El descubrimiento de TON 618 ha creado una nueva especie de agujero negro (ya con huellas dactilares de M87 o incluso núcleos IC1101): los agujeros negros ultramasivos con masas mayores de . Como se dijo en la respuesta anterior, en entornos clásicos, no existe un límite superior de la masa de los agujeros negros (no estoy tan seguro si se obtiene una teoría más allá de la Relatividad General, incluso en entornos clásicos).1010M⊙
Tal vez, algún día aprenderemos que la gravedad cuántica dice algo al respecto. Curiosamente, cualquier agujero negro supermasivo, estelar, intermedio y ultramasivo tiene una masa mucho mayor que la masa de Planck, aproximadamente un microgramo. El problema es que creemos que la gravedad cuántica se aplica solo a objetos MUY MASIVOS PEQUEÑOS (muy densos), no solo a objetos muy masivos. De hecho, cualquier persona tiene una masa mucho mayor que la masa de Planck, pero no está "concentrada". Cuando ha concentrado masa en regiones muy pequeñas, no tenemos idea de cómo manejar las fluctuaciones cuánticas y las amplitudes, excepto con la teoría de supercuerdas. Otra pregunta relacionada es si puedes tener agujeros negros de cualquier DENSIDAD. Nuevamente, como se dijo, debe considerar procesos cuánticos como la radiación de Hawking, ... Sin embargo, hay un punto sutil, llamado problema transplanckiano. En principio, A medida que los agujeros negros se evaporan, se hacen cada vez más pequeños, como en ciertos tamaños, la longitud de onda sería menor que la longitud de Planck. Tenemos que esperar una teoría definitiva de la gravedad cuántica antes de responder al destino final de los agujeros negros y, por lo tanto, el destino de ambos: los agujeros negros y todo el universo (incluso el espacio-tiempo podría ser metaestable y estado provisional / de transición).
¿Qué tan grande puede crecer un agujero negro formado por el colapso de una estrella masiva en 1 Gyr? Supongamos que el agujero negro puede crecer tan rápido como puede. Supongamos, por el momento, que satisface el límite de Eddington. Luego, sigue una ley exponencial:
donde para una función de masa inicial de diez masas solares de acuerdo con Eddington límite. Entonces comoM˙=kM=M/τ
k=4⋅10−16s−1
M=M0exp(kt)
esta fórmula y el valor de k, obtienes que la masa máxima que produce está en el rango de BH ultramasivo, es decir, para una escala de tiempo de aproximadamente 1 Gyr (Tenga en cuenta que los números son complicados). Por supuesto, el límite de transEddington es complicado, pero hay algunas razones para creer que los agujeros negros son más grandes queM0=10M⊙Mf∼1010M⊙1010M⊙son inestables y expulsan material. Por supuesto, en ausencia de cualquier otro argumento, el argumento anterior NO proporciona un límite superior en principio. Solo otras consideraciones relativas a los cuásares y los jets parecen aplicarse. Pero el tema es un tema candente de debate en astrofísica. Por otro lado, la masa mínima (o más pequeña) de agujero negro también es un misterio. En la macroescala, NO hemos encontrado agujeros negros más pequeños que 3-5 masas solares (agujeros negros estelares). Sin embargo, los agujeros negros primordiales o los agujeros negros pueden hacer que algunos trozos de la materia oscura estén ocultos en cúmulos y otras partes de las galaxias. Una vez más, la única pista son las ideas inflacionarias, las medidas astronómicas y los límites experimentales (recientemente, se ha analizado la probabilidad de que la materia oscura sea totalmente agujeros negros, pero algunas pruebas parecen indicar que ese no es el caso: