Encode(file, img)
        file.Close()
    }
}

3
Amigo, esos se ven geniales.
MrZander

2
Oh Dios, eso es IMPRESIONANTE.
jdstankosky

44
Espera, ¿dónde están tus hilos?
jdstankosky

1
Éste es mi favorito hasta ahora.
primo

44
+1 para el look cubista .
Ilmari Karonen

36

Pitón

La codificación requiere numpy , SciPy y scikit-image .
La decodificación requiere solo PIL .

Este es un método basado en la interpolación de superpíxeles. Para comenzar, cada imagen se divide en 70 regiones de tamaño similar de color similar. Por ejemplo, la imagen del paisaje se divide de la siguiente manera:

ingrese la descripción de la imagen aquí

El centroide de cada región está ubicado (hasta el punto ráster más cercano en una cuadrícula que no contiene más de 402 puntos), así como su color promedio (de una paleta de 216 colores), y cada una de estas regiones está codificada como un número de 0 a 86832 , capaz de almacenarse en 2.5 caracteres ascii imprimibles (en realidad 2.497 , dejando suficiente espacio para codificar un bit en escala de grises).

Si estás atento, es posible que hayas notado que 140 / 2.5 = 56 regiones, y no 70 como dije anteriormente. Sin embargo, tenga en cuenta que cada una de estas regiones es un objeto único y comparable, que puede enumerarse en cualquier orden. Debido a esto, podemos usar la permutación de las primeras 56 regiones para codificar las otras 14 , además de tener algunos bits restantes para almacenar la relación de aspecto.

Más específicamente, cada una de las 14 regiones adicionales se convierte en un número, y luego cada uno de estos números se concatenan juntos (multiplicando el valor actual por 86832 y sumando el siguiente). Este número (gigantesco) se convierte en una permutación en 56 objetos.

Por ejemplo:

from my_geom import *

# this can be any value from 0 to 56!, and it will map unambiguously to a permutation
num = 595132299344106583056657556772129922314933943196204990085065194829854239
perm = num2perm(num, 56)
print perm
print perm2num(perm)

dará salida:

[0, 3, 33, 13, 26, 22, 54, 12, 53, 47, 8, 39, 19, 51, 18, 27, 1, 41, 50, 20, 5, 29, 46, 9, 42, 23, 4, 37, 21, 49, 2, 6, 55, 52, 36, 7, 43, 11, 30, 10, 34, 44, 24, 45, 32, 28, 17, 35, 15, 25, 48, 40, 38, 31, 16, 14]
595132299344106583056657556772129922314933943196204990085065194829854239

La permutación resultante se aplica luego a las 56 regiones originales . El número original (y, por lo tanto, las 14 regiones adicionales ) también se puede extraer convirtiendo la permutación de las 56 regiones codificadas en su representación numérica.

Cuando --greyscalese usa la opción con el codificador, se usan 94 regiones en su lugar (separadas 70 , 24 ), con 558 puntos de trama y 16 tonos de gris.

Al decodificar, cada una de estas regiones se trata como un cono 3D extendido hasta el infinito, con su vértice en el centroide de la región, como se ve desde arriba (también conocido como Diagrama de Voronoi). Los bordes se mezclan para crear el producto final.

Mejoras futuras

  1. Las dimensiones de la Mona Lisa son un poco diferentes, debido a la forma en que estoy almacenando la relación de aspecto. Necesitaré usar un sistema diferente. Solucionado, suponiendo que la relación de aspecto original está en algún lugar entre 1:21 y 21: 1, lo que creo que es una suposición razonable.
  2. El Hindenburg podría mejorarse mucho. La paleta de colores que estoy usando solo tiene 6 tonos de gris. Si introdujera un modo solo en escala de grises, podría usar la información adicional para aumentar la profundidad del color, el número de regiones, el número de puntos de trama o cualquier combinación de los tres. He agregado una --greyscaleopción al codificador, que hace las tres.
  3. Las formas 2D probablemente se verían mejor con la mezcla desactivada. Probablemente agregaré una bandera para eso. Se agregó una opción de codificador para controlar la relación de segmentación y una opción de decodificador para desactivar la mezcla.
  4. Más diversión con combinatoria. 56! en realidad es lo suficientemente grande como para almacenar 15 regiones adicionales, ¡y 15! es lo suficientemente grande como para almacenar 2 más para un gran total de 73 . ¡Pero espera hay mas! La partición de estos 73 objetos también podría usarse para almacenar más información. Por ejemplo, hay 73 opciones para elegir 56 formas de seleccionar las 56 regiones iniciales , y luego 17 opciones para elegir las 15 siguientes . Un total de 2403922132944423072 particiones, lo suficientemente grande como para almacenar 3 regiones más para un total de 76. Necesitaría encontrar una forma inteligente de numerar de forma única todas las particiones de 73 en grupos de 56 , 15 , 2 ... y viceversa . Quizás no sea práctico, pero es un problema interesante para pensar.

0VW*`Gnyq;c1JBY}tj#rOcKm)v_Ac\S.r[>,Xd_(qT6 >]!xOfU9~0jmIMG{hcg-'*a.s<X]6*%U5>/FOze?cPv@hI)PjpK9\iA7P ]a-7eC&ttS[]K>NwN-^$T1E.1OH^c0^"J 4V9X

ingrese la descripción de la imagen aquí ingrese la descripción de la imagen aquí


0Jc?NsbD#1WDuqT]AJFELu<!iE3d!BB>jOA'L|<j!lCWXkr:gCXuD=D\BL{gA\ 8#*RKQ*tv\\3V0j;_4|o7>{Xage-N85):Q/Hl4.t&'0pp)d|Ry+?|xrA6u&2E!Ls]i]T<~)58%RiA

y

4PV 9G7X|}>pC[Czd!5&rA5 Eo1Q\+m5t:r#;H65NIggfkw'h4*gs.:~<bt'VuVL7V8Ed5{`ft7e>HMHrVVUXc.{#7A|#PBm,i>1B781.K8>s(yUV?a<*!mC@9p+Rgd<twZ.wuFnN dp

ingrese la descripción de la imagen aquí ingrese la descripción de la imagen aquí ingrese la descripción de la imagen aquí

El segundo codificado con la --greyscaleopción.


3dVY3TY?9g+b7!5n`)l"Fg H$ 8n?[Q-4HE3.c:[pBBaH`5'MotAj%a4rIodYO.lp$h a94$n!M+Y?(eAR,@Y*LiKnz%s0rFpgnWy%!zV)?SuATmc~-ZQardp=?D5FWx;v=VA+]EJ(:%

ingrese la descripción de la imagen aquí ingrese la descripción de la imagen aquí

Codificado con la --greyscaleopción.


.9l% Ge<'_)3(`DTsH^eLn|l3.D_na,,sfcpnp{"|lSv<>}3b})%m2M)Ld{YUmf<Uill,*:QNGk,'f2; !2i88T:Yjqa8\Ktz4i@h2kHeC|9,P` v7Xzd Yp&z:'iLra&X&-b(g6vMq

ingrese la descripción de la imagen aquí ingrese la descripción de la imagen aquí

Codificado --ratio 60y decodificado con --no-blendingopciones.


encoder.py

from __future__ import division
import argparse, numpy
from skimage.io import imread
from skimage.transform import resize
from skimage.segmentation import slic
from skimage.measure import regionprops
from my_geom import *

def encode(filename, seg_ratio, greyscale):
  img = imread(filename)

  height = len(img)
  width = len(img[0])
  ratio = width/height

  if greyscale:
    raster_size = 558
    raster_ratio = 11
    num_segs = 94
    set1_len = 70
    max_num = 8928  # 558 * 16
  else:
    raster_size = 402
    raster_ratio = 13
    num_segs = 70
    set1_len = 56
    max_num = 86832 # 402 * 216

  raster_width = (raster_size*ratio)**0.5
  raster_height = int(raster_width/ratio)
  raster_width = int(raster_width)

  resize_height = raster_height * raster_ratio
  resize_width = raster_width * raster_ratio

  img = resize(img, (resize_height, resize_width))

  segs = slic(img, n_segments=num_segs-4, ratio=seg_ratio).astype('int16')

  max_label = segs.max()
  numpy.place(segs, segs==0, [max_label+1])
  regions = [None]*(max_label+2)

  for props in regionprops(segs):
    label = props['Label']
    props['Greyscale'] = greyscale
    regions[label] = Region(props)

  for i, a in enumerate(regions):
    for j, b in enumerate(regions):
      if a==None or b==None or a==b: continue
      if a.centroid == b.centroid:
        numpy.place(segs, segs==j, [i])
        regions[j] = None

  for y in range(resize_height):
    for x in range(resize_width):
      label = segs[y][x]
      regions[label].add_point(img[y][x])

  regions = [r for r in regions if r != None]

  if len(regions)>num_segs:
    regions = sorted(regions, key=lambda r: r.area)[-num_segs:]

  regions = sorted(regions, key=lambda r: r.to_num(raster_width))

  set1, set2 = regions[-set1_len:], regions[:-set1_len]

  set2_num = 0
  for s in set2:
    set2_num *= max_num
    set2_num += s.to_num(raster_width)

  set2_num = ((set2_num*85 + raster_width)*85 + raster_height)*25 + len(set2)
  perm = num2perm(set2_num, set1_len)
  set1 = permute(set1, perm)

  outnum = 0
  for r in set1:
    outnum *= max_num
    outnum += r.to_num(raster_width)

  outnum *= 2
  outnum += greyscale

  outstr = ''
  for i in range(140):
    outstr = chr(32 + outnum%95) + outstr
    outnum //= 95

  print outstr

parser = argparse.ArgumentParser(description='Encodes an image into a tweetable format.')
parser.add_argument('filename', type=str,
  help='The filename of the image to encode.')
parser.add_argument('--ratio', dest='seg_ratio', type=float, default=30,
  help='The segmentation ratio. Higher values (50+) will result in more regular shapes, lower values in more regular region color.')
parser.add_argument('--greyscale', dest='greyscale', action='store_true',
  help='Encode the image as greyscale.')
args = parser.parse_args()

encode(args.filename, args.seg_ratio, args.greyscale)

decoder.py

from __future__ import division
import argparse
from PIL import Image, ImageDraw, ImageChops, ImageFilter
from my_geom import *

def decode(instr, no_blending=False):
  innum = 0
  for c in instr:
    innum *= 95
    innum += ord(c) - 32

  greyscale = innum%2
  innum //= 2

  if greyscale:
    max_num = 8928
    set1_len = 70
    image_mode = 'L'
    default_color = 0
    raster_ratio = 11
  else:
    max_num = 86832
    set1_len = 56
    image_mode = 'RGB'
    default_color = (0, 0, 0)
    raster_ratio = 13

  nums = []
  for i in range(set1_len):
    nums = [innum%max_num] + nums
    innum //= max_num

  set2_num = perm2num(nums)

  set2_len = set2_num%25
  set2_num //= 25

  raster_height = set2_num%85
  set2_num //= 85
  raster_width = set2_num%85
  set2_num //= 85

  resize_width = raster_width*raster_ratio
  resize_height = raster_height*raster_ratio

  for i in range(set2_len):
    nums += set2_num%max_num,
    set2_num //= max_num

  regions = []
  for num in nums:
    r = Region()
    r.from_num(num, raster_width, greyscale)
    regions += r,

  masks = []

  outimage = Image.new(image_mode, (resize_width, resize_height), default_color)

  for a in regions:
    mask = Image.new('L', (resize_width, resize_height), 255)
    for b in regions:
      if a==b: continue
      submask = Image.new('L', (resize_width, resize_height), 0)
      poly = a.centroid.bisected_poly(b.centroid, resize_width, resize_height)
      ImageDraw.Draw(submask).polygon(poly, fill=255, outline=255)
      mask = ImageChops.multiply(mask, submask)
    outimage.paste(a.avg_color, mask=mask)

  if not no_blending:
    outimage = outimage.resize((raster_width, raster_height), Image.ANTIALIAS)
    outimage = outimage.resize((resize_width, resize_height), Image.BICUBIC)
    smooth = ImageFilter.Kernel((3,3),(1,2,1,2,4,2,1,2,1))
    for i in range(20):outimage = outimage.filter(smooth)
  outimage.show()

parser = argparse.ArgumentParser(description='Decodes a tweet into and image.')
parser.add_argument('--no-blending', dest='no_blending', action='store_true',
    help="Do not blend the borders in the final image.")
args = parser.parse_args()

instr = raw_input()
decode(instr, args.no_blending)

my_geom.py

from __future__ import division

class Point:
  def __init__(self, x, y):
    self.x = x
    self.y = y
    self.xy = (x, y)

  def __eq__(self, other):
    return self.x == other.x and self.y == other.y

  def __lt__(self, other):
    return self.y < other.y or (self.y == other.y and self.x < other.x)

  def inv_slope(self, other):
    return (other.x - self.x)/(self.y - other.y)

  def midpoint(self, other):
    return Point((self.x + other.x)/2, (self.y + other.y)/2)

  def dist2(self, other):
    dx = self.x - other.x
    dy = self.y - other.y
    return dx*dx + dy*dy

  def bisected_poly(self, other, resize_width, resize_height):
    midpoint = self.midpoint(other)
    points = []
    if self.y == other.y:
      points += (midpoint.x, 0), (midpoint.x, resize_height)
      if self.x < midpoint.x:
        points += (0, resize_height), (0, 0)
      else:
        points += (resize_width, resize_height), (resize_width, 0)
      return points
    elif self.x == other.x:
      points += (0, midpoint.y), (resize_width, midpoint.y)
      if self.y < midpoint.y:
        points += (resize_width, 0), (0, 0)
      else:
        points += (resize_width, resize_height), (0, resize_height)
      return points
    slope = self.inv_slope(other)
    y_intercept = midpoint.y - slope*midpoint.x
    if self.y > midpoint.y:
      points += ((resize_height - y_intercept)/slope, resize_height),
      if slope < 0:
        points += (resize_width, slope*resize_width + y_intercept), (resize_width, resize_height)
      else:
        points += (0, y_intercept), (0, resize_height)
    else:
      points += (-y_intercept/slope, 0),
      if slope < 0:
        points += (0, y_intercept), (0, 0)
      else:
        points += (resize_width, slope*resize_width + y_intercept), (resize_width, 0)
    return points

class Region:
  def __init__(self, props={}):
    if props:
      self.greyscale = props['Greyscale']
      self.area = props['Area']
      cy, cx = props['Centroid']
      if self.greyscale:
        self.centroid = Point(int(cx/11)*11+5, int(cy/11)*11+5)
      else:
        self.centroid = Point(int(cx/13)*13+6, int(cy/13)*13+6)
    self.num_pixels = 0
    self.r_total = 0
    self.g_total = 0
    self.b_total = 0

  def __lt__(self, other):
    return self.centroid < other.centroid

  def add_point(self, rgb):
    r, g, b = rgb
    self.r_total += r
    self.g_total += g
    self.b_total += b
    self.num_pixels += 1
    if self.greyscale:
      self.avg_color = int((3.2*self.r_total + 10.7*self.g_total + 1.1*self.b_total)/self.num_pixels + 0.5)*17
    else:
      self.avg_color = (
        int(5*self.r_total/self.num_pixels + 0.5)*51,
        int(5*self.g_total/self.num_pixels + 0.5)*51,
        int(5*self.b_total/self.num_pixels + 0.5)*51)

  def to_num(self, raster_width):
    if self.greyscale:
      raster_x = int((self.centroid.x - 5)/11)
      raster_y = int((self.centroid.y - 5)/11)
      return (raster_y*raster_width + raster_x)*16 + self.avg_color//17
    else:
      r, g, b = self.avg_color
      r //= 51
      g //= 51
      b //= 51
      raster_x = int((self.centroid.x - 6)/13)
      raster_y = int((self.centroid.y - 6)/13)
      return (raster_y*raster_width + raster_x)*216 + r*36 + g*6 + b

  def from_num(self, num, raster_width, greyscale):
    self.greyscale = greyscale
    if greyscale:
      self.avg_color = num%16*17
      num //= 16
      raster_x, raster_y = num%raster_width, num//raster_width
      self.centroid = Point(raster_x*11 + 5, raster_y*11+5)
    else:
      rgb = num%216
      r, g, b = rgb//36, rgb//6%6, rgb%6
      self.avg_color = (r*51, g*51, b*51)
      num //= 216
      raster_x, raster_y = num%raster_width, num//raster_width
      self.centroid = Point(raster_x*13 + 6, raster_y*13 + 6)

def perm2num(perm):
  num = 0
  size = len(perm)
  for i in range(size):
    num *= size-i
    for j in range(i, size): num += perm[j]<perm[i]
  return num

def num2perm(num, size):
  perm = [0]*size
  for i in range(size-1, -1, -1):
    perm[i] = int(num%(size-i))
    num //= size-i
    for j in range(i+1, size): perm[j] += perm[j] >= perm[i]
  return perm

def permute(arr, perm):
  size = len(arr)
  out = [0] * size
  for i in range(size):
    val = perm[i]
    out[i] = arr[val]
  return out

1
Eso es increíble
lochok

La versión en color de la Mona Lisa parece una de sus tetas reventadas. Bromeando a un lado, esto es increíble.
jdstankosky

44
Usar las permutaciones para codificar datos adicionales es bastante inteligente.
Sir_Lagsalot

Realmente realmente asombroso. ¿Puedes dar una idea general con estos 3 archivos? gist.github.com
rubik

2
@rubik es increíblemente perdido, como lo son todas las soluciones a este desafío;)
primo

17

PHP

OK, me tomó un tiempo, pero aquí está. Todas las imágenes en escala de grises. Los colores tomaron demasiados bits para codificar para mi método: P


Mona Lisa
47 colores monocromo cadena de
101 bytes.

dt99vvv9t8G22+2eZbbf55v3+fAH9X+AD/0BAF6gIOX5QRy7xX8em9/UBAEVXKiiqKqqqiqqqqNqqqivtXqqMAFVUBVVVVVVVVVVU

Mona lisa


Formas 2D
36 colores Monocromo Cadena de
105 bytes.

oAAAAAAABMIDUAAEBAyoAAAAAgAwAAAAADYBtsAAAJIDbYAAAAA22AGwAAAAAGwAAAAAAAAAAKgAAAAAqgAAAACoAAAAAAAAAAAAAAAAA

2d 2dc


Hindenburg
62 colores monocromo
112 caracteres.

t///tCSuvv/99tmwBI3/21U5gCW/+2bdDMxLf+r6VsaHb/tt7TAodv+NhtbFVX/bGD1IVq/4MAHbKq/4AABbVX/AQAFN1f8BCBFntb/6ttYdWnfg

fotos aquí ingrese la descripción de la imagen aquí


Montañas
63 Colores Monocromo
122 caracteres.

qAE3VTkaIAKgqSFigAKoABgQEqAABuAgUQAGenRIBoUh2eqhABCee/2qSSAQntt/s2kJCQbf/bbaJgbWebzqsPZ7bZttwABTc3VAUFDbKqqpzY5uqpudnp5vZg

picshere ingrese la descripción de la imagen aquí


Mi metodo

Codifico mi flujo de bits con un tipo de codificación base64. Antes de que se codifique en texto legible, esto es lo que sucede.

Cargo la imagen de origen y la redimensiono a una altura o anchura máxima (según la orientación, vertical / horizontal) de 20 píxeles.

A continuación, vuelvo a colorear cada píxel de la nueva imagen para que coincida más en una paleta de 6 colores en escala de grises.

Una vez hecho esto, creo una cadena con cada color de píxel representado por las letras [AF].

Luego calculo la distribución de las 6 letras diferentes dentro de la cadena y selecciono el árbol binario más optimizado para la codificación en función de las frecuencias de las letras. Hay 15 posibles árboles binarios.

Comienzo mi flujo de bits con un solo bit, [1|0]dependiendo de si la imagen es alta o ancha. Luego uso los siguientes 4 bits en la secuencia para informar al decodificador qué árbol binario se debe utilizar para decodificar la imagen.

Lo que sigue es la corriente de bits que representan la imagen. Cada píxel y su color está representado por 2 o 3 bits. Esto me permite almacenar al menos 2 y hasta 3 píxeles de información para cada carácter ASCII impreso. Aquí hay una muestra de árbol binario 1110, que utiliza la Mona Lisa:

    TREE
   /    \
  #      #
 / \    / \
E   #  F   #
   / \    / \
  A   B  C   D

Las letras E 00y F 10son los colores más comunes en la Mona Lisa. A 010, B 011, C 110y D 111son los menos frecuentes.

Los árboles binarios funcionan así: ir de bit a bit, 0significa ir a la izquierda, 1significa ir a la derecha. Continúa hasta que golpees una hoja en el árbol o un callejón sin salida. La hoja en la que terminas es el personaje que deseas.

De todos modos, codifico la picadura binaria en caracteres base64. Al decodificar la cadena, el proceso se realiza en reversa, asignando todos los píxeles al color apropiado, y luego la imagen se escala dos veces el tamaño codificado (máximo 40 píxeles, X o Y, lo que sea mayor) y luego se genera una matriz de convolución aplicado a todo para suavizar los colores.

De todos modos, aquí está el código actual: " enlace de pastebin "

Es feo, pero si ve algún margen de mejora, avíseme. Lo pirateé juntos como quiero. Aprendí mucho de este desafío. Gracias OP por publicarlo!


2
Estos se ven increíblemente buenos considerando cuánto espacio de almacenamiento no utilizado tiene (¡Mona Lisa usa solo 606 bits de 920 disponibles!).
primo

Gracias, primo, realmente lo aprecio. Siempre admiro tu trabajo, ¡así que escucharte decir eso es bastante halagador!
jdstankosky

13

Mi primer intento Esto tiene margen de mejora. Creo que el formato en sí funciona, el problema está en el codificador. Eso, y me faltan bits individuales de mi salida ... mi (un poco más de calidad que aquí) el archivo terminó en 144 caracteres, cuando debería haber quedado algo. (y realmente desearía que hubiera, las diferencias entre estos y aquellos son notables). Sin embargo, aprendí, nunca sobreestimes lo grandes que son 140 caracteres ...

Lo reduzco a una versión modificada de la paleta RISC-OS, básicamente, porque necesitaba una paleta de 32 colores, y eso parecía un buen lugar para comenzar. Esto podría hacer con algunos cambios también, creo. Paleta

Lo Formas divido en las siguientes formas: y divido la imagen en bloques de paleta (en este caso, 2x2 píxeles) de un color frontal y posterior.

Resultados:

Los siguientes son los tweets, los originales y cómo se decodifica el tweet

*=If`$aX:=|"&brQ(EPZwxu4H";|-^;lhJCfQ(W!TqWTai),Qbd7CCtmoc(-hXt]/l87HQyaYTEZp{eI`/CtkHjkFh,HJWw%5[d}VhHAWR(@;M's$VDz]17E@6

Hindeberg Mi hindenberg

"&7tpnqK%D5kr^u9B]^3?`%;@siWp-L@1g3p^*kQ=5a0tBsA':C0"*QHVDc=Z='Gc[gOpVcOj;_%>.aeg+JL4j-u[a$WWD^)\tEQUhR]HVD5_-e`TobI@T0dv_el\H1<1xw[|D

Montaña Mi montaña

)ey`ymlgre[rzzfi"K>#^=z_Wi|@FWbo#V5|@F)uiH?plkRS#-5:Yi-9)S3:#3 Pa4*lf TBd@zxa0g;li<O1XJ)YTT77T1Dg1?[w;X"U}YnQE(NAMQa2QhTMYh..>90DpnYd]?

Formas Mis formas

%\MaaX/VJNZX=Tq,M>2"AwQVR{(Xe L!zb6(EnPuEzB}Nk:U+LAB_-K6pYlue"5*q>yDFw)gSC*&,dA98`]$2{&;)[ 4pkX |M _B4t`pFQT8P&{InEh>JHYn*+._[b^s754K_

Mona Lisa Mina Mona Lisa

Sé que los colores están mal, pero en realidad me gusta la Monalisa. Si eliminé el desenfoque (que no sería demasiado difícil), es una impresión cubista razonable: p

Necesito trabajar en

  • Agregar detección de forma
  • Un mejor algoritmo de "diferencia" de color
  • Averiguar dónde fueron mis partes faltantes

Le daré un poco más de trabajo más tarde para tratar de arreglarlos, y mejoré el codificador. Esos 20 personajes extra más o menos hacen una gran cantidad de diferencia. Me gustaría que volvieran.

La fuente de C # y la paleta de colores están en https://dl.dropboxusercontent.com/u/46145976/Base96.zip , aunque, en retrospectiva, puede no funcionar perfectamente cuando se ejecuta por separado (ya que los espacios en los argumentos de los programas no funcionan) bien).

El codificador tarda menos de un par de segundos en mi máquina bastante promedio.


11
Tipo. Se ven mejor que cualquier arte contemporáneo que haya visto en una galería ... ¡Debes hacer enormes copias de ellos y venderlos!
jdstankosky

1
Parece que necesito sacar el cartucho de mi Atari y volver a enchufarlo. Me gusta.
undergroundmonorail

13

Dejé de tratar de mantener el color y me puse blanco y negro, ya que todo lo que probé con el color era irreconocible.

Básicamente, todo lo que hace es dividir píxeles en 3 partes aproximadamente iguales: negro, gris y blanco. Tampoco mantiene el tamaño.

Hindenburg

~62RW.\7`?a9}A.jvCedPW0t)]g/e4 |+D%n9t^t>wO><",C''!!Oh!HQq:WF>\uEG?E=Mkj|!u}TC{7C7xU:bb`We;3T/2:Zw90["$R25uh0732USbz>Q;q"

Hindenburg HindenburgComprimido

Mona Lisa

=lyZ(i>P/z8]Wmfu>] T55vZB:/>xMz#Jqs6U3z,)n|VJw<{Mu2D{!uyl)b7B6x&I"G0Y<wdD/K4hfrd62_8C\W7ArNi6R\Xz%f U[);YTZFliUEu{m%[gw10rNY_`ICNN?_IB/C&=T

Mona Lisa MonaLisaCompressed

Montañas

+L5#~i%X1aE?ugVCulSf*%-sgIg8hQ3j/df=xZv2v?'XoNdq=sb7e '=LWm\E$y?=:"#l7/P,H__W/v]@pwH#jI?sx|n@h\L %y(|Ry.+CvlN $Kf`5W(01l2j/sdEjc)J;Peopo)HJ

Montañas MontañasComprimido

Formas

3A"3yD4gpFtPeIImZ$g&2rsdQmj]}gEQM;e.ckbVtKE(U$r?{,S>tW5JzQZDzoTy^mc+bUV vTUG8GXs{HX'wYR[Af{1gKwY|BD]V1Z'J+76^H<K3Db>Ni/D}][n#uwll[s'c:bR56:

Formas FormasComprimido

Aquí está el programa. python compress.py -c img.pngComprime img.pnge imprime el tweet.

python compress.py -d img.pngtoma el tweet de stdin y guarda la imagen en img.png.

from PIL import Image
import sys
quanta  = 3
width   = 24
height  = 24

def compress(img):
    pix = img.load()
    psums = [0]*(256*3)
    for x in range(width):
        for y in range(height):
            r,g,b,a = pix[x,y]
            psums[r+g+b] += 1
    s = 0
    for i in range(256*3):
        s = psums[i] = psums[i]+s

    i = 0
    for x in range(width):
        for y in range(height):
            r,g,b,a = pix[x,y]
            t = psums[r+g+b]*quanta / (width*height)
            if t == quanta:
                t -= 1
            i *= quanta
            i += t
    s = []
    while i:
        s += chr(i%95 + 32)
        i /= 95
    return ''.join(s)

def decompress(s):
    i = 0
    for c in s[::-1]:
        i *= 95
        i += ord(c) - 32
    img = Image.new('RGB',(width,height))
    pix = img.load()
    for x in range(width)[::-1]:
        for y in range(height)[::-1]:
            t = i % quanta
            i /= quanta
            t *= 255/(quanta-1)
            pix[x,y] = (t,t,t)
    return img

if sys.argv[1] == '-c':
    img = Image.open(sys.argv[2]).resize((width,height))
    print compress(img)
elif sys.argv[1] == '-d':
    img = decompress(raw_input())
    img.resize((256,256)).save(sys.argv[2],'PNG')

Lol, +1 para relaciones de aspecto no restringidas.
jdstankosky

7

Mi modesta contribución en R:

encoder<-function(img_file){
    img0 <- as.raster(png::readPNG(img_file))
    d0 <- dim(img0)
    r <- d0[1]/d0[2]
    f <- floor(sqrt(140/r))
    d1 <- c(floor(f*r),f)
    dx <- floor(d0[2]/d1[2])
    dy <- floor(d0[1]/d1[1])
    img1 <- matrix("",ncol=d1[2],nrow=d1[1])
    x<-seq(1,d0[1],by=dy)
    y<-seq(1,d0[2],by=dx)
    for(i in seq_len(d1[1])){
        for (j in seq_len(d1[2])){
            img1[i,j]<-names(which.max(table(img0[x[i]:(x[i]+dy-1),y[j]:(y[j]+dx-1)])))
            }
        }
    img2 <- as.vector(img1)
    table1 <- array(sapply(seq(0,255,length=4),function(x)sapply(seq(0,255,length=4),function(y)sapply(seq(0,255,length=4),function(z)rgb(x/255,y/255,z/255)))),dim=c(4,4,4))
    table2 <- array(strsplit(rawToChar(as.raw(48:(48+63))),"")[[1]],dim=c(4,4,4))
    table3 <- cbind(1:95,sapply(32:126,function(x)rawToChar(as.raw(x))))
    a <- as.array(cut(colorspace::hex2RGB(img2)@coords,breaks=seq(0,1,length=5),include.lowest=TRUE))
    dim(a) <- c(length(img2),3)
    img3 <- apply(a,1,function(x)paste("#",c("00","55","AA","FF")[x[1]],c("00","55","AA","FF")[x[2]],c("00","55","AA","FF")[x[3]],sep=""))
    res<-paste(sapply(img3,function(x)table2[table1==x]),sep="",collapse="")
    paste(table3[table3[,1]==d1[1],2],table3[table3[,1]==d1[2],2],res,collapse="",sep="")
    }

decoder<-function(string){
    s <- unlist(strsplit(string,""))
    table1 <- array(sapply(seq(0,255,length=4),function(x)sapply(seq(0,255,length=4),function(y)sapply(seq(0,255,length=4),function(z)rgb(x/255,y/255,z/255)))),dim=c(4,4,4))
    table2 <- array(strsplit(rawToChar(as.raw(48:(48+63))),"")[[1]],dim=c(4,4,4))
    table3 <- cbind(1:95,sapply(32:126,function(x)rawToChar(as.raw(x))))
    nr<-as.integer(table3[table3[,2]==s[1],1])
    nc<-as.integer(table3[table3[,2]==s[2],1])
    img <- sapply(s[3:length(s)],function(x){table1[table2==x]})
    png(w=nc,h=nr,u="in",res=100)
    par(mar=rep(0,4))
    plot(c(1,nr),c(1,nc),type="n",axes=F,xaxs="i",yaxs="i")
    rasterImage(as.raster(matrix(img,nr,nc)),1,1,nr,nc)
    dev.off()
    }

La idea es simplemente reducir el ráster (el archivo debe estar en png) a una matriz cuyo número de celdas sea inferior a 140, los tweets son entonces una serie de colores (en 64 colores) precedidos por dos caracteres que indican el número de filas y columnas de la trama.

encoder("Mona_Lisa.png")
[1] ",(XXX000@000000XYi@000000000TXi0000000000TX0000m000h00T0hT@hm000000T000000000000XX00000000000XXi0000000000TXX0000000000"

ingrese la descripción de la imagen aquí

encoder("630x418.png") # Not a huge success for this one :)
[1] "(-00000000000000000000EEZZooo00E0ZZooo00Z00Zooo00Zo0oooooEZ0EEZoooooooEZo0oooooo000ooZ0Eo0000oooE0EE00oooEEEE0000000E00000000000"

ingrese la descripción de la imagen aquí

encoder("2d shapes.png")
[1] "(,ooooooooooooooooooooo``ooooo0o``oooooooooo33ooooooo33oo0ooooooooooo>>oooo0oooooooo0ooooooooooooolloooo9oolooooooooooo"

ingrese la descripción de la imagen aquí

encoder("mountains.png")
[1] "(,_K_K0005:_KKK0005:__OJJ006:_oKKK00O:;;_K[[4OD;;Kooo4_DOKK_o^D_4KKKJ_o5o4KK__oo4_0;K___o5JDo____o5Y0____440444040400D4"

ingrese la descripción de la imagen aquí


4

No es una solución completa, solo poner el método por ahí. (Matlab)

Utilicé una paleta de 16 colores y 40 posiciones para crear un diagrama de voronoi ponderado . Se utilizó un algoritmo genético y un algoritmo simple de escalada para adaptarse a la imagen.

Álbum con imagen original y también tengo una versión de 16 bytes con 4 colores y posiciones fijas allí. :)

ingrese la descripción de la imagen aquí

(¿Puedo cambiar el tamaño de la imagen aquí?)


1
¿Puedes publicar las otras imágenes? ¡Quiero ver cómo se ven con esta compresión!
jdstankosky

@jdstankosky Lo siento, no puedo hacerlo ahora. Tal vez algún tiempo después ...
randomra

4

C#

Actualización - Versión 2


Hice otro intento de esto, ahora usando MagickImage.NET ( https://magick.codeplex.com/ ) para codificar los datos JPEG, también escribí un código básico para procesar mejor los datos del encabezado JPEG (como sugirió primo), también usó GuassianBlur en la salida que ayuda a suavizar parte de la compresión JPEG. A medida que la nueva versión se adapta mejor, he actualizado mi publicación para reflejar el nuevo método.


Método


He intentado algo único (con suerte), en lugar de tratar de manipular la profundidad del color o la identificación del borde, o tratar de usar diferentes formas para reducir el tamaño de las imágenes, he usado el algoritmo JPEG con la máxima compresión en versiones reducidas de las imágenes, luego eliminando todo menos el "StartOfScan" ( http://en.wikipedia.org/wiki/JPEG#Syntax_and_structure ) y algunos elementos clave del encabezado, puedo reducir el tamaño a una cantidad aceptable. Los resultados son realmente impresionantes para 140 caracteres, me da un nuevo respeto por los JPEG:

Hindenburg

Hindenburg Original

,$`"(b $!   _ &4j6k3Qg2ns2"::4]*;12T|4z*4n*4<T~a4- ZT_%-.13`YZT;??e#=*!Q033*5>z?1Ur;?2i2^j&r4TTuZe2444b*:>z7.:2m-*.z?|*-Pq|*,^Qs<m&?:e-- 

Montañas

Montañas Original

,$  (a`,!  (1 Q$ /P!U%%%,0b*2nr4 %)3t4 +3#UsZf3S2 7-+m1Yqis k2U'm/#"h q2T4#$s.]/)%1T &*,4Ze w$Q2Xqm&: %Q28qiqm Q,48Xq12 _

Mona Lisa

Mona Lisa Original

23  (a`,!  (1 Q$ /P q1Q2Tc$q0,$9--/!p Ze&:6`#*,Tj6l0qT%(:!m!%(84|TVk0(*2k24P)!e(U,q2x84|Tj*8a1a-%** $r4_--Xr&)12Tj8a2Tj* %r444 %%%% !

Formas

Formas Original

(ep 1# ,!  (1 Q$ /P"2`#=WTp $X[4 &[Vp p<T +0 cP* 0W=["jY5cZ9(4 (<]t  ]Z %ZT -P!18=V+UZ4" #% i6%r}#"l p QP>*r $!Yq(!]2 jo* zp!0 4 % !0 4 % '!


Código


Versión 2 - http://pastebin.com/Tgr8XZUQ

Realmente estoy empezando a extrañar ReSharper + Tengo muchas cosas que mejorar, todavía hay un montón de codificación difícil aquí, aunque es interesante meterse con eso (recuerda que necesitas MagickImage dll para que esto funcione en VS)


Original (en desuso): http://pastebin.com/BDPT0BKT

Todavía un poco desordenado.


"Esto es realmente un desastre en este momento", estoy de acuerdo con eso, ¿seguramente debe haber una mejor manera de generar ese encabezado? Pero supongo que los resultados son lo más importante. +1
primo

1

Python 3

Método

Lo que el programa hace primero es reducir la imagen, disminuyendo considerablemente su tamaño.

En segundo lugar, convierte los valores rgb en binarios y corta los últimos dígitos.

Luego convierte los datos de la base 2 en la base 10, donde agrega las dimensiones de la imagen.

Luego convierte los datos en la base 10 a la base 95, utilizando todos los ascii que pude encontrar. Sin embargo, no pude usar / x01 y similares debido a su capacidad para negar la función que escribió el archivo de texto.

Y (para mayor ambigüedad), la función de decodificación lo hace a la inversa.

comprimir.py

    from PIL import Image
def FromBase(digits, b): #converts to base 10 from base b
    numerals='''0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!@#$%^&*()_-+={[}]|:;"',<.>/?`~\\ '''
    D=[]
    for d in range(0,len(digits)):
        D.append(numerals.index(digits[d]))
    s=0
    D=D[::-1]
    for x in range(0,len(D)):
        s+=D[x]*(b**x)
    return(str(s))
def ToBase(digits,b): #converts from base 10 to base b
    numerals='''0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!@#$%^&*()_-+={[}]|:;"',<.>/?`~\\ '''
    d=int(digits)
    D=''
    B=b
    while(B<=d):
        B*=b
    B//=b
    while(B>=1):
        D+=numerals[d//B]
        d-=((d//B)*B)
        B//=b
    return(D)
im=Image.open('1.png')
size=im.size
scale_factor=40
im=im.resize((int(size[0]/scale_factor),int(size[1]/scale_factor)), Image.ANTIALIAS)
a=list(im.getdata())
K=''
for x in a:
    for y in range(0,3):
        Y=bin(x[y])[2:]
        while(len(Y))<9:
            Y='0'+Y
        K+=str(Y)[:-5]
K='1'+K
print(len(K))
K=FromBase(K,2)
K+=str(size[0])
K+=str(size[1])
K=ToBase(K,95)
with open('1.txt', 'w') as outfile:
    outfile.write(K)

decode.py

    from random import randint, uniform
from PIL import Image, ImageFilter
import math
import json
def FromBase(digits, b): #str converts to base 10 from base b
    numerals='''0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!@#$%^&*()_-+={[}]|:;"',<.>/?`~\\ \x01\x02\x03\x04\x05\x06\x07'''
    D=[]
    for d in range(0,len(digits)):
        D.append(numerals.index(digits[d]))
    s=0
    D=D[::-1]
    for x in range(0,len(D)):
        s+=D[x]*(b**x)
    return(str(s))
def ToBase(digits,b): #str converts from base 10 to base b
    numerals='''0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!@#$%^&*()_-+={[}]|:;"',<.>/?`~\\ \x01\x02\x03\x04\x05\x06\x07'''
    d=int(digits)
    D=''
    B=b
    while(B<=d):
        B*=b
    B//=b
    while(B>=1):
        D+=numerals[d//B]
        d-=((d//B)*B)
        B//=b
    return(D)
scale_factor=40
K=open('1.txt', 'r').read()
K=FromBase(K,95)
size=[int(K[-6:][:-3])//scale_factor,int(K[-6:][-3:])//scale_factor]
K=K[:-6]
K=ToBase(K,2)
K=K[1:]
a=[]
bsize=4
for x in range(0,len(K),bsize*3):
    Y=''
    for y in range(0,bsize*3):
        Y+=K[x+y]
    y=[int(Y[0:bsize]+'0'*(9-bsize)),int(Y[bsize:bsize*2]+'0'*(9-bsize)),int(Y[bsize*2:bsize*3]+'0'*(9-bsize))]
    y[0]=int(FromBase(str(y[0]),2))
    y[1]=int(FromBase(str(y[1]),2))
    y[2]=int(FromBase(str(y[2]),2))
    a.append(tuple(y))
im=Image.new('RGB',size,'black')
im.putdata(a[:size[0]*size[1]])
im=im.resize((int(size[0]*scale_factor),int(size[1]*scale_factor)), Image.ANTIALIAS)
im.save('pic.png')

El grito

Scream1 Scream2

hqgyXKInZo9-|A20A*53ljh[WFUYu\;eaf_&Y}V/@10zPkh5]6K!Ur:BDl'T/ZU+`xA4'\}z|8@AY/5<cw /8hQq[dR1S 2B~aC|4Ax"d,nX`!_Yyk8mv6Oo$+k>_L2HNN.#baA

Mona Lisa

Mona Lisa 1 Mona Lisa 2

f4*_!/J7L?,Nd\#q$[f}Z;'NB[vW%H<%#rL_v4l_K_ >gyLMKf; q9]T8r51it$/e~J{ul+9<*nX0!8-eJVB86gh|:4lsCumY4^y,c%e(e3>sv(.y>S8Ve.tu<v}Ww=AOLrWuQ)

Esferas

Esferas 1 Esferas 2

})|VF/h2i\(D?Vgl4LF^0+zt$d}<M7E5pTA+=Hr}{VxNs m7Y~\NLc3Q"-<|;sSPyvB[?-B6~/ZHaveyH%|%xGi[Vd*SPJ>9)MKDOsz#zNS4$v?qM'XVe6z\
Al usar nuestro sitio, usted reconoce que ha leído y comprende nuestra Política de Cookies y Política de Privacidad.
Licensed under cc by-sa 3.0 with attribution required.